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1 INTRODUCTION

This survey paper is an attempt to present the natural application of
certain integral inequalities such as Chebychev’s inequality for synchro-
nous and asynchronous mappings, Holder’s inequality and Griiss’ and
Ostrowski’s inequalities for the celebrated Euler’s Beta and Gamma
functions.

In the first section, following the well known book on special func-
tions by Larry C. Andrews, we present some fundamental relations and
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identities for Gamma and Beta functions which will be used frequently
in the sequel.

The second section is devoted to the applications of some classical
integral inequalities for the particular cases of Beta and Gamma func-
tions in their integral representations.

The first subsection of this is devoted to the applications of
Chebychev’s inequality for synchronous and asynchronous mappings
for Beta and Gamma functions whilst the seond subsection is concerned
with some functional properties of these functions which can be easily
derived by the use of Holder’s inequality. Applications of Griiss’ integral
inequality, which provides a more general approach than Chebychev’s
inequality, are considered in the last subsection.

The third and fourth sections are entirely based on some very recent
results on Ostrowski type inequalities developed by Dragomir et al. in
[10-16]. It is shown that Ostrowski type inequalities can provide general
quadrature formulae of the Riemann type for the Beta function. The
remainders of the approximation are analyzed and upper bounded
using different techniques developed for general classes of real mappings.
Those sections can also be seen themselves as new and powerful tools
in Numerical Analysis and the interested reader can use them for other
applications besides those considered here.

For a different approach on Theory of Inequalities for Gamma and
Beta Functions we recommend the papers [17-27].

2 GAMMA AND BETA FUNCTIONS

21 Introduction

In the eighteenth century, L. Euler (1707—1783) concerned himself with
the problem of interpolating between the numbers

n':/ e-ttndt, n=0,1,2,'-'9
0

with non-integer values of n. This problem led Euler, in 1729, to the now
famous Gamma function, a generalization of the factorial function that
gives meaning to x! where x is any positive number.
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The notation I'(x) is not due to Euler however, but was introduced
in 1809 by A. Legendre (1752-1833), who was also responsible for the
Duplication Formula for the Gamma function.

Nearly 150 years after Euler’s discovery of it, the theory concerning
the Gamma function was greatly expanded by means of the theory of
entire functions developed by K. Weierstrass (1815-1897).

The Gamma function has several equivalent definitions, most of
which are due to Euler. To being with, we define [1, p. 51]

("
I'(x) = lim i

n—00 x(x—|—1)(x+2)...(x+n)‘ (2.1)

If x is not zero or a negative integer, it can be shown that the limit

(2.1)exists [2, p. 5]. Itis apparent, however, that I'(x) cannot be defined at

x=0,—1,-2, ... since the limit becomes infinite for any of these values.
By setting x =1 in (2.1) we see that

r(1) =1. (2.2)

Other values of I'(x) are not so easily obtained, but the substitution of
x+ 1 for x in (2.1) leads to the Recurrence Formula[l, p. 23]

T'(x+1) = xI'(x). (2.3)

Equation (2.3) is the basic functional relation for the Gamma function;
it is in the form of a difference equation.

A direct connection between the Gamma function and factorials can
be obtained from (2.2) and (2.3)

T(n+1)=n!, n=0,12,... (2.4)

2.2 Integral Representation

The Gamma function rarely appears in the form (2.2) in applications.
Instead, it most often arises in the evaluation of certain integrals; for
example, Euler was able to show that [1, p. 53]

I‘(x)=/ et*1dt, x>0. (2.5)
0
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This integral representation of T'(x) is the most common way in which
the Gamma function is now defined. Lastly, we note that (2.5) is an
improper integral, due to the infinite limit of integration and because
the factor 1*~! becomes infinite if 1=0 for value of x in the interval
0 < x < 1. Nonetheless, the integral (2.5) is uniformly convergent for all
a<x<b,where0<a<b<oo.

A consequence of the uniform convergence of the defining integral
for I'(x) is that we may differentiate the function under the integral sign
to obtain [1, p. 54]

I'(x)= / e t*logtds, x>0, (2.6)
0
and
IM'(x) = / e~'t* (logt)*ds, x> 0. (2.7
0
The integrand in (2.6) is positive over the entire interval of integration
and thus it follows that I'(x) > 0, i.e., I" is convex on (0, 00).
In addition to (2.5), there are a variety of other integral representa-

tions of I'(x), most of which can be derived from that one by simple
changes of variable [1, p. 57]

I'(x) = /01 (log i) o du, x>0, (2.8)

and

T'(x)I'(y) _ /2 2x—1 g i 2—1
Mxty) /0 cos™ " @sin?” 0df, x,y>0. (2.9)

By setting x=y =% in (2.9) we deduce the special value

r@) = va. (2.10)

2.3 Other Special Formulae

A formula involving Gamma functions that is somewhat comparable
to the double-angle formulae for trigonometric functions is the
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Legendre Duplication Formula[1, p. 58]
270X (x +1) = val'(2x), x>0. (2.11)

An especially important case of (2.11) occurs when x=n(n=0,1,2,...)
[1,p.55]

1 2n)!
F(n+§> =gTr)l!\/7_r, n=091’29-" (212)

Although it was originally found by Schlémlich in 1844, thirty-two
years before Weierstrass’ famous work on entire functions, Weierstrass
is usually credited with the infinite product definition of the Gamma
function

%x) —x= [ (1 +)emst (2.13)

n=1

where ~ is the Euler—Mascheroni constant defined by

n
v = lim [Z%— logn} =0.577215... (2.14)

n—00 k=]

An important identity involving the Gamma function and sine function
can now be derived by using (2.13) [1, p. 60]. We obtain the identity

L(x)I'(1 -x) = (x non-integer). (2.15)

sin wx

The following properties of the Gamma function also hold (for example,
see [1, pp. 63-65]):

(o9}
I'(x)= s"/ e dt, x,5>0; (2.16)
0
I'(x) = / exp(xt —ef)ds, x> 0; (2.17)
—00
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I‘(x)-—/ooe”’t"“dt+i—t—l)—”— x> 0;
A L nl(x+n)’ ’

o0
I'(x) = (logh)* / b, x>0, b 1;
0
I'(x)=T"(x+1) —xI'"(x), x>0

[o¢]
I'(x) =/ e“(t—x)t"'llogtdt, x>0
0

1 122 (n - 1)\\/&
l"(i—n)z( ) (2n£1)! )\/_, n=0,1,2,...;

1 1 " )
F(§+n)1"<§——n) =(-1)'r, n=0,1,2,...;

1
r@xyz5;?*U%xmr(x+%>r(x+§),.x>0;

[[/(x)]> <T(x)"(x), x>0.

2.4 BetaFunction

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

A useful function of two variables is the Beta function [1, p. 66] where

1
ﬂ@J%:/t*%L%qu,x>Qy>Q
0

(2.26)

The utility of the Beta function is often overshadowed by that of the
Gamma function, partly perhaps because it can be evaluated in terms
of the Gamma function. However, since it occurs so frequently in prac-

tice, a special designation for it is widely accepted.
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It is obvious that the Beta mapping has the symmetry property

B(x,y) = B(y,x) (2.27)

and the following connection between the Beta and Gamma functions
holds:

B(x,y) = —IIL‘(();)FT());))’ x>0, y>0. (2.28)

The following properties of the Beta mapping also hold (see for example
[1, pp. 68-70)):

Blx+1,y) +B(xy+1) =B(xy), xy>0 (2.29)

By + ) =20+ 1) = 285y, wy>0 (230)

B(x,x) =2""2B(x, 1), x>0; (2.31)

B(x,»)B(x + y,2)B(x +y +z,w)

_TET(ITET(w) _
SThtytztw BrEw>0 (2.32)
ﬂ( 2’2 )*”Sec(z)» O<p<l; (2.33)
1 flex1 4 -1
V) =5 = dt
pen =5 o (t+1)"7
1 tx—l(l _ t)y—l
=p(1+ x+y/~——————--dt 234
p*(1+p) G (2.34)

for x,y,p>0.
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3 INEQUALITIES FOR THE GAMMA AND BETA FUNCTIONS
VIA SOME CLASSICAL RESULTS

3.1 Inequalities via Chebychev’s Inequality

The following result is well known in the literature as Chebychev’s
integral inequality for synchronous (asynchronous) mappings.

LEMMA 1 Let f,g,h:ICR—R be so that h(x)>0 for x€lI and h,
hfg, hf and hg are integrable on I. If f, g are synchronous (asynchronous)
onl, i.e., werecall it

) =S —g(3) 2 ()0 forallxyel,  (3.1)
then we have the inequality
/, h(x) dx /, h(x) £ (x)g(x) dx > (<) / h(x) £(x) dx /, h(x)g(x) dx.

(3.2)

A simple proof of this result can be obtained using Korkine’s
identity [3]

[ a6 rgtax— [ 760 dx [ gt dx
=3 | [ M0 1)) - sl axa (33)

The following result holds (see also [4]).

