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A new refinement of the classical arithmetic mean and geometric mean inequality is given.
Moreover, a new interpretation of the classical mean is given and this refinement theorem
is generalized.
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1 INTRODUCTION

Faiziev [3] obtained a refinement of the classical arithmetic mean and
geometric mean inequality. Also Alzer [1] obtained a continuous version
of Faiziev’s refinement and Pearid [4] gave a simple proof of the
above Alzer-Faiziev inequality. Recently Takahasi and Miura [5]
obtained a generalization of the Alzer-Faiziev inequality.
Our main purpose of this paper is to give a new refinement of the

classical arithmetic mean and geometric mean inequality (Theorem 2.1).

The original concept of this research was inspired by the discussion held during the
second author’s visit to the Faculty of Engineering of Yamagata University.
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Furthermore we give a new interpretation of the classical mean and
generalize this refinement theorem (Theorem 3.2).

2 A REFINEMENT OF THE CLASSICAL MEAN INEQUALITY

Let + denote the set of all positive real numbers and 1t_ its n-product.
Recall the arithmetic mean, geometric mean, and harmonic mean;

A,(x,..., Xn) x +... + Xn,
n

a,(Xl,..., x,) (Xl x,)

H(Xl,...,x,) (/)(/x +... + 1/x,)’

where n E N and (x,...,xn)E +. The order relation among these
means is well-known;

Hn(x, x,) <_ Gn(x, xn) <_ A,(xl, x), (1)

and the equality holds if and only if xl-x2 x (see for
instance [2]).

Given any x (x,... ,x,)

_
and k with _< k_< n we first take

the geometric means of any k terms and then consider the arithmetic
mean of these ,Ck numbers. So we obtain

u(A, G,x;k) (xi,... xik) /, (2)
nCk <_il...<ik <_n

and by the similar procedure

<_i <...<ik <n

By the definitions (2) and (3), we have

(A, 6, x; ) (, A, ;) ,(x,..., x,),
b/(A, G, x; F/) b/(G, A, x; l) Gn(Xl,..., Xn)

so u(A, G,x; 1) >_ u(A, G,x;n) and u(G,A,x; 1) _< u(G, A, x; n). We will
prove that u(A, G, x; k) and u(G, A, x; k) monotonously lie between An
and Gn.
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THEOREM 2.1 Fix n E N and x (Xl,..., Xn) ]ln_+_. The refinement
u(A, G, x; k) is nonincreasing and u(G, A, x; k) is nondecreasing with
respect to k (1 <_ k <_ n), that is,

An u(A, G,x; 1) > u(A, G, x; 2) _>-.. > u(A, G,x;n 1)
>_ u(A, G, x; n) Gn, (4)

Gn -u(G,A,x; 1) _< u(G,A,x;2) <_ <_ u(G,A,x;n- 1)
<_ u(G, A, x; n) An.

In the above inequalities one equality occurs only if Xl- x2 Xn.

Proof For any k with 2 _< k < n, by the inequality (1)

Z (Xil "’’Xik)l/k
<_il <"’<ik <_n

Z { (xi2 "’’Xil)l/(k-1)
<i <’"<ik <_n

k

(XilXi3... Xil) 1/(k-l)

(Xil xik_l
l/(k-1) } l/k

1/(k-l) 1/(k-l)- { (Xi2 Xik) -1- (XilXi3 Xi:)

-’- -[-" (Xil Xil_ 1) l/(k-1) }

Z (Xil "’’Xil-l)l/(k-1)
l_<i <... < ik_ _<n

which implies

u(A, G, x; k) << (Nil ...Xik)l/k
nk <_il ik <_n

n-(k- 1) Z< (Xil "’’Xi_,) 1/(k-l)

nCk k
_<il <’" < i- _<n

(Xi," "’Xik_l) 1/(k-l)

nk-1 <_i <...<i_ <_n

u(A, G,x;k- 1).

Hence u(A, G,x; k) is nonincreasing, and (5) is proved similarly.
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Next we consider the equality case. If xl x2 xn then Gn
so all values u(A, G,x;k) and u(A, G,x;k) are equal. Suppose that
there exists k satisfying u(A, G, x; k) u (A, G,x;k-1). Then for any
il,... ,ik with < il < i2 <"" < ik <_n

Xi2 Xik Xil Xi Xik Xi Xik_l

which implies xi, xi2 Xik. Hence xl- x2 x

Using the geometric mean and harmonic mean we obtain

l<i, i<n (1/k)(1/xi, +... q-llxi)
(6)

u(H, G, x; k) { <<nCk 1_<il il <_n (Xil Xil) 1/k

-1

(7)

As Theorem 2.1 we can prove that u(G, H, x; k) is nonincreasing and
u(H, G, x; k) is nondecreasing.

