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The approximation-solvability of the following nonlinear variational inequality (NVI)
problem is presented:

Determine an element x* E K such that

(T(x*),x- x*) >_0 for allxEK,

where T: K H is a mapping from a nonempty closed convex subset K of a real Hilbert
space H into H. The iterative procedure is characterized as a nonlinear variational
inequality (for any arbitrarily chosen initial point x K)

(pT(PK[X pT(x’)]) + x1+ x’,x- xk+ > 0

for all x K and for k _> O,

which is equivalent to a double projection formula

xk+ PK[xk pT(PI[X pT(x)])],

where Pc denotes the projection ofH onto K.
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1. INTRODUCTION

Let Hbe a real Hilbert space with the inner product (., .) and norm II-II,
Let T:KH be a mapping and K a closed convex subset of H. We
present the convergence of a sequence {xk) generated by a double
projection formula to a solution of the nonlinear variational inequality
(NVI) problem: find an element x* E K such that

(T(x*),x-x*) >_ 0 for all x E K, (1.1)

which is equivalent to a projection equation

x* Pt[x*-pT(x*)] for p > 0, (1.2)

where P/ is the projection ofH onto K.
Next, we consider an auxiliary nonlinear variational inequality

(ANVI) problem: find an element x* E K such that

(T(PK[X* pT(x*)]),x- x*) > 0 for all x K, (1.3)

which is equivalent to a double projection formula

x* Pi[x* pT(P;[x* pT(x*)])]. (1.4)

ALGORITHM 1.1 For an arbitrarily chosen initial point x K, we con-

sider an iterative algorithm generated by thefollowing variational inequal-
ity (for k > 0)."

(pT (Pr[x pT (x)]) / x x, x- x1) >_ 0 for all x K,

(pT(PK[X pT(x)]) / xk+l xk, x- xk+l) >_ 0 for all x K.

(1.5)

The iterative procedure (1.5)/s equivalent to a double projection equation

xk+l Pr[x pT (P:[x pT (xg)])] for k >_ O. (1.6)
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The extragradient method, introduced by Korpelevich [13], is appli-
cable to the solvability ofthe monotone variational inequalities using the
iterative algorithm (1.6) with T Lipschitz continuous. Among several
other existing methods in use to the solvability ofthe NVI problem (1.1),
the projection method, where the iterative scheme is constructed based
on the projection Eq. (1.2), is the simplest, but it restricts Tor T- to be
strongly monotone for convergence. The extragradient method over-
comes this problem by updating x in the double projection formula (1.4),
where p is the positive stepsize. Since it uses only function evaluations
and projection onto K, it is easy to implement, requires a little storage,
and can readily exploit any sparsity problem or separable structure in T
or K, as has been the case in others. On the top ofthat, its convergence, in
contrast to other methods, requires only a solution to exist. We intend,
unlike the case ofKorpelevich [13], in which the convergence is achieved
as usual using the iterative algorithm generated by the double projection
equation, to establish the convergence ofthe sequence constructed by an
iterative procedure characterized as a variational inequality instead to a
solution of the NVI problem (1.1). This variational inequality iterative
scheme is an extension to that of Marcotte and Wu [14]. Recently
Marcotte and Wu [14] established the convergence of the projection
method by using an iterative algorithm characterized as a variational
inequality for the monotone variational inequality problem involving
cocoercive mappings in Rn. Similar estimates for convergence using
the projection equation type iterations are studied by He [8-11],
Korpelevich [13], Chan and Pang [2], and others. For more details on
the solvability ofthe nonlinear variational inequalities and related mate-
rials, we refer to [1-21].
As far as the approximation-solvability of the NVI problem (1.1)

based on iterative algorithms is concerned, we mention the following
criteria, most commonly used in the literature:

LEMMA 1.1

ifand only if
An element u E K is a solution of the NVI problem (1.1)

u p > o,

where T: K H is a mapping from a closed convex subset K of a real
Hilbert space H into H andPc is the projection ofH onto K.
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LEMMA 1.2
only if

An element u E Kis a solution ofthe NVIproblem (1.1) ifand

(u) := u- ,,,[u- 0()] o,

where R(u) denotes the residuefunction.