THEOREM 1 Let m,n, p, q be positive numbers with the property that
(p—m)(g—n) < (2)0. (3.4)
Then

B(p,q)B(m,n) 2 (<) B(p,n)B(m, q) (3.5)

and

L(p+n)T(g+m) 2 (S)T(p+g)T(m+n). (3.6)
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Proof Define the mappings f, g, 4 :[0, 1] — [0, oo] given by
f(x)=x"", g(x)=(1-x)" and A(x) =x""1(1-x)"".

Then
S =(p-mxrl g x)=n-91-x)""", xe(1).
As, by (3.3), (p—m)(g—n)<(>)0, then the mappings f and g are
synchronous (asynchronous) having the same (opposite) monotonicity
on [0, 1]. Also, 4 is non-negative on [0, 1].

Writing Chebychev’s inequality for the above selection of £, g and A
we get

1 1
[t —srtax [Famta - ortarna - apnax
0 0
1 1
> (S)/ x™ (1 — x)" dx/ x™ (1 — %) (1 = x)7 " dx.
0 0
That is,
1 1
/ x™ (1 - x)" ! dx/ xP(1 - x)7 " dx
0 0
1 1
>(9) [ w1 as [ - ax,
0 0

which, via (2.26), is equivalent to (3.5).
Now, using (3.5) and (2.28), we can state

I'(p)L'(q) T(m)'(n)
I'(p+gq) T(m+n)

T(p)L'(n) T(mT(q)
I'(p+n) T(m+q)

> (<)

which is clearly equivalent to (3.6).

The following corollary of Theorem 1 may be noted as well:

COROLLARY 1  For any p, m > 0 we have the inequalities

B(m, p) > [ B(p,p)B(m, m)]'? (3.7)
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and
T(p +m) > [[(2p)T(2m)]"/. (3.8)

Proof In Theorem 1 set ¢g=p and n=m. Then

(p—m)g—n)=(p-m)*>0
and thus

B(P,P)ﬂ(m,m) < ﬁ(p,m)ﬂ(m,p) = ﬂz(p’m)

and the inequality (3.7) is proved.
The inequality (3.8) follows by (3.7).

The following result employing Chebychev’s inequality on an infinite
interval holds [4].

THEOREM 2 Let m,p and k be real numbers with m,p>0 and
p>k>—-mIf

k(p—m—k) > ()0, (3.9)
then we have
T(p)T(m) 2 ()T (p - k)T(m + k) (3.10)
and
B(p,m) = (<) B(p —k,m + k) (3.11)
respectively.

Proof Consider the mappings f, g, : [0, 00) — [0, 00) given by
flx)=xPFm g(x) =xF, h(x)=x""Te"

If the condition (3.9) holds, then we can assert that the mappings fand
g are synchronous (asynchronous) on (0, o) and then, by Chebychev’s
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inequality for 7= [0, 00), we can state
o0 o0
/ xmleg* dx/ xPkomykxm=le=x dx
0 0

e o0
> (g)/ xpkmym-le=x dx/ xkxm-le=> dx,
0 0

ie.,

o0 o0
/ x"™ e *dx / xP~le™ dx
0 0

> (S)/ x"‘k"e"‘dx/ xkm=le=x dx. (3.12)
0 0

Using the integral representation (2.5), (3.12) provides the desired result
(3.10). On the other hand, since

_ I(p)T'(m)
B(p,m) = W
and
ﬂ@—km+m:P@—@Hm+@

T(p+m)

we can easily deduce that (3.11) follows from (3.10).
The following corollary is interesting.

COROLLARY 2 Let p>0and g € R such that |q| < p. Then

I2(p) <T(p—q)T(p+9q) (3.13)

and
B(p.p) <B(P—q.p+9q). (3.14)
Proof Choosein Theorem 2, m=p and k=g4. Then

k(p—m—k)=-¢ <0
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and by (3.10) we get

I*(p) <T(p—q)T(p +9).
The second inequality follows by the relation (2.28).

Let us now consider the following definition [4].

DEFINITION 1 The positive real numbers a and b may be called similarly
(oppositely) unitary if

(a—-1)(b-1) = (g)0. (3.15)
THEOREM 3 Let a, b > 0 and be similarly (oppositely) unitary. Then
T(a+b) > (<)abI'(a)L'(b) (3.16)

and

Bla.b)> (<) (317)

respectively.

Proof Consider the mappings f, g, 4 : [0, co) — [0, 0o) given by
f@O) =11, g)=1>" and h()=te".

If the condition (3.15) holds, then obviously the mappings f and g
are synchronous (asynchronous) on [0, co), and by Chebychev’s integral
inequality we can state that

o0 [o.¢] o0 oo
/ e dt/ retb-le=tqs > (5)/ t"e"dz/ tbe~ dt
0 0 0 0

provided (a— 1)(b— 1)>(<)0; ie.,
()T (a+b) > (<)T(a+ DI(b + 1). (3.18)

Using the recursive relation (2.3), we have I'(a+ 1) =al'(a), I'(b+ 1) =
bI'(b) and T'(2) = 1 and thus (3.18) becomes (3.16).
The inequality (3.17) follows by (3.16) via (2.28).
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The following corollaries may be noted as well:

COROLLARY 3  The mapping InI'(x) is superadditive for x > 1.

Proof Ifa,be[l,o00),then, by (3.16),
InT(a+b) >Ina+Inb+InT(a)+InT'(d) > InT(a) + InT'(b)

which is the superadditivity of the desired mapping.

COROLLARY 4 For everyneN,n>1 and a > 0, we have the inequality
T(na) > (n — 1)\ D[(a)]". (3.19)
Proof Using the inequality (3.16) successively, we can state that

T'(2a) > &’T'(a)T(a)
I'(3a) > 24°T(2a)T'(a)
T'(4a) > 34*T(3a)T'(a)

T'(na) > (n — 1)a’T[(n — 1)d]T(a).

By multiplying these inequalities, we arrive at (3.19).

COROLLARY 5 For any a> 0, we have
2a 1 1
I(a) < —== Tid (a + ) (3.20)
Proof We refer to the identity (2.10) from which we can write

22a- 1I‘(a)1"<a+ ) vrT'(2a), a>0.
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Since I'(2a) > a*T'*(a), we arrive at
1
2%-10(a)T (a + 5) > Vrd’T?(a)

which is the desired inequality (3.20).
For a given m > 0, consider the mapping I',,,: [0, 00) — R,

T(x+m)
Fm (X) = —m—— .
The following result holds.
THEOREM 4  The mapping T, ( - ) is supermultiplicative on [0, 0c).

Proof Consider the mappings f(f)=t* and g()=¢" which are

monotonic non-decreasing on [0, co) and A(7) := t™ e~ is non-negative

on [0, c0).
Applying Chebychev’s inequality for the synchronous mappings f, g
and the weight function 4, we can write

00 00 00 00
/ tm—le—tdt/ tx+y+m—le—t dr 2/ tx+m—1e—t dt/ ty+m—le-—t dz.
0 0 0 0

That is,
ImT(x+y+m) >T(x+mT(y+m)
which is equivalent to
Tm(x+3) 2 Tm(x)Cm(¥)

and the theorem is proved.

3.2 Inequalities via Holder’s Inequality

Let ICR be an interval in R and assume that fe L,(I), g€ L)
(p>L1/p+1/g=1),ie.,

/, ()P ds, /] 12(5)[7ds < oo,
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Then fg € Li(I) and the following inequality due to Holder holds:

1/p 1/q
[ros0a) < ([1rors)”([leors)”. o
For a proof of this classic fact using a Young type inequality
xy<1x1’+lx" x,y>0 1—%—1—1' (3.22)
— p q b b poivy El p q b .

as well as some related results, see the book [3].
Using Hoélder’s inequality we point out some functional properties of
the mappings Gamma, Beta and Digamma [5].

THEOREM 5 Leta,b>0witha+b=1andx,y>0. Then
T(ax + by) < L)), (3.23)
i.e., the mapping T is logarithmically convex on (0, 00).

Proof We use the following weighted version of Hélder’s inequality:

< ([1repns ds)l/p ([ tereacs ds)l/q

(3.24)

] JECESICLE

for p>1, 1/p+1/qg=1 and h is non-negative on I and provided all the
other integrals exist and are finite.
Choose
F(s) =D g(s) =507 and h(s) =e™°,  s€ (0,00)

in (3.24) to get (for I=(0,00) and p=1/a, g=1/b)

00
/ sa(x—l) i sb(y—l)e—s ds
0

e e] a o0 b
< </ sa(y—1)~1/ae—s ds) (/ sb(y-l)-l/be—s dS)
0 0
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which is clearly equivalent to

oo oo a oo b
/ stby—le=s 45 < (/ s7les ds) (/ ¥ les ds)
0 0 0

and the inequality (3.23) is proved.
Remark 1 Consider the mapping g(x) :=InI'(x), x € (0, 00). We have

I"(x)I(x) - L)
2(x)

I'(x)
I'(x)

and g"(x) =

g'(x)=

for x € (0, 00). Using the inequality (2.25) we conclude that g”(x) > 0 for
all x € (0, oo) which shows that I" is logarithmically convex on (0, 0o).

