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Let F F(vl ]m) smooth on (R)m with Fv,vj > 0 for #j. Furthermore, let Ul Um
nonnegative and bounded functions on R with compact support. We prove the inequal-
ity fR" F (ul urn) dx < fR. F (u* U’m) dx, where * denotes symmetric decreasing
rearrangement.
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1 INTRODUCTION

Let u" X R- a measurable function defined on a measure space
(X, #). We define its distributionfunction #," R- ---, R- U {oo} by

,u(t) ({x an. ,(x) > t}), _> 0.

Two functions u and v are said to be rearrangements ofeach other if

S,u(t) v(t) vt >_ o.

By ’+(X) we denote the collection ofmeasurable functions u" Z R-
with

lZu(t) <+oo Vt > O.
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Next letM the family ofp-measurable sets in X, and let T" A// A//a set
transformation satisfying

M, N E .AA, M C N TM c TN (monotonicity), (1)
M WI #(M) I(TM) (equimeasurability). (2)

Defining a function Tu by

Tu(x) :=sup{t >_O" x T({u > t})}, xX, (3)

we see that u and Tu are rearrangements of each other. We will also call
any mapping T: ’+(X) 3t’+(X) given by (1)-(3), a rearrangement.
Now the following inequality is basic: if u, v -+ (X) and if T is a

rearrangement then

xuv d#(x) <_ Ix TuTv d#(x). (4)

Equation (4) is attributed to Hardy and Littlewood (see [10],[11 ]).
An extension of this inequality was proved by Crowe et al. [7]. Let

F" R- R- -. R be continuous, and suppose that

F(0, 0) 0 (5)

and

F(u + s, v + t) F(u + s, v) F(u, v + t) + F(u, v) >_ 0

Vu, v, s, R-. (6)

Then we have for u, v E .T+ (X),

F(u, v) d#(x) < Ix F( Tu, Tv) d#(x). (7)

Note that ifFE C2 then (6) is equivalent to

02F
>0,

OuOv

and if #(X) < then the condition (5) is superfluous.
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Equation (7) contains some important special cases: ifF(u, v) uv then
we recover (4). Furthermore, if F(u, v)=-f(lu- vl), wheref is convex
with f(0)= 0 then F is continuous and satisfies (6). In particular, for
f(t) p, p E [1, +), we obtain the nonexpansivity in LP(X, #), i.e. for
nonnegative functions u, v LP(X, #) there holds

(8)

(Here and in the following II" lip denotes the usual norm in LP(X, #).)
Our aim is to generalize (7) to more than two functions: suppose that

F" (R-)m R is continuous and satisfies

F(0,..., 0) 0 (9)

and

F(Vl,..., Yi "3r- S,..., Yj + l,..., Vm) F(Vl,..., Vi + S,..., Yj,..., Vm)
F(Vl,. 1)i,. lj "[- t,. Vm) -- F(Vl,..., Vi,..., Vj,. Vm) 0

Vs, t, Vl,. vm R- and Vi,j {1,...,m}, j. (10)

Note that ifF C2 then (10) is equivalent to

02F
>0

OviOv
Vi,j {1, m}, C j.

We ask for conditions on (X,#) and T such that the following
inequality might hold (Ul,..., Um .T+(X)):

F(ul, ,um) d#(x) <_ F(Tul, Tum) d#(x).

We first point out that (11) was proved by Lorentz [12] for decreasing
rearrangement offunctions given on a bounded interval on R. It seemed
difficult to use his idea of proof for other rearrangements.
Wewill prove (11 ) in the special cases that Tis the symmetric decreasing

rearrangement either in the Euclidean spaceRn, on the sphere Sn or in the
hyperbolic space Hn (for definitions see Section 2). The idea consists in
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the following: first (11) is shown for an elementary T- the so-called two-

point rearrangement. Then the result follows by approximation through a
sequence of two-point rearrangements. Note that this method of proof
turned out to be very fruitful in showing integral inequalities for
symmetrizations (see e.g. [1-4]).
Using (11) for symmetric decreasing rearrangement, it is also easy to

obtain analogous inequalities for symmetrizations depending essentially
on more than one variable. Unfortunately, regardless ofthe simplicity of
the method, it cannot be applied to more general situations. In particular,
we do not know whether (11) holds for arbitrary rearrangements Tand
measure spaces (X, #).