3 A REFINEMENT OFA GENERALIZED MEAN

In order to generalize the previous inequalities we will regard the
mean as the sequence of positive functions. Letfk be a positive function
on It_ (k-1,2, 3,... ). The sequence of functions -{fk} is called
mean if the following conditions (M-1)-(M-5) hold;

(M-1) f(a)- a (Va > 0),
(M-2) for any k E 11

fk(xl,... ,Xk) <fk(Yl,... ,Yk) if 0 < Xi Yi (i- 1,... ,k),

(M-3) for any k E 11 and permutation cr of k elements

A(x , ),

(M-4) for any k, 1 and (x,... ,xk) +
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(M-5) for any k, lEN with <_l<_k and (xl,...,Xk)

fk(Xl, ,Xl, Xl+l, ,Xk)

---A Xl,...,Xl),...,fl(Xl,...,Xl),Xl+l,...,Xk

The sequences generated by arithmetic, geometric, and harmonic
means, {An}, {Gn}, and {Hn}, satisfy the above conditions (M-1)-(M-5).
So the above mean is a generalization of well-known three means.
We first remark that by the condition (M-4) with k-

J}(a,... ,a) -fl (a) a (V/ N, Va N+). (8)

Consider another condition (M-6);

(M-6) for any k,lN and (Xll,...,Xll,...,Xkl,...,Xkl)Rk+
.]k (J(Xll,..., Xl/),..., fl(Xkl,..., Xk,))

=f1 (xll,..., x11,..., xkl,..., xk#). (9)

We will show that (M-4) and (M-5) are equivalent to (M-6) under the
condition (M-3) and (8) above.

PROPOSITION 3.1 Let --{J)+} be a sequence ofpositive functions. If
c_ {f:} is a mean then . satisfies (M-6). Conversely/ff" {fk} satisfies
the conditions (8), (M-3), and (M-6) then (M-4) and (M-5) are valid.

Proof If " is a mean then

fk/(Xll,..., Xll, X21,..., X2l, Xkl, Xkl)

fkl(fl (Xll, ,Xl/), J(Xll, ,XI,,
X21,...,X2/, Xkl Xkl)

=f,((Xll,... ,Xl,), J(Xll,... ,Xll,

fl(Xkl,..., Xkl),..., fl(Xk,,..., Xkl)
f (J)(Xl,,..., Xl),..., )(x,..., x)),

by (M-5)

by (M-3), (M-5)
by (M-4)
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SO (M-6) holds. Conversely suppose that )c satisfies (8), (M-3), and
(M-6). Put x-xi (j- 1,..., l) in (M-6) then (M-4) holds by (8). For
anykENandlwith l_<l<k

A ((x,..., x),..., J;(x,..., x),

f(+, x+?), fl(x, x))

A(Xl,..., x,..., Xl,..., x, 5c+1,..., x+i’,

Xk,...,Xk)

A(Xl, Xl x, x x, x;)
:A(Xl,...,x),

by (8)

by (M-6)

by (M-3)
by (M-4)

which implies (M-5).

The order relation of two means Y"- {fk} and {7- {gk} is defined in
each coordinate, that is, - < if

fk(Xl,...,Xk)

_
gZc(Xl,...,Xk) (VkEN, V(x1,...,Xk) It{k+).

Consider two means "- {f}, {g} and fix n N. For any k with
n_< k _< n and x (Xl,... ,xn) R+, as (2) and (3), we define

u(f’, {7, x; k) f,ck (gk(xl,..., xl), g(Xn-l+l, Xn)),
,(, y, x; ) g, (f(xl,..., ),..., A(,-+I,..., ,)). (10)

By the definition

u(,T, , x; 1) u(, -, x; n) --fn(Xl,...,Xn),
u(f’, , x; n) u(, 9c, x; 1) gn(xl,..., Xn),

so if f < then

u(, f’, x; 1) _> u(,, x; n), u(9c, , x; 1) u(f, , x; n).