We prove now a similar result for the Beta function [5].

THEOREM 6 The mapping 3 is logarithmically convex on (0,00)? as a
Sfunction of two variables.

Proof Let(p,q), (m,n)€(0,00)* and a, b >0 with a+ b= 1. We have

Bla(p.q) + b(m,n)] = Blap + bm, aq + bn)

1
=/ tap+bm—1(1 _ t)aq+bn—1 ds
0

1 .
— / ta(p—1)+b(m—1)(1 _ t)a(q-—l)+b(n—1) dt
0

1 b
=/ [ﬂ’“(l—t)"“‘]ax[z'”“(l—t)""‘] dr.
0
Define the mappings

f) = [z"“(l - t)"“]a, te (0,1),

g(t) = [t"'“(l - t)”“l]b, te(0,1),

and choose p=1/a,q=1/b(1/p+1/g=a+b=1,p>1).
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Applying Holder’s inequality for these selections, we get

/01 [t"'l(l - t)"“]a [t"_l(l - t)"“]bdt
b

< [/0] P11 —-t)""dt]ax[/o1 LY ) Lo dt] ,

Bla(p, q) + b(m,n)] < [B(p, @)}’ B(m, )]’

which is the logarithmic convexity of 8 on (0, 00)>.

ie.,

Closely associated with the derivative of the Gamma function is the
logarithmic derivative function, or Digamma function defined by [1, p. 74]

¥(x) =£—Clogr(x) =§I,/((Tx)), x#0,-1,-2,...

The function ¥(x) is also commonly called the Psi function.

THEOREM 7 The Digamma function is monotonic non-decreasing and
concave on (0, 00).

Proof AsT islogarithmically convex on (0, 00), then the derivative of
InT', which is the Digamma function, is monotonic non-decreasing on
(0, 00).

To prove the concavity of ¥, we use the following known representa-
tion of ¥ [6, p. 21]:

1 1— tx—l
U(x) = / L di—y, x>0, (3.25)
M

where v is the Euler—Mascheroni constant (see (2.14)).
Now, let x,y>0and a,b>0witha+b=1. Then

1 1 — pax+by—1

\Il(ax+by)+'y=/ 1———-—dt
0 —1

11 _ tax—1+b(y-1)
= / dr. (3.26)
A 1—¢
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As the mapping R>x+— a*€(0,00) is convex for ae(0,1), we can
state that

ta(x—l)+b(y—1) < at*! + btV1 (327)

forallt€(0,1) and x,y > 0.
Using (3.27) we can obtain, by integrating over z € (0, 1),

1 +by—1 1 —1 —1

1 — pax+oy _ X ¥y

/ t |t>/ 1 (at + bt ) P
0 1—1¢ 0 1—1¢

1 _4x-1 ¢yl
=/ a(l =t +b(1—1t )dz
0 1—1¢

17 _ x—1 17 ,y-1
=a/1 ! m+b/1 P 4
o 11—t o 11—t

= al¥(x) +] + b[¥(x) + 1]
=a¥(x) + b¥(y) + 1. (3.28)

Now, by (3.26) and (3.28) we deduce

U(ax +by) > a¥(x) +b¥(y), xy>0,a,b>0, a+tb=1,

i.e., the concavity of ¥,

3.3 Inequalities via Griiss’ inequality

In 1935, G. Griiss established an integral inequality which gives an esti-
mation for the integral of a product in terms of the product of integrals
[3, p- 296].

LEMMA 2 Let fand g be two functions defined and integrable on [a, b]. If

e<f(x)<®, ~v<g(x)<I' foreach x € [a,b]; (3.29)

where @, @,y andT are given real constants, then

‘b1a/abf(x)g(x)dx—bialbf(x)dx-bia/abg(x)dx

<7(@— )T~ (3.30)

and the constant } is the best possible.
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The following application of Griiss’ inequality for the Beta mapping
holds [7].

THEOREM 8 Let m,n, p and q be positive numbers. Then
Bm+p+Ln+g+1)—Bm+1L,n+1)-B(p+1,9+1)]

1 pPq? m™n"
TA(p+at (mn)™T

(3.31)

Proof Consider the mappings
Inn(x) := x"(1 = x)",  bg(x) := xP(1 — x)?, x €[0,1].

In order to apply Griiss’ inequality, we need to find the minima and the
maxima of [, 5 (a, b > 0).
We have

dd—xla,b(x) =ax®'(1 — x)? — bx?(1 — x)*!
=x1(1 = x)*a(1 = x) — bx]
x (1 = x)"a - (a+ b)x].

We observe that the unique solution of /,(x) =0 in (0,1) is xo=
a/(a+b) and as I;,(x) >0 on (0,x0) and I,5(x) <0 on (xo, 1), we
conclude that xq is a point of maximum for /,; in (0, 1). Consequently

= inf [ =
Mg p xg[}), 1 a,b(x) 0

and

a a’b?
M,y = sup I =1 = .
ab xe[Ol,)I] b(x) = lap (a + b) (a+b)*+*

Now, if we apply Griiss’ inequality for the mappings /,, and [, ,,

we get
\/ Inn(x) - Ipg(x) dx — /lm,,(x)dx / lpg(x)dx
<1

< i (Mpp — M) (Mg — my q)
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which is equivalent to
1 1 1
‘ / bt pareg () dx — /0 () dx - /0 () dx
0
o Pgd
< m"n pPq

1
4(m+n)™" (p+qft

and the inequality (3.31) is obtained.

Another simpler inequality that we can derive via Griiss’ inequality is
the following.

THEOREM 9 Let p, g > 0. Then we have the inequality

1 1
Bp+lg+l)——mmo | < - 332
o+ 1+ )~ | <3 32
or, equivalently,

3—pq—p—q} S5+pg+p+aq

max{ 0, —————— 5 < +1lLg+1) <.

{ W+ g+ ) SPPHLIED <gE N
(3.33)

Proof Consider the mappings
fx)=x glx)=010-x) x€[0,1], p,g>0.

Then, obviously

inf = inf =0;
xg[})’”f (x) xg[}),”g(x)

sup f(x) = sup g(x) =1;
x€[0,1] x€[0,1]

and

1 1 1 1
/of(x)dx=m, /Og(x)dx=—q——-ﬁ.
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Using Griiss’ inequality we get (3.32). Algebraic computations will show
that (3.32) is equivalent to (3.33).

Remark 2 Taking into account that 3(p,q)=T(p+ ¢q)/T(p)I'(g)),
the inequality (3.32) is equivalent to

IT(p+1T(g+1) 1 1

TTr+q+2) D@+ D) 4

1e.,

(p+ DT (p+1)-(g+1)T(g+1)-T(p+g+2)
<Hp+ D@+ DT(p+4g+2)

andas (p+ DI(p+1)=T(p+2),(g+ DI'(g+1)=T(g+2), we get

T(p+g+2) -T(p+2)T(g+2)| <i(p+ g+ (p+g+2).
(3.34)

Griiss’ inequality has a weighted version as follows.

LEMMA 3 Let f,g be as in Lemma 2 and h:[a, b] — [0, 00) such that
2 h(x) dx > 0. Then

/ F(X)g(x)h(x) dx

1 b 1 b
S [ e e / g(x)h(x)dxl

<3T=7(2-9). (3.35)

The constant } is best.

For a proof of this fact which is similar to the classical one, see the
recent paper [8].

Using Lemma 3, we can state the following proposition generalizing
Theorem 8.
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PropPoSITION 1  Let m,n,p,q>0andr,s > —1. Then we have

Br+1,s+1)B(m+p+r+1l,n+q+s+1)
—Bm+r+Ln+s+1)B(p+r+1,g+s+1)]
1 m™n" pPq?

- ) 2
S4(m+n)'”+" (p+q)P+qﬁ (r+1,54+1). (3.36)

The proof follows by the inequality (3.35) by choosing
h(x) =bs(x), f(x)=Ilna(x) and g(x) =L4(x),  x€(0,1).
Now, applying the same inequality, but for the mappings
h(x) = Ls(x), f(x)=x” and g(x)=(1-x)!, x€(0,1),
we deduce the following proposition generalizing Theorem 9.

PROPOSITION 2 Letp,q>0andr,s> —1. Then

IBr+Ls+D)B(p+r+1,9+s+1)
—B(p+r+1,s+1)B(r+1,g+s+1)]
<IB(r+1,s+1). (3.37)

The weighted version of Griiss’ inequality allows us to obtain inequal-
ities directly for the Gamma mapping.