LEMMA 1.3 An element u K is a solution ofthe NVIproblem (1.1) if

(r (u), x- u) > o fo a x .
2. CONVERGENCE AND SOLVABILITY

In this section, we consider the approximation-solvability of the NVI
problem (1.1) andANVI problem (1.3) involving a-cocoercive mappings
along with a discussion of an alternative to the existing notion of
a-cocoercivity [14], which is also referred as the Dunn property [5,6].
The author [20] introduced an alternative to the existing notion of the
cocoercivity [14] new, yet compatible with the existing notion of the
cocoercivity [14] in the following manner:
A mapping T:H---, H is said to be a-cocoercive if for all x, y H,

we have

IIx- yll >_ llZ(x)- T(y)II2 + II(r(x)- T(y))- (x-Y)ll 2,

where a > 0 is a constant.
A mapping T: H H is called a-cocoercive [14] if there exists a con-

stant a > 0 such that

(T (x) T (y), x y) > all T (x) T (y)II for all x, y H.

A mapping T:HH is said to be g-a-cocoercive if there exist a
mapping g: H-Hand a constant a > 0 such that

(T (x) T (y), g(x) g(y)) >_ all T (x) T (y)l] 2 for all x, y H.
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This implies that

liT(x)- Z(y)ll (1/a)llg(x)- g(Y)[I,

that is T is g-(1/a)-Lipschitz continuous. When g I (identity), T is
referred as (1/a)-Lipschitz continuous.
A mapping T-H-* H is called r-strongly monotone if there exists a

constant r > 0 such that

T (x) T y), x y) rl[x yll = for all x, y C H.

This implies that

11T (x) T (y)[I > rllx yl[,

that is, Tis r-expanding. When r 1, Tis called an expanding mapping.
We note that if T is a-cocoercive and expanding, then T is a-strongly

monotone. On the top of that if T is a-strongly monotone and /3-
Lipschitz continuous, then Tis (a//32)-cocoercive for/3 > 0. Clearly every
a-cocoercive mapping T is (1/a)-Lipschitz continuous.

PROPOSITION 2.1 Let T:H-H be a mappingfrom a Hilbert space H
into itself Then thefollowing statements are equivalent:

(1) For each x, y E H andfor a constant a > O, we have

IIx- yll 2 >_ ZllT(x)- T(y)II 2 + [la(T(x)- T(y)) -(x- y)ll 2.

(2) For each x, y H, we have

Z(x) T y), x y> llZ(x)- T(y)I[

where a > 0 is a constant.

LEMMA 2.1 For all v, w H, we have

Ilvll 2 + <v, w> -(1/4)llwll 2.

LEMMA 2.2 Let v, w H. Then we have

(v, w) (1/2)[llv + wll 2 [[vii 2 -[Iwll2].
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LEMMA 2.3 [12]
u E Kand

Let an element z H. Then u Pi<(z) if and only if

(u- z,y- u) >_0 for all y E K.

LEMMA 2.4 An element u Kis a solution ofthe NVIproblem (1.1) ifand
only ifu is afixedpoint ofthe projection Pr[u- pT(u)].

LEMMA 2.5 Let T: K---+ Hbe an a-cocoercive mapping. Then an element
u K is a solution ofthe NVIproblem (1.1) ifand only ifu K is a solution

ofthe ANVIproblem (1.3).

THEOREM 2.1 Let H be a real Hilbert space and T:K--- H an

a-cocoercive mapping from a nonempty closed convex subset K of H
into H. Let x* K be a solution of the NVIproblem (1.1) and {xk} the
sequence generated by iteration (1.5). Then we have:

(i) The estimate

[1 (p/2)]llx xk+ =

(ii) The sequence {xk} converges to x* for p < 2c.