Finally we show using (11) that vector valued solutions of certain
variational problems are radially symmetric.

SYMMIETRIZATIONS AND TWO-POINT
REARRANGEMENT

From now on, let X denote either Rn, the unit n-dimensional sphere
Sn {x @ Rn+l" [x 1}, or the n-dimensional hyperbolic space nn.
We equip X with the corresponding distance function d(x,y) and
measure #. Thus, for X--Rn, d(x, y) is the usual Euclidean distance
x Yl and # the Lebesgue measure. ForX S, d(x, y) is the great circle
distance on the sphere and # is the Lebesgue surface measure. We take as
a model for H the ball {x E R: Ixl < } equipped with Riemannian line
element dh 2(1 Ixl)- Idxl. Then dand # ae the Riemannian distance
function and the volume measure, respectively, associated with dh.

If u C(X) we denote by u the modulus of continuity of u, which is
defined by

.u(t) sup{lu(x)- u(y)l" d(x,y) < t}, > O.

We fix an origin e in X, and we denote by B(R) the ball {x E X:
d(x, e)< R}. For sets M c WI with #(M)> 0 let M* the ball B(R),
R E(0, +], with #(B(R))= #(M), with the exception that, if X=
S= M, then M*= Sn. For u 3v+(X) we define the symmetric
decreasing rearrangement u* by

sup{t _> 0: x > t)*). (12)
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Then u* is ’radially symmetric and radially decreasing’, that is we have
u*(x) u*(y) if d(e, x) d(e, y) and u* (x) > u*(y) if d(e, x) < d(e, y).
Furthermore, it is well-known (see [1]) tht ifu E C(X) then a;u(t) > Ou.(t)
Vt > 0. Note that u* goes by various other names, such as Schwarz
symmetrization when X= Rn, spherical symmetrization when X- Sn,
and hyperbolic symmetrization when X Hn.
Next we define a very simple rearrangement.
Let 7-/(R) the collection of all (n 1)-dimensional hyperplanes ofRn,

7-/(8) the collection ofall intersections ofSn with n-hyperplanes through
the origin in R+1, and 7-/(Hn) the collection ofall images under the group
of hyperbolic motions of the hyperbolic (n- 1)-plane {x E R: Ixl < 1,
xn--0}. ForH 7-/(X) let cr crrz"XXdenote reflection in H, and let
H+ and H- are the two components of X\H, such that e Ht_J H+.
For u +(X) we define the two-point rearrangement of u

(w.r.t. H) by

u(x)
un(x) := max{u(x);u(crx)}

min{u(x); u(crx) }

ifx H,

if x E H+,
ifxH-.

(13)

Note that the two-point rearrangement is sometimes called polarization
in the literature (see [4,8,9]).

Remark 1 The following properties are easy to check (see [1,2]): un
is a rearrangement of u, and if supp u c B(R) for some R > 0 then
also suppunCB(R). Furthermore, if u EC(X) then we have
Wu(t) > Wun(t) Vt>0. Finally, we have (u*)n=u*, and if u G L2(A",#),
then by (8),

3 INEQUALITY

Our main result is

THEOREM LetX=R’,SnorH,andletF (R-)m R continuous and

satisfies (1 O) and in addition (9) in case that X= R" or H". Furthermore,
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let either

(i) Ul,..., Um E ffs’+ (X) I") L (X, #) or

(ii) Ul,..., Um ’+(X) 1") LP(X, #) and

m

IF(Vl,..., Vm)l <_ Cv V(Vl,..., Vm) (R)m, (14)
i=1

for somep [1, +a), C > 0.

In case (ii) and ifX Rn orHn we add the requirement that thefunctions
ul, Um have compact support. Then

F(Ul, Um) d#(x) < JxF(u*I’ u-m) d#(x). (15)

For the proof we need the following technical lemma which was also
used in [12]. We include a proof for the convenience of the reader.