THEOREM 10 Let o, 8,v>0. Then

1

WF(Q—H@-&-’Y—F I)F(’}/‘I‘ 1)

T(a+7+ DD(B+7+1)

- Qatf+2y+2

<_.€_._1“2(7+1), (3.38)

Proof Consider the mapping f,(f) = t*¢~* defined on (0, c0). Then

fit)y=at* e — e =t (a— 1)
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which shows that f;, is increasing on (0, ) and decreasing on (0, co) and

the maximum value is £, (o) = a*/e°.
Using (3.35), we can state that

] /0 LS00 dr / POy WACYACEY /0 A0

1€[0,x] E[0 ]

X (/Oxfh,(t) dt)

for all x > 0, which is equivalent to

X x X X
/ rothtre=3t 4y . / S / totre=2 ds - / tPtre2 dtl
0 0 0 0

for all x > 0.
As the involved integrals are convergent on [0, co), we get

[o.¢] o0 o0 o0
/ fotbrre=3t 4 . / eve ! dr — / tetre2 gy / tArre2t 4y
0 0 0 0
la* B° o 2
<-—.= Te~! ) )
Sie P (/0 e'e dt) (3.39)

Now, using the change of variable u = 3¢, we get

/oo ta+ﬂ+'ye—-3t dr = 1/00 (E)a+ﬁ+’7e_u du
0 3Jo \3

Tla+B+v+1)

= Zatpiyt

and, similarly

oo
1
+y a2t
/ota Tedr = 2a+7+11"(0z+')'+1)
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and
e o] 1
BHye—2t qf —
/0 tPtTe tdt_2ﬁ+7+11“(ﬂ+fy+1)

and then, by (3.39), we deduce the desired inequality (3.38).

4 INEQUALITIES FOR THE GAMMA AND BETA FUNCTIONS
VIA SOME NEW RESULTS

41 Inequalities via Ostrowski’s Inequality for
Lipschitzian Mappings

The following theorem contains the integral inequality which is known in
the literature as Ostrowski’s inequality (see for example [9, p. 469]).

THEOREM 11 Let f: [a, b] — R be continuous on [a, b] and differentiable
on (a,b), whose derivative is bounded on (a,b) and let || f'|c:=
SUPre(ap) | f'(1)] < o00. Then

1051 [rwa

BRI PR
< |Z+W] (b=a)l

(4.1)

for all x€[a,b]. The constant "—‘ is sharp in the sense that it cannot be
replaced by a smaller one.

The following generalization of (4.1) has been done in [10].

THEOREM 12 Letu:[a, b] — R be a L-Lipschitzian mapping onla, b}, i.e.,
lu(x) —u(y)| < Lix —y| for all x,y € [a,b].
Then we have the inequality

< L(b - a)? [1+———————(x ~(atb)/2)"

4 (b — a)* } (42

b
/a u(t) dt — u(x)(b — a)

for all x €[a, b]. The constant % is the best possible.
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Proof Using the integration by parts formula for the Riemann-—
Stieltjes integral, we have

/a (¢ = @) du(t) = u(x)(x — @) — / " u(e) de

and

b b
/x (t = b) du(t) = u(x)(b - x) — / u(t) dt.

If we add the above two equalities, we get

b X b
u(x) (b — @) / u(t)d = / (t — a) du(1) + / (= b)du(r). (4.3)

Now, assume that A, a= xé") < x](") < x,f")] <xW=disa
sequence of divisions with »(A,)—0 as n— oo, where v(4,) =
MaX;eo,.. i 1}< h& —x(")) and 5(" € [x,(" ,x,(+")1] If p:lc,d]—R is
Riemann integrable on [c¢,d] and v:[c,d]— R is L-Lipschitzian on
[a, b], then

d
/pmmw

,im Zp( ) (x2) = v(x)]
< dm Z’P<§(")‘(x,.(ﬂ (n))i"( z(f)])— (.(”))

= (n _ (n)
H—l

<1 gm0 o4 -+)

d
=L [ Ipidx (44)
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Applying the inequality (4.4) on [a, x] and [x, b] successively, we get

/a "= a) du(r) + /x "(t—) du(z)l

<

/ﬂx(z —a) du(t), + /xb(t —b) du(t)'

X b
SL[/ |t—a|dt+/ |t—~b|dt]
a X

=-§- (6= + (b - 7]
=2 (b~ ay [§+<£:(_§:’i’;_3/_2_>f], (4.5)

and then, by (4.5), via the identity (4.3), we get the desired inequality
(4.2). To prove the sharpness of the constant %, assume that the inequality
(4.2) holds with a constant C >0, i.e.,

x— (a+b)/2)2

b
/a u(t)dt — u(x)(b — a)| < L(b— a)* [C+ ( b—a? } (4.6)

for all x € [a, b].
Consider the mapping f:[a, 5] — R, f(x) = x in (4.6). Then

X —

for all x €[a, b], and then for x = a, we get

b;“g (C+211—)(b—a)

which implies that C > 1, and the theorem is completely proved.

The best inequality we can get from (4.2) is the following one.
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COROLLARY 6 Let u:[a, b] — R be as above. Then we have the inequality

/abu(t)dt—u<a+b)(b——a)

The previous results are useful in the estimation of the remainder for
a general quadrature formula of the Riemann type for L-Lipschitzian
mappings as follows: Let I,; a=xo<x1 <+ < X,_1 <X,=b be a divi-
sion of the interval [a, b] and &; € [x;, x;.1] (i=0,1,...,n— 1) a sequence
of intermediate points for /,,. Construct the Riemann sums

1
< Lb-a’. (4.7)

n—1
Ro(f3 10, €) = D f (&)

i=0
where h;:=x;.1 —x; ((=0,1,...,n—1).
We now have the following quadrature formula.

THEOREM 13 Let f:[a,b] — R be an L-Lipschitzian mapping on [a, b]
and I,,§; (i=0,1,...,n—1) be as above. Then we have the Riemann
quadrature formula

b
/ﬂ@w=&Mm®+MM%O (48)

where the remainder satisfies the estimate

Wl f; I, ) <L[4Zh2+2( x_tiﬂ)z]

i=0 i=0

<1 LZ ? (4.9)

i=0

forall&;(i=0,1,...,n—1) as above. The constant% is sharp.

Proof Apply Theorem 12 on the interval [x;, x;.1] to get

(x)dx —f(ﬁi)hi‘ < L[%h? + (§,~ h i—%)z] '



130 S.S. DRAGOMIR et al.

Summing over i from 0 to n—1 and using the generalized triangle
inequality, we get

n—1
AATIEDY

i=0
-1

YR CE N

i=0

[ reax s

i

Now, as

forall §;€[x;+ x;11] (=0, 1,...,n—1), the second part of (4.9) is also
proved.

Note that the best estimation we can obtain from (4.9) is that one for
which §; = (x; + x;41)/2, obtaining the following midpoint formula.

COROLLARY 7  Let f, I, be as above. Then we have the midpoint rule

b
/ F(x)dx = My(fi 1) + Su(fe 1)

where
n—1
. Xi + Xit1)
Mfi1) =2 f (F5 )
and the remainder S,( f, I,) satisfies the estimation
l n—~1
|Sn(fa In)l S ZLZh?'
i=0

Remark 3 If we assume that f: [a, b] — R is differentiable on (g, b) and
whose derivative f” is bounded on (g, b), we can put instead of L the
infinity norm || f’||. obtaining the estimation due to Dragomir—Wang
from [11].

We are now able to state and prove our results for the Beta mapping.
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THEOREM 14 Let p,q > 2 and x €[0, 1]. Then we have the inequality
B(p,g) —x"7' (1 —x)*!

(P=2Yq-2""1 1\?
<max{p—-1,9—1} (pt gy L—l-i—(x——z-) . (4.10)

Proof Reconsider the mapping /,;:(0,1) - R, I,5(x)=x%1— x)b .
For p,q> 1, we get

Lty =baga(p—1)—(p+9-2)1], 1€(0,1).
If 1€(0,(p—D/(p+q—2)), then [;_;, ,(z) >0. Otherwise, if 1€

(p—D/(p+g—2),1), then [, ,(¢) <0, which shows that for
to=(p—1)/(p+ q—2), we have a maximum for /,_; ,_, and

-1 p—l/ 1 q-1
sup lp-1,4-1(1) = p—l,q—l(to) = (P i )

= —~—, p,q>1.
1€(0,1) (p+q—2y"7?

Consequenlty

Il;—l,q—l(t)l < |lp-2,4-2(1)] trg[g’]‘] (p—1)—(p+q-2)

(p—2*g-2)""

<
(p+q—ay

max{p—1,q— 1}

for all 1 €0, 1], and then

(P—22(q-2""
(p+q—ayr

”l;lv—],q—l(t)”oo < max{p - l’q - 1} » D4 > 2.

(4.11)

Applying now the inequality (4.2) for f(x)=1/,_14-1(x), x€[0, 1] and
using the bound (4.11), we derive the desired inequality (4.10).

The best inequality we can get from (4.10) is the following.
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COROLLARY 8 Let p,q > 2. Then we have the inequality

p=22(q-2""
(p+q—4P*
4.12)

1max{p~1 q—l}(

1
‘ﬂ(p, 9) = 2pre=2

The following approximation formula for the Beta mapping holds.