The following is a generalization of Theorem 2.1.
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THEOREM 3.2 Fix n E N and x- (x1,... ,Xn) ]ln+. If"
_

then the

refinement u(, ., x; k) is nonincreasing and u(.T, , x; k) is nondecreasing
with respect to k (1 <_ k <_ n), that is,

u(,’, x; 1) _> u(,’, x; 2) _> _> u(,,x;n- 1) _> u(, .T, x; n),
(11)

u(.T, , x; 1) _< u(.T, , x; 2) _<... _< u(.U, , x; n 1) _< u(f’, , x; n).
(12)

Proof Choose k with 2 _< k <_ n. Since for any (yl,..., Yk)

fk(fk-1 (Yl,-..,Yk-1), fk-1 (Yl,...,Yk-2,Yk),..., fk-1 (Y2,...,
=fk(k-1)(Yl,...,Yk-l,Yl,...,Yk-2,Yk,...,Y2,...,Yk) by (9)

k-1 k-1

=fk(k-1)(Yl,...,Yl Yk,...,Yk) by (M-3)

=f(Yl,..., Yk) by (M-4),

we can deduce that

u(,y,x;)
gnCk (A(Xl, "’’,xk),’’’,fk(xn-k+l, ",xn))
goc (A(A-(Xl,..., X-l), A-1 (Xl,... ,x_2,x),...,

fk-l(X2,...,Xk)), fk(fk-l(Xn-k+l, .,Xn-1),.
fk-l(Xn-k+2, ,Xn))).

According to the inequality <_ !7 and (M-2)

u(a,Y,x;k)
gnck (gk (fk-1 (X1,..., Xk-1), fk-1 (X1,..., Xk-2, Xk),...,

fk-1 (x2,..., Xk) ), gk (fk-, (Xnik+l, ,.Xn-1 ),
fk-l(Xn-k+2, ,Xn)))

g,G<.k(fk-l(Xl,...,Xk-1),fk-l(Xl,...,Xk-2, Xk),
A-I (x=,..., x/<), A- (x,-<+l,... ,x,_),
f-I (X,-k+2,... ,x,)) by (9)
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n-k+l

g,,G<. (?#-I (xl,..., x_,),..., f#-i (xl,..., x-lT,
n-k+l

A-1 (Xn-k--t-2,’’’, Xn),.-., A-1 (Xn-k+2,.-., XnT)
by (M-3)

n-k+l

gnCk-,- {n-(k-1)} (Tk-l’(X1, ,Xk-1).?. Sk-’I’(X1,.-. ,Xk-17,...,
n-k+l

k-l (Xn_k.-I-2, ,Xn), i-l (Xn-k+2, ,XnT)
g,ck_t (fk-l(Xl,...,Xk-1),..., fk-l(Xn-k+2,...,Xn)) by (M-4)
u(,,x;#- 1).

Hence u({7,.T’, x; k) is nonincreasing and (12) is proved similarly.

Remark For any n E N and 0 consider the function Mn defined by

’’n("’,’’’,"n) /’’’/X’n)’".n
(V(x1,...,Xn) ]n+).

Because lim, o Mtn (Xl, Xn (Xl Xn in, we define

Mn (X1, ,Xn) (XI’’’Xn) lln (V(x1,...,Xn) n+).

For a given n and (xl,...,x,,), Mtn(Xi,...,x,) is nondecreasing with
respect to t. In particular, M-1, M,, and M are the harmonic,
geometric, and arithmetic mean, respectively. So the functions M are
interpolated in the harmonic, geometric, and arithmetic mean (see [2]
for a detail of the function Mt). For a fixed t, the sequence
satisfies the conditions (M-1)-(M-5). So 3/[ {Mnt} is also a mean in
our sense.

Fix n I1, x (xl,..., x,)

_
and choose k with < k < n. For any

s, I let us consider

u(s, t, x; ) u(", ’, x; )

(<()<,,...,)<,,),..., ,()<,_,<+,,... ,)<,)).
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If s < then .A//s < j4 t, so by Theorem 3.2 we can conclude that

u(t,s,x; 1) _> u(t,s,x;2) >_ >_ u(t,s,x;n- 1) >_ u(t,s,x;n),
u(s,t,x; 1) < u(s,t,x;2) < <_ u(s,t,x;n- 1) <_ u(s,t,x;n).
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