LEMMA Let F" (R-)m R continuous and satisfies (10). Further-
more, let ai, hi, c-, c7 R- with

max{a/; bi}, c min{ai; bi},

Then

+ F(e-{ e) 6)F(al, am) -+- F(bl, bm)

_
F(e-(, Cm) + (1

Proof W.l.o.g. we may assume that there is some k {1,... ,m- 1)
such that

ai-- c+i and bi- c for < < k.

Introducing the vectors v’ (ci-,...,c-), v" (c-+l,..., Cn), h’=
(hi,...,hk), h" =(hk+l,... ,hm), where hi "--c{- c, i’--1,... ,m, (16)
reads as

I F(v’ + h’, v" + h") + F(v’, v") F(v’ + h’, v") F(v’, v" + h")
>0. (17)
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Let FE C 2. We have by Taylor’s theorem,

I= Fv,(V’ + th’, v" + th")hi- Fv,(V’ + th’, v")hi
i-- i=

Z F(v’, v" + th")hi dr.
i=k+l

Now, since Fv,vj _> 0 for #j, we have for E [0, 1],

Fv, v’ + th’, v " + th") Fvi V’ -- th’, v")

fO0
lm

Fv,vj(v’ + th’, v" + sth")hjds > O,
j=k+l

ifl <_i<k,

and

(18)

Fvi (v’ + th’, v" + th") F, (v’, v" + th")

F,v:(v’ + sth’, v" + th")hj ds >_ O,
j=l

ifk+l <i<m.

Therefore the integrand {...} in (18) is nonnegative, and (17) follows.
In the general case we can argue by approximation.

Now we show that (11) holds for two-point rearrangements.

LEMMA 2 Let F" (R-)m ---+ R continuous and satisfies (10). Further-
more, let ul,. Um .T+(X) andH 7-[(X). Then

F(Ul, urn) d#(x) < fx F((U)H, (Um)tt) d#(x). (19)

Proof Let Q(Ul,..., Urn) denote the left integral in (19). Then we have
by Lemma 1,

Q(ul,. .,urn)

_/’+{F(Ul (X), Um(X)) + F(ul (ffx), um(o-x))) dl,z(x

<- _I,+ {F((U)H(X)’"" (Um)H(X))

+F((u,)n(Crx), (Um)H(O’X)) } d#(x)
Q((Ul)H,.. (Um)H).
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Proof of Theorem 1 Our proof is much like the proof ofTheorem 3 in
[1 ]. Let Q as above. First we suppose that ui E C(X), and ifX Rn or Hn

then suppose in addition that ui has compact support in B(R) for some
R > 0, 1,..., m. We define

S(ui) { U C(J()" wv <_ w,i and U is a rearrangement of ui},

i= 1,...,m,

S(/1,...,Um) {(gl,..., Urn) S(Ul) x x

Q( U1, Urn) > Q(Ul Um) },

inf []Ui- utile’ (U,..., Urn) e S(Ul,... ,Urn)
i=1

IfX R" orH" then we add in the definition ofS(ui) the requirement that
supp UCB(R). There exists (Ul,..., Um) 8(ul,...,Um) such that
g i1 U/ -u)l] When X 8" this follows from the theorem of
Arzelfi-Ascoli, and if X= R or Hn it follows from Arzelfi-Ascoli
together with the translation invariance of the integral Q(Ul,..., Urn). If
=0 then (u,...,Um) (U,..., Um) e,.q(Ul,...,Um) and hence
Q(u, u;n >_ Q(u, Um), as required.
Suppose that > 0. Then there exists k { 1,..., m} such that U - u,.

It is easy to show (see [2]) that there exists H E (X) such that
II(U:)H ull2 < s u,ll 2, which means that

m m

u; < v.o, u; 2"
i=1 i--1

Since also ((U0)tt, (Um)/)0 ,,q(u,..., urn) by Remark 1, this last
inequality contradicts the definition of 6.