THEOREM 15 Let I: 0=xo<x1<---<Xx,_1<x,=1 be a division of
the interval [0, 1], &;€[x; x:11] (i=0,1,...,n— 1) a sequence of inter-
mediate points for I, and p, g > 2. Then we have the formula

Ze,' —&)"'hi+ Tu(p.q)

i=0

where the remainder T, (p, q) satisfies the estimation

(P—202(¢—2)""
(p+q-4y

n—1 n—1 . . 2
[ ges]
(p— 2)p—2(q 2) q_znz:l 2

|Tu(p,q)| <max{p—1,q-—1}

<max{p-1,9-1}

(p+q- 4)p+q_4 i=0
In particular, if we choose for the above
5,.=x"_+23‘L+_‘ (i=0,1,....,n—1);

then we get the approximation

1 1
:8(173 ) a2 Z(x,+x,+1)p (2 xt‘“xt+l) 1+ Vn(Paq)’

where

p-2 -7,
(p+q—4Prt

1
Valp. ) < gmax{p 1~ 1}t
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4.2 Some Inequalities via Ostrowski’s Inequality
for Mappings of Bounded Variation
The following inequality for mappings of bounded variation [15] holds.

THEOREM 16 Let u:[a,b]— R be a mapping of bounded variation on
[a, b). Then for all x € [a, b], we have

[(b—). ““”’H\b/ (4.13)

a

b
/a u(t)dt — u(x)(b - @) <

where \/Z(u) denotes the total variation of u. The constant } is the best
possible.

Proof Using the integration by parts formula for Riemann—Stieltjes
integral, we have (see also the proof of the Theorem 11) that

b b b
u(x)(b — @) — / u(f)dt = / (1 — a) du(t) + / (t—b)du(t) (4.14)

for all x €[a, b].

Now, assume that A, ¢ = xén < xl(") (")1 <x" =dis a
sequence of divisions with v(A,)—0 as n— oo, where v(4,) =
max;e(o,..n-1} x,(ﬂ ~x(”)) and 5(" € x() l(fr')l If p:[c,d]—R is
continuous on [¢,d] and v:[c,d] — R is of boundéd variation on [a, b],

then

[ﬂmmm

A (@) ()]
m S1o(6) o (+12) (=)
(=) - (=)

d
) |p(x)| \/ (). (4.15)

IA

IN
<

sup, |p(x) IsupZ

x€ C, Ay i=0

Il
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Applying (4.15), we have successively

(t —a)du(?) I (x —a) \/(u)

and

b b
/x (z—b) du(l)| <(b—x) \/(u)

and then

/x(t —a)du(t) + /b( —b) du(r)

/ (t — a) du(e

X

\/ +(b- x)\/

a

< max{x —a,b — x} [\x/(u) + \/(u)]

a

/ (t — b) du(t)

b
= max{x — a,b — x} \/(u)

_ [b;a+}x_a42-b]\z/(u).

Using the identity (4.14), we get the desired inequality (4.13).
Now, assume that the inequality (4.13) holds with a constant
C>0,ie.,

a+b

[c6-a)+]x-

b
/ u(t)dr — u(x)(b — a)| < ]\/(u) (4.16)

for all x €[a, b).
Consider the mapping u :[a, b] — R given by

0 if x € [a,b]\{(a+b)/2
u(x) = {1 1f§-[(a+b)/2 ;



INEQUALITIES FOR BETA AND GAMMA FUNCTIONS 135

in (4.16). Note that u is of bounded variation on [a, b] and

and for x=(a+b)/2 we get by (4.16) that 1 <2C which implies C >

>1
=2
and the theorem is completely proved.

The following corollaries hold.

COROLLARY 9 Let u:[a,b] — R be a L-Lipschitzian mapping on |a, b).
Then we have the inequality

a+b
x—

b
/a u(t)dt — u(x) (b — a)| <

36-a+

H £(6) —f (@)
(4.17)
for all x €[a, b).

The case of Lipschitzian mappings is embodied in the following
corollary.

COROLLARY 10 Let u:[a, b] — R be a L-Lipschitzian mapping on [a, b].
Then we have the inequality

a+b
x-..-

b
/a u(t) dt — u(x)(b — a)

5LB@—@+

H (b—a)
(4.18)
for all x €[a, b).
The following particular case can be more useful in practice.
COROLLARY 11 Ifu:[a, b] — Ris continuous and differentiable on (a, b),

u' is continuous on (a, b) and ||u'||, := f: |u’(£)|dt < oo, then

a+b

b
/au(t)dt—u(x)(b—a) x——]ll Il (4.19)

SL[ (b—a)+

for all x €[a, b).
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Remark 4 The best inequality we can obtain from (4.13) is that one for
x =(a+ b)/2, obtaining the inequality

/abu(t)dt—u(a;b>(b—a)

Now, consider the Riemann sums

b
< %(b —a) \a/(u). (4.20)

n—1
Ru(f 1, 6) =D f(E)hi

i=0

where I:a=xy < x1 < -- < x,_ < x,=bisadivison of theinterval [a, b]
and & € [x;, xi11] (=0, 1,...,n— 1) is a sequence of intermediate points
for I, hi:=x;1 — x; i=0,1,...,n—1).

We have the following quadrature formula.

THEOREM 17  Letf:[a, b] — R be amapping of bounded variation on|a, b]
and I,&; (i=0,1,...,n—1) be as above. Then we have the Riemann
quadrature formula

b
[ 10985 = R0+ Wal 118 (4.21)
a
where the remainder satisfies the estimate

Wifidm®)l < sup E"i +le ‘ﬁlz@l] ?U’ :
Vo)

b
< \/(1), (4.22)

§i

_x,-+xi+1’
2

< [%u(h)-i— sup

i=0,1,...n—1

Sforall;(i=0,1,...,n—1)as above, where v(h) :=max;_o,1,...,n—1{h:}
The constant L is sharp.

Proof Apply Theorem 16 in the interval [x;, x;, 1] to get

Xit1

1) =€) < 3+

6- 221 V(). @2

Xi
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Summing over i from 0 to n—1 and using the generalized triangle
inequality, we get

-1
|Walfs 1, €) Z
=0

[ s —sien ‘

n—

< ;B“ 6252 Vo

1 xi+xi+l } n—1 Xiy1
< sup  |shi+ |G -T
- i=o,1,..l.?n—1 [2 l 2 ; \){(f)
b
X;+ X
= 0siup [ hi + ’& —’—Hll] \/(f)
1=U,1,...,n a

The second inequality follows by the properties of sup(-).
Now, as

£ — X; +2xi+1| < lh

2

for all & €[x;,xi1] (i=0,1,...,n—1), the last part of (4.22) is also
proved.

Note that the best estimation we can get from (4.22) is that one for
which &;=(x;+ x;,1)/2 obtaining the following midpoint quadrature
formula.

COROLLARY 12 Let f, I, be as above. Then we have the midpoint rule

b
/ f(x) dx = Mn(f, In) + Sn(f, In)

where

M) = 3 (B,

i=0

and the remainder S,( f, I,) satisfies the estimation

b
1.4 1) < 3vW\ ().

We are now able to apply the above results for Euler’s Beta function.
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THEOREM 18 Let p,q> 1 and x € [0, 1]. Then we have the inequality

B(p,q) — xP1(1 - x)~!
<max{p—Lg—-1}8(p—Lg—-1[i+|x—1|]. (424)

Proof Consider the mapping J,_; ,_1(2)=""'(1 - x)*"", t€[0, 1]. We
have for p, ¢ > 1 that

bt g1() =lp2g2(O)[p—1-(P+q-2)1]

and, as
lp—1—(p+qg—2)t| <max{p—1,9—1}

for all 1 €[0, 1], then

1
Wyl = / baga(D)lp —1 — (p+q—2)]dr

<max{p—1,9 — 1}|j—24-2ll;
=max{p—1,9-1}8(p—1,9-1), p,g>1

Now, applying Theorem 16 for u(f) =1l,_; 41, we deduce
1
‘/ l _1,q_1(t) dt — x"_l(l — x)q—l
0

s
1

Smax{P_ l’q_ l}ﬂ(p_ l,q_ 1)[—+

< |5+
12

=

The best inequality that we can get from (4.24) is embodied in the
following corollary.

2

for all x €0, 1], and the theorem is proved.

COROLLARY 13  Let p,q > 1. Then we have the inequality

<smax{p—1Lg—1}6(p—Lg—1). (425

1
‘ﬂ(ﬁ, 9) = a2
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Now, if we apply Theorem 16 for the mapping /,_; .1, we get the
following approximation of the Beta function in terms of Riemann
sums.