Proof Since by Lemma 2.5, a solution ofthe NVI problem (1.1) is also a
solution ofthe ANVI problem (1.3), it suffices to show that the sequences
{xk} generated by the iterative algorithm (1.5) converges to x*, a solution
oftheNVI problem (1.3). Sincex+ satisfies the iterative algorithm (1.5),
we have for a constant p > 0 that

(pT(P[xk pT(xk)]) -+- xk+l xk, x- Xk+l) >_ 0 for all x K.

(2.1)

Thus, for a given solution x* of the NVI problem (1.3), we have for a
constant p > 0 that

(pr(P:[x* pr(x*)l),x- x*) >_ O. (2.2)
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Replacing x by x* in (2.1) and x by xTM in (2.2), and adding, we obtain

0 <_ (p{T(PK[xk’- pT(xk)]) T(PI,:[x*- pT(x*)])},x* xk+l)

+ (x+ x, x* x+

-p(T(Pt,:[xk- pT(xk)])- T(P:[x* pr(x*)]),xk x*)

pIT(PI,:[x k pT(xk)]) T(PI,;[x* pT(x*)]),xk+l xk)

+ {x+ x,x x+).

Since by (1.2), xk=Pz[Xk--pT(x:)] and by Lemma 1.1, x*=
PK[X* pT(x*)], and since Tis a-cocoercive, we have

Setting v-- T(Pr[x’- pT(x’)])- T(PIc[X*-pT(x*)]) and w=(1/a) x
[xTM xg] in Lemma 2.1, we obtain

-{IIT(P[x pT(xk)]) T(PI,:[x* pT(x*)])l[

+(1/a)(T(PI,:[x pT(xk)]) T(PI,:[x* pT(x*)]),x:+1 xk)}

<_ (1/4a2)llxk+ xk[[
(2.4)

Applying (2.4) to (2.3), we get

0 (p/4a)[Ixk+ xkll a + (xTM x,x xTM) (2.5)
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Taking v xk+l xk and w x* xk+ in Lemma 2.2, and applying to
(2.5), we have

0 <_ (p/4a)llxk+ xkll + (1/2)[llx* xkll
-IIxk+l xkll = -IIx* xk+l I1].

This implies that

IIxk+ x* 2 IIx k x* -[1 p/2a)]llx k+l xkll 2. (2.6)

Since p < 2a, it follows from (2.6) that

either lim x x*[I- o, or lim x xk+ o,
k--*z k-*

Assume that the first alternative holds. Then the sequence {Xk} converges
to x* and

lim IIx k xk+l II- o.
k--o

as well.
Next, assume that the second alternative holds, that is,

lim IIx x+a II- o.

Let "2 be a cluster point of the sequence {xk}. Then there exists a sub-
sequence {xki} such that {xk’i} converges to "2 since the left hand term of
(2.6) is bounded. Finally, the continuity ofthe projection (1.2), in light of
the (1/a)-Lipschitz continuity of T, implies that "2 is a fixed point of the
projection (1.2) and, as a result, ,2 is a solution of the NVI problem (1.1)
by Lemma 2.5. This completes the proof.

3. QUASlVARIATIONAL INEQUALITIES

Let T, g: H Hbe single-valued mappings on Hand Ka closed convex
subset ofH. Weconsider a nonlinear quasivariational inequality (NQVI)
problem: find an element u E H such that g(u) K and

T (u), g(x) g(u) >_ 0 for all g(x) K and for x H, (3.1)
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which is equivalent to a projection equation

g(u) P:[g(u) pT(u)] for p > 0,

where P/ is the projection ofH onto K.
Next, we consider an auxiliary nonlinear quasivariational inequality

(ANQVI) problem: find an element u E H such that g(u) K and

(T(P:[g(u) pT(u)]),g(x) -g(u)) >_ 0 for all g(x) K, (3.3)

which is equivalent to a double projection formula

g(u) Pi[g(u) pT(Pi[g(u) pT(u)])]. (3.4)

ALGORITHM 3.1 For an arbitrarily chosen initial point x H, we con-
sider an iterative algorithm generatedby thefollowing variational inequal-
ity (for k >_ 0):

(pT(Pi[g(x) pT(x)]) + g(x) g(x),g(x) g(x)) >_ 0

for all g(x) K,

(pT(Px[g(x) pT(x)]) + g(x+’) g(xk),g(x) g(x+)) >_ 0

for all g(x) K. (3.5)

The iterative procedure (3.5) is equivalent to a double projection equation

g(x+’) PK[g(xk) pT(Pz[g(xk) pT(xk)])] for k >_ O. (3.6)

LEMMA 3.1 An element u H is a solution of the NQVI Problem (3.1)
ifand only ifu is a solution ofthe ANQVIproblem (3.3).