THEOREM 19 Let I: a=xo<x; << X,_1 < X,=b be a division of
the interval [a, b, & €[x;, x:11] (i=0,1,...,n—1) a sequence of inter-
mediate points for I,,, and p, q > 1. Then we have the formula

B8(p.q) = E&"“ — &) i+ Tu(p, q) (4.26)

i=0

where the remainder T,(p, q) satisfies the estimation

1 . )
|Tn(P,q)|Smax{p—1,q..1} —V(h)—l- sup &_x;-i—x,ﬂl
2 i=0,1,...,n—1 2

X 5(p - laq - 1)
<max{p—1l,g—1}v(h)B(p—1,9—1).

In particular, if we choose above &;=(x;+ x;11)/2 (i=0,1,...,n—1),
then we get the approximation

n—1

1 _ _
B(p.q) = WZ(M +xi1)P N2 = % = x)T T + Va(p, q)
par

where

[Va(p,q)| < imax{p—1,q—1}u(h)B(p— 1,4 — 1).

4.3 Inequalities via Ostrowski’s Inequality for
Absolutely Continuous Mappings whose
Derivatives belong to L ,-Spaces

The following theorem concerning Ostrowski’s inequality for absolutely
continuous mappings whose derivatives belong to L,-spaces hold (see
also [12]).
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THEOREM 20 Let f:[a, b] — R be an absolutely continuous mapping for
which f' € L,{a,bl, p> 1. Then

1051 [l

1 — ot (b — x\I! 1/q /
5(q+Uquz-ZY +(b—z) } (b =1l

b-a)"fl, (4.27)

S

for all x €[a, b), where
b 1/p
nfm:(/meMQ | (428)

Proof Integrating by parts, we have
[t-arwa=e-ase- [ roa
and
b b
[e-nrwa=e-xr0- [ roa
If we add the above two equalities, we get
[u-arwas [a-nrou=e-arw- [ 1o

From this we obtain

b b
10 =5 [ 10 d === [Cpmirma @)

where

t—a ifté€]ax],

1, N
(—b ifre(mpy, Y@

) = {



INEQUALITIES FOR BETA AND GAMMA FUNCTIONS 141

Now, using Holder’s integral inequality, we have

b
<52/ Il

< ([insora) '([irora)”

(4.30)

16— [T

A simple calculation show that

b x b
/ |p(x,t)th=/ |t—a|"dt+/ |t — b7 dt

a ax xb
=/ (t—a)th-l-/ (t—b)"ds

a X

(x —a)™™ + (b — x)7"!
g+1

1 | /x—aya+! [b—x\*" gt
_q+1[(b—a) +(b—a) ](b_") '

Now, using the inequality (4.30), we have

If(x) | 1) dtl
<5 9 () oo
+17 Y
[ T (= R

and first inequality in (4.27) is proved.
Now, for s > 1 and a < 3, consider the mapping 4 : [a, 5] — R defined
by A(x) := (x — @)’ + (8 — x)°. Observe that

1/

q
!
171,

W) =s[(x-a)™ - (8-2""]

and so 4'(x) <0 on [, (@ + 8)/2) and A'(x) > 0 on ((a + B)/2, B].
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Therefore, we have
. _fa+B\ _(B-a)
xel[%,fmh(x) B h( 2 ) o2
and

sup h(x) = h(a) = h(B) = (8- a)".

x€la,f)

Consequently, we have
-0 +(x-a)™ <(b-a), xelof

and the last part of (4.27) is thus proved.

The best inequality we can get from (4.27) is embodied in the following
corollary.

COROLLARY 14 Under the above assumptions for f, we have
a + b _1e- a)'/e
7(E2) - — f Sl @3

We now consider the application of (4.27) to some numerical quad-
rature rules.

THEOREM 21 Let f be as in Theorem 20. Then for any partition
I a=xy<x1<-+ <Xp—1<X,=b of [a, b] and any intermediate point
vector £= (60’ 519 ce ,£n—1) satisfying €i € [xb xi+1] (l= 0’ 19 EERTY (S 1)9
we have

b
/ﬂﬂm=hMmO+&mma (432)

where Ag denotes the quadrature rules of the Riemann type defined by

—1

R(f 1y €) = Zf(& i hi= i —

i=0
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and the remainder satisfies the estimate

e, [ " )
IRR(f, s 1 < =22 | 3 [(6 = )7 + (i1 — )]
i=0

(g+ 1)
I, (2= 0\

where h;:=x;11 — x;(i=0,1,...,n—1).
Proof Apply Theorem 20 on the intervals [x;, x;,;] i=0,1,...,n—1)
to get

Xi+1

s -5 [ rwa

Xi

1/q
< 1 . (éi — Xi>q+l+(xi+l - &') o+t /e
T @+ )\ h hi ’

<( “iror dz)w

forallie{0,1,...,n—1}.
Summing over i from 0 to »—1, using the generalized triangle
inequality and Ho6lder’s discrete inequality, we get

€)h -/ or

Xi

|R& (f, 1, €)| < Z

i=0

: m;[(& x) T+ (i — §l)q+1] 1/q

<( “irore) "

n— y
< EI—IIBI—M [i <[(£i = x)™ + (xig1 — Ei)q+l] l/q)q} q

i=0

g [</:H 1F(0)1 dt) 1/"]"} 1/p

' n—1
= qu—l-lj-r%z [(& =) (xigr — &)q+1]
Py

and the first inequality in (4.33) is proved.

X
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The second inequality follows from the fact that (¢ — x,~)"+1+
(41 — &)‘”1 < h;’“ forallie {0,1,...,n— 1}, and the theorem is thus
proved.

The best quadrature formula we can get from the above general result
is that one for which &;:= (x;+ x;41)/2, i=0,1,...,n— 1, obtaining the
following corollary.

COROLLARY 15 Let fand I, be as in the above theorem. Then

b
/ £(x)dx = Aw(f, 1) + Ra(fo 1) (4.34)

where Ay is the midpoint quadrature rule, i.e.,
2] Xi + Xi+1
R ) ) A
Am(f, ) == ZO: f(_..__2 )h,

and the remainder Ry satisfies the estimation

Rt < 2 (350 " (4.35)
T T 2gr )\

We are now able to apply the above results for Euler’s Beta mapping.
THEOREM 22 Lets>1,p,q>2— 1/s> 1. Then we have the inequality
B(p,a) — %7~ (1= x)*"|
<
T+
x [B(s(p—2) +1,s(g —2) + 1)]'/* (4.36)
provided 1/s+1/I=1.

11
[x’“ +(1- x)M] max{p—1,q—1}

Proof We apply Theorem 20 for the mapping f(1)=t"~'(1-0)?"'=
lp—1,4-1(2), t€[0,1] to get

18(p,q) — Ip-1,4-1(x)]

1 11
< e+ 00 Ml xe 00 @3

where s >1and 1/s+1/I=1.
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However, as in the proof of Theorem 18,
by g1(t) =b2g2(0lp— 1= (p+q~2)1]

and then

1 1/s
esgall = ([ Bagadlp =1~ (p+a-2p 05

1 1/s
= ([ e -1 - (prg-2r )
0
<max{p—1,¢ - 1}[B(s(p — 2) + 1,s(g — 2) + 1)]'/*.

Using (4.37) we deduce (4.36).

We can state now the following result concerning the approximation
of the Beta function in terms of Riemann sums.

THEOREM 23 Let s>1, p,g>2—1/s>1. If I; 0=xp<x;<---<
Xp_1<Xx,=1 is a division of [0,1], & €[x;,x;11] (=0,1,...,n—1) a
sequence of intermediate points for I,, then we have the formula

n—1
B(p.g) =Y & (1= &)" b+ Tu(p.q) (4.38)

i=0

where the remainder T,(p, q) satisfies the estimate

ITn(p,9)]
—1,9-1 s
. max{(f+ S (860 ~2) + 1,stg =2) + 1)
o 1/1
x (Z [(&- —x) o (i — €i)l+l])
i=0

max{p— 1,91} ) 1/s - i+l !
< (l+1)1/1 [ﬂ(s(p—2)+1,s(q— )+1)] ; i

where h;:=x;1 —x;(i=0,1,...,n—1Dand 1/s+1/I=1.
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The proof follows by Theorem 21 applied for the mapping f(t)=
t?7'1 = 0?71, 1 €[0, 1], and we omit the details.

4.4 An Ostrowski Type Inequality for Monotonic Mappings
The following result of the Ostrowski type holds [13].

THEOREM 24 Let u:[a, b] — R be a monotonic non-decreasing mapping
on [a, b]. Then for all x € [a, b], we have the inequality

b
u(x) — ﬁ/ﬂ u(r)dz

b
< b—ia {[Zx — (a4 b)u(x) + /a sgn(z — x)u(t) dt}

< 5[0~ @) (x) ~ u(@) + (b — x)(u(b) — ()]

< [+ B2 ) - uia (439)

The inequalities in (4.39) are sharp and the constant% is the best possible.