THEOREM 3.1 LetHbe a real Hilbert space, T, g H--Hany mappings
on H, and x* H a solution of the NQVlproblem (3.1). Suppose that the
following assumptions hold:

(i) T is g-a-cocoercive.
(ii) g is an expanding mapping.
(iii) The sequence {xk} is generated by the iterative algorithm (3.5).
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Then we have thefollowing conclusions:

(a) The estimate

Ilg(x+) g(x*)

< IIg(x) g(x*)ll 2 [1 (p/2)]llg(x) g(x+a)l[2.
(b) The sequence {xk) converges to x* for p < 2a.

Proof Since x* is a solution of the NQVI problem (3.1) and hence,
g(x*)- e:[g(x*) pT(x*)], it satisfies (3.3), that is,

p(T(Pi[g(x*) pT(x*)]),g(x) g(x*)) > O. (3.7)

In light of algorithm (3.5), we can write

(pT(P:[g(xk) pT(xk)]) + g(xk+l) g(xk),g(x) g(xk+l)) >_ 0
for all g(x) K. (3.8)

Replacing x by xk+a in (3.7) and by x* in (3.8), and adding, we obtain

0 <_ (p{T(P:[g(xk) pT(xk)]) T(P:[g(x*) pT(g(x*)])}

-k- g(xk+l) g(xk),g(x*) g(xk+l))
-p(r(PK[g(xk) pr(xk)])
r(Pi[g(x*) pT(x*)]),g(xk) g(x*))

p(T(Pi[g(xk) pT(xk)])
T(Pr[g(x*) pr(x*)]),g(xk+l) g(xk)l

+ (g(xk+l) g(xk),g(x*) g(xk+l)).

Since, by (3.2), g(xk)=pi,:[g(xk)--pT(xk)] and g(x*)=Pz,:[g(x*)-
pT(x*)], and since T is g-a-cocoercive, we have

0 < -pa{llr(Pr[g(xk) pT(xk)]) T(Pi[g(x*)- pT(x*)])ll 2

+ (1/a)(r(PK,[g(x k) pT(xk)])
r(P[g(x*) pr(x*)]),g(xk+’) g(xk))}

+ (g(x+) g(xk), g(x*) g(x+)). (3.9)
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Applying Lemma 2.1 by taking v=T(PK[g(x’)-pT(xk)])
T(PK[g(x*)-pT(x*)]) and w=[g(xk+l)--g(xk)]/c, it follows from
(3.9) that

0 < (p/4)[[g(x+1) g(x)ll 2 + (g(x/+1 g(xl), g(x*) g(xl+)).
(3.10)

Next applying Lemma 2.2 to (3.10) taking v=g(xk+l)-g(x) and
w g(x*) g(x+l), we arrive at

0 <_ (p/4c)llg(x+1) -g(x)ll2 + (1/2)[llg(x*)- g(x)l[2

-IIg(x+1) g(xk)ll -Ilg(x*) g(xk+l)ll2]

This implies that

IIg(xk+) g(x*) 2

[[g(x k) g(x*)ll 2 -[1 -(p/2a)]l[g(xk+l) -g(xk)ll 2.

Since the convergence ofthe sequence {g(xk)} to g(x*) is similar to that of
Theorem 2.1, all we need is to show that the sequence {xk} converges to
x*. As given g is expanding, we have

IIx x*ll IIg(x) g(x*)[I --’ 0 as k .
This concludes the proof.
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