Proof Using the integration by parts formula for Riemann-—Stieltjes
integral (4.14), we have the identity

b b
u(x) —ﬁ / u(t) dz:z—}-‘; / p(x, 1) du(?) (4.40)

where
_Jt—a ifte]a,x],
plx1) = {t—b if 1€ (x,b],
Now, assume that A, a=x" <x" < <x" <x" =b is a

sequence of divisions with u(A,,)—>0 as n— oo, where v(4,):=
max, (m) (n)) d @ . ®
i€{0,.n—1}\ X1 — an €l i X

.....
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If pis Riemann-Stieltjes integrable by rapport of v, and vis monotonic
non-decreasing on [a, b], then

n—1

U(Ejyﬁogp(g;n)) [V(x;:;) _ v(xiw)] ‘
p(e7) (x5 = v(x)
(&) ((x2) = v(x"))

b
- / | p(x)] dv(x). (4.41)

b
/a p(x) dv(x)

n—1

V(Li:)n—»o Z

i=0

IA

n—1

u(lAisl—»O Z

i=0

IN

Using the above inequality, we can state that

b b
/ p(x,t)du(t)\g / | p(ex, )| dut). (4.42)

Now, we observe that

/ b )l du) = [ e-aau+ [ 1= bl duts)
- [[t-aaun+ [ (b~ duls
= (= auo); - [ u(iydr = b= (ol + "ty a
= [2x— (a+ B)Ju(x) - / " u(e)de + / () di

b
= [2x — (a + b)Ju(x) + / sgn(z — x)u(z) de.

Using the inequality (4.42) and the identity (4.40), we get the first part
of (4.39).
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We know that

b x b
/ sen(t — x)u(f)dt = — / u(t) dt + / u(t) dt.
a a X
As u is monotonic non-decreasing on [a, b], we can state that
X
/ u(t)dt > (x — a)u(a)
a

and

/ (1) di < (b — x)ulb)

and then

/b sgn(t — x)u(t) dt < (b — x)u(b) — (x — a)u(a).

Consequently, we can state that

b
(2 = (= () + | senle =0t ds
< [2x = (a+ b)Ju(x) + (b — x)u(b) — (x — a)u(a)

= (b= x)(u(b) — u(x)) + (x — a)(u(x) — u(a))

and the second part of (4.39) is proved.
Finally, let us observe that

(b — x)(u(b) — u(x)) + (x — a)(u(x) — u(a))
< max{b — x,x — a}[u(b) — u(x) + u(x) — u(a)]

=[b‘2'“+ x~”+”](u(b>—u(a>>

2
and the inequality (4.39) is proved.
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Assume that (4.39) holds with a constant C > 0 instead of }, i.e.,

b
u(x) — bi_a/a u(t)de

b
< El_a {[2x — (a+ B)Ju(x) + / sgn(t — x)u(1) dt}

< o [~ () ~ u(a)) + (b~ x)(u(b) — ()]
< o+ B2 uis) - . (443)

Consider the mapping ug : [a, b] — R given by

-1 ifx=a,
wW(X) =910 ifxe (ab.

Putting in (4.43) u=uy and x = a, we get

u(x) — blTa/ab u(r) dt’

b
= ﬁ {[Zx — (a+ b)u(x) + /a sgn(t — x)u(r) dz}

= 2 [x — @)(u(x) — u(a)) + (b~ X)(u(b) ~ ()] = 1
|

=[C+£~§%b)/—2-l]((b) ula) = C+3,

which proves the sharpness of the first two inequalities and the fact
that C should not be less than 1.

The following corollaries are interesting.

COROLLARY 16 Let u be as above. Then we have the midpoint inequality

‘u(a;b) —L t)dt‘ <—/ < a;b)u(t)dt

< 3 [u(b) — u(a)). (4.44)

Also, the following “trapezoid inequality” for monotonic non-
decreasing mappings holds.
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COROLLARY 17  Under the above assumption, we have

u b
PO L [ e < Jue) - u@l. @4)

Proof Let uschoosein Theorem 24, x =a and x = b to obtain

1 b
u(a) — P u(t)de

a

< ﬁ [—(b — a)u(a) + / ") dt]

a

and

< ﬁ [(b —a)u(b) + / ’ u(t) dt] .

a

b
ut) - 5 L a/, u(t) dt

Summing the above inequalities, using the triangle inequality and
dividing by 2, we get the desired inequality (4.45).

5 INEQUALITIES OF THE OSTROWSKI TYPE IN
PROBABILITY THEORY AND APPLICATIONS
FOR THE BETA FUNCTION

51 Aninequality of Ostrowski’ Type for
Cumulative Distribution Functions and
Applications for the Beta Function

Let X be a random variable taking values in the finite interval [a, b],
with the cumulative distribution function F(x) = Pr(X < x).
The following result of Ostrowski type holds [14].

THEOREM 25 Let X and F be as above. Then

b— E(X)

Pr(X <x) - Ay

< 1

b
5 [[Zx —(a+b)Pr(X < x) + /a sgn(r — x)F(r) dt

L [(b— x)Pr(X > )+ (x — a)Pr(X < )]

k= (@+5)/2)
A e (5-1)

IA

(7N
[CTRCS
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for all x €[a, b). All the inequalities in (5.1) are sharp and the constant %
is the best possible.

Proof We know, by Theorem 24, that for a monotonic non-decreas-
ing mapping u : [a, b] — R, we have the inequality

b
u(x) — ﬁ/a u(t)dt
1
—da
< o [(x — @)(ulx) — (@) + (b — 2)(u(b) ~ u(x))]

< -21- + %‘-’i—bﬂ (w(b) — u(a)) (5.2)
for all x €[a, ).

Apply (5.2) for the monotonic non-decreasing mapping u(x) = F(x)
and take into account that F(a) =0, F(b) =1, to get

<

{[2x — (@ + b)u(x) + /ab sgn(t — x)u(t) dt}

o~

A

‘F(x) - i)l_a /ab F(r) dtl

b
<5 [ox- @ onre) + [ sen-nra
< 52— [(x — @)+ (b~ x)(1 ~ F())
1 |x—(a+b)/2]
S35t %o (5:3)

However, by the integration by parts formula for the Riemann—Stieltjes
integral, we have

E(X) = / ’ 1dF(1) = tF(t)’I; - / ’ F(1) dt
— bF(b) — aF(a) — / ’ F()dt=b— / ’ F(1)dt,

and
1 — F(x) =Pr(X > x).
Then, by (5.3), we get the desired inequality (5.1).
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To prove the sharpness of the inequalities in (5.1), we choose the
random variable X such that F:[0,1]— R

0 ifx=0,
Fx) '={1 if x € (0,1].

We omit the details.
Remark 5 Taking into account the fact that
Pr(X>x)=1-Pr(X <x)

then, from (5.1), we get the equivalent inequality

EX)—a

Pr(X > x) — e

<5 1 {[Zx —(a+B)Pr(X < x)+ / ’ san(t — x)F(1) dt}

—a a

<L (b= x)Pr(X > x)+(x — @)Pr(X < )]

“b-a
1 |x—(a+b)/2|
P L Y e .
<5t Py (5.4)
for all x €[a, b].
The following particular inequalities can also be interesting
a+b\ b-EX) b a+b 1
< - < - <= (5
‘Pr(X_ > ) g '_/a sgn| ¢ 3 F(t)dt_2 (5.5)
and
a+b\ EX)—a b a+b 1
> - === = (5
\Pr(X_ > ) s g/a sgn| ¢ 3 F(t)dt§2 (5.6)

The following corollary may be useful in practice.
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COROLLARY 18 Under the above assumptions, we have

et (=)

b— 2
1 Ja+b
“b—al| 2

—ﬂXﬂ+L

Proof From the inequality (5.1), we get

_1+b—Eﬂ)SE<XSa;b>S1+b—ﬂXX

2 b-a 2" bh-a
But
1 b—EX)_-b+a+2b—2EX)
2 b—a 2(b — a)
zbia[a;bhE(X)]
and
3 a e = e
=1+2b—3%{l;b+a
:1+b1ar;b—Euﬂ

and the inequality (5.7) is thus proved.

Remark 6 (a) Let1>¢>0, and assume that

a+b
2

EX) 222 (1-e)b-a),

then

153

(5.7)

(5.8)

(5.9)
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Indeed, if (5.8) holds, then by the right-hand side of (5.9), we get

Pr<X§a+b) < 1 [a+b~E(X)] i1

2 “b—a| 2
€-)b-a) .
STpoa 17
(b) Also, if
E(x) << er b_eth-a), (5.10)

then, by the right-hand side of (5.7),

a+b a+b 1
< > — .
pe(x<20) 2 [0 ] L

e(b—a)
>N 7
~ b—a

That is,
b
Pr(Xg%—) >e, e€(0,1). (5.11)
The following corollary is also interesting.

COROLLARY 19 Under the above assumptions of Theorem 25, we have
the inequality

1 x/ab [1 + sgn(z — x)] F(f)dt > Pr(X > x)

b— 2
> 1 a/ab [1 - sgr;(t - x)} F) de

X —

(5.12)

for all x €[a, b].
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Proof From the equality (5.2), we have

b— E(X)

Pr(X <x)-— A

1 b
<3 [2x — (a+ b)|Pr(X < x) + / sgn(z — x)F(r)dt

which is equivalent to
(b — a)Pr(X < x) — [2x — (a + b)[Pr(X < x)
b
<b-EX)+ / sgn(t — x)F(t) dz.
That is,
b
2b—x)Pr(X <x) <b-EX)+ / sgn(z — x)F(¢) dr.

Since

b—EX)= /bF(t)dt,

then from the above inequality, we deduce the first part of (5.12).
The second part of (5.12) follows by a similar argument from the
inequality

b— E(X)
=" Th—a

b
2x — (a+ b)|Pr(X < x) + / sgn(z — x)F(r) d¢

|
S

—a

and we omit the details.
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Remark 7 1If we put x =(a+ b)/2 in (5.12), then we get

1 b a+b
Z————a i [1 +sgn(t——2—)}F(t)dt

2Pr<XzaJ2rb)

Zbla/ab[l—sgn(t—a—;—b)}F(t)dt. (5.13)

We are able now to give some applications for a Beta random variable.
A Beta random variable X with parameters (p, g) has the probability
density function

_xPN(1 - x)?!

f(x;p,q) = 0 , 0<x<1,

where Q= {(p,q): p,q >0} and B(p,q) := fol (1 — 1) de.
Let us compute the expected value of X. We have

1
E(X) =ﬂ(;’q)/0 x-xP 11— x)"dx

Blp+l,q9)  p

B(p.q) p+aq

The following result holds.

THEOREM 26 Let X be a Beta random variable with parameters
(p, q) € Q. Then we have the inequalities

q 1 1
Pr(X<x)————| <= -
r(X < x) p+q__2+lx 2|
and
Pr(X>x)———p——]<l+ x———’
- p+q| 2 2
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for all x €[0, 1] and, particularly,

1 q 1
Prix<-)-—1_|<=
r( ‘2) p+q] 2

and

Pr(Xg%) _r

The proof follows by Theorem 25 applied to the Beta random
variable X.

5.2 An Ostrowski Type Inequality for a Probability
Density Function f€ L,[a, b]

The following theorem holds.

THEOREM 27 Let X be a random variable with the probability density
Sfunction f:[la,b]CR — R, and with cumulative distribution function
F(x)=Pr(X <x). If f€ Lya,b], p > 1, then we have the inequality

b—E(X)
b—a

(1+9)/q (1+9)/q
q yg|(X—a b—x
<L — — _—_
< Iy~ a) [(b_a) +(b_a) ]

<l - o) (5.14)

Pr(X<x) -

for all x €[a, b], where 1/p+1/g=1.

Proof By Hoélder’s integral inequality we have

/x " f)dr

y e
/ dr
X

|F(x) — F(y)| =

1/p
< <lx—y"rl, (5.15)

y
/ £ dr
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forall x,y €[a, b], where p>1,1/p+1/g=1, and

i1,= (| b |f<t>|"dz)l/p

is the usual p-norm on L,[a, b].
The inequality (5.15) shows in fact that the mapping F(-) is of r —
H-Holder type, i.c.,
|F(x) — F(y)| < Hlx =", Vx,y € [a,b] (5.16)
withO< H=||f||,and r=1/p€ (0, 1).
Integrating the inequality (5.15) over y € [a, b], we get successively

b
-5 [ RO
b
<5 [ 1P - ROl
b
<5l [ e-seay

=b—i—allfllp[/ax(x_y)l/qdyJ’/xb(y_x)l/qdy}

1 (x_a)l/q-I-l (b"“x)l/q+1
=5——Tz”f”f’[ 1/q+1 1/g+1 }

= HL] ) bL——a A1, [(X —a)/r (b - x)l/qH}

1/q+1 1/g+1
_q Ja|l (X —a b—x
L 11,6~ o' q[(—b_a) +(=) ] (5.17)

for all x €[a, b).
It is well known that

+

then, by (5.17), we get the first inequality in (5.14).
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For the second inequality, we observe that

1/g+1 1/g+1
xX—a b—x
<
(b——a) +(b—a) <1, Vx€]a,b]

and the theorem is completely proved.

Remark 8 The inequality (5.14) is equivalent to

_ (1+9)/q b — (1+9)/q
T (= I (=
s———lufn( a)'?, Vx € la,b]. (5.18)

COROLLARY 20 Under the above assumptions, we have the double
inequality

1,6 - < BX) < a6 -0
(5.19)

Proof Weknow that a < E(X)<b.
Now, choose in (5.14) x =a to get

1711, — )",

‘b E(X)‘
q+1

ie.,

q 1+1/q
— < — —
b—E(X) < —=Ifl,(b-a)

which is equivalent to the first inequality in (5.19).
Also, choosing x = b in (5.14), we get

b— E(X) <
b—a |~

-

q
11,6 — @)%,
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ie.,

EX)-a<_—5 ufmw a)'/a+!

which is equivalent to the second inequality in (5.19).

Remark 9 We know that by Holder’s integral inequality

b
1=lmesw—@me

which gives

_
(b—a)'/?

Now, if we assume that || ||, is not too large, i.e.,

11, =

q +1 1
A, £— oo (5.20)
then we get
at =k - <b
and
1+1/q >
gl ~a) > a

which shows that the inequality (5.19) is a tighter inequality than
a < E(X) < b when (5.20) holds.

Another equivalent inequality to (5.19) which can be more useful in
practice is the following one.

COROLLARY 21  With the above assumptions, we have the inequality

B0 - T30 < 0= a6 -0 —3). G
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Proof From the inequality (5.19) we have

a+b

_ 1+1/q
b= = 1,6~ )
a+ b a—+ b 1+1/q
< — <a-
<EX) -5 <a= 2 i1, 6 - a)
That is,
b—a 1+1/g a+b
- < —
; (b= )"+ < ) 23

b a q 1+1/q
<

which is equivalent to

L7 (b~ a)+e - 22

’E(X)_a+bl .

2

=<-@[ 1,6~ @)~

and the inequality (5.21) is proved.

This corollary provides the possibility of finding a sufficient condi-
tion in terms of || f|, (p > 1) for the expectation E(X) to be close to the
mean value (a + b)/2.

COROLLARY 22 Let X and f be as above and e > 0. If

Ifl, < q+1' 1 e(g+1)
° b-a)" qb-a)*/
then
IE(X) —“+bl <e.

The proof is similar, and we omit the details.
The following corollary of Theorem 27 also holds.



162 S.S. DRAGOMIR et al.

COROLLARY 23 Let X and f be as above. Then we have the inequality

a+b 1
< -
le(X— ) zl

]/q 1 _a+b
Proof If wechoosein (5.14) x =(a+ b)/2, we get
a+b\ b-EX) /g
< — < —
pr(x < 250) 2220 < LAl -

which is clearly equivalent to

) s (05

s £, (b — @)

N 2‘/‘1( +1)

Now, using the triangle inequality, we get

‘Pr(Xs“;“b) —%I lP (X<"“;b) —-;-+E—i—a(E(X)_aJ2rb>
- 1a(E(X)_a-;—b)’

a+b 1 1 a+b
Pr(Xg > )——2-+b (E(X) 3 )!
1 a+b
b—a E(X) -

q
< s M -0

1 a+b
b-aE(X)_ 2

+

+

and the corollary is proved.

Finally, the following result also holds.
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COROLLARY 24  With the above assumptions, we have

a+b q 141/q
500 - 25 < s, 6
+(b—a) Pr<xg‘“2Lb) -%’

The proof is similar and we omit the details.
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A Beta random variable X with parameters (s, #) € 2 has the prob-

ability density function

X511 = x)!

Sis,1) o= T,

O0<x<l,
where
Q:={(s,1): 5,1 >0}
and
B(s, 1) == /01 711 —7)"ldr.

We observe that, for p > 1,

1 1 ' - 1/p
1750l =g ([ 77001 = rpVar)

B(s,t

1 1 1/p
— ) (/ Tp(s—l)-i—l—](l _ 7_)p(t—1)+1—1 dT)
0

~

B(s, t
= 5551 Blels = D+ Lol = 1) + 1)
provided
pis—1D+1, pt—1)+1>0,
ie.,

s>l—l and t>1—l.
p p

Now, using Theorem 27, we can state the following proposition.
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PROPOSITION 3  Let p>1 and X be a Beta random variable with the
parameters (s,1), s >1—1/p, t > 1 — 1/p. Then we have the inequality

t
Pr(X < x) Y
[x(1+q)/q +(1 _x)(1+q)/q] [B(p(s—1)+1,p(t—1) + 1)]'/?
—q+1 7 ﬂ(s9 t)
(5.22)
forall xe€[0,1].

Particularly, we have

1 t g [Bps—1)+1,p(t—1)+1)]"”
Pr(XS—‘) T3he S21/q(q.|_1) B(s, 1) ‘

The proof follows by Theorem 27 choosing f(x)=f(x; s, t), x €[0, 1]
and taking into account that E(X) =s/(s + ?).
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