In the general cases we chosen sequences ul’),..., u of nonnegative
continuous functions with

supp u}k) C supp Ui, k 1,2,...,

and such that

u}k) ui inLP(J(,Iz), (20)
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in case (i), and

and

Ulk) Ui in L(X,#), (21)

ulk) < C, uniformly Vk (C > 0), (22)

in case (ii), i= 1,...,m; (20)-(22) also hold for ulk), ui replaced by
Ik)) k 2, i= m, respectivley, in view of (8). Theu lgi

assertion then follows from (14) and from Lebesgue’s convergence
theorem.

Remark 2 (1) Choosing F(vl,...,Vm)--im=l vi or F(vl,...,Vm)=
f(-7’=1 vi), where f is convex with f(0)=0 we obtain the following
inequalities which hold for nonnegative bounded functions u,..., Um
having compact support when X- R" or H:

u d(x) u d(x), (23)
i= i=

f ui d#(x)< f u d#(x). (24)

(2) Theorem implies analogous inequalities for the so-called (k, n)-
Steiner and cap symmetrizations in Rn, respectively Sn. Note that these
symmetrizations can be seen as symmetric decreasing rearrangements
on k-dimensional subspaces ofX(1 < k < n 1) (see ]). For the proofs
one can argue analogously as in [1, p. 59].

It is easy to obtain an inequality similar to (14) with Fdepending on x.

Replace m by m+ and let Um+ ELI(X,#)fqL(X’,#) smooth with

Um+l--Un+ and strictly radially decreasing. Defining a function
G (R-)m+l R by the relation

G(Vl,..., vm, d(e,x)) F(Vl,..., Ym,1,lm+l(X)),
3 E X (ll,...,lm) (R)m,

we see that G is continuous and satisfies

a(vl,...,vi-]-s,...,Vm, Z-- t) a(Y1,...,Yi-+-s,...,Vm, Z)

a(vl,..., re,..., Vm, Z + l) + a(vl,..., vi,..., Vm, Z) O, (25)
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G(vl, vi + s,. vj + t,. Vm, Z)

G(vl,..., vi + s,..., vj,..., Vm, Z)

G(v, vi,. vj + t, Vm, Z)

-+- G(Vl,. vi,. vj,. Vm, -) >_ 0

Vs, t,v,...,vm ER- and Vi,jE {1,...,m}, iCj.

Note that if G E C2 then (25) and (26) imply

02G 02G
>_0, <0 Vi,j G {1, m), =/= j.

OviOv OviOz

The above considerations and Theorem yield

COROLLARY
with

(26)

Let X Rn, Sn or H". Let G" (R-)m+l --+ R continuous

G(O,...,O,d(e,.)) zl(x, #),

and satisfying (25) and (26). Furthermore, let either

(i) u,..., Um .T+(X) f’l L(X, #) or

(ii) u, Um Yz+(X) LP(X, #) and

(27)

Remark 3 Tahraoui [14] showed (29) in the special case that.X= R",
m--2 and G E C3. But his proof is quite complicated and it needs the
unnecessary condition that (03G)/(OvOv2Oz) <_ O.

xG(Ul,..., Um, d(e, x)) d#(x) < fx G(u,..., Un, d(e, x)) d#(x). (29)

m

[a(vl,..., vm, a(e,x))[ CZ vf -[- g(z) V(Vl,..., Vm) (R-)m,
i=1

(28)

for somep [1, +), C > 0 andg LI(X, #).

In case (ii) and ifX=R orH we add the requirement that thefunctions
ul, Um have compact support. Then
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A SYMMETRY PROBLEM IN THE
CALCULUS OF VARIATIONS

Consider the following variational problem:

J(u, urn) IVu, q a(u, Um, Ixl) dx ---, Sin.t,
(R) i=1

ui E K:: {u E w’q(B(R))’u > 0}, i: 1,...,m, (30)

where R > 0, G" (R-)m+l R is continuous and satisfies (25)-(28) and
q (p, +oe). Then it is easy to see that the functional Jis bounded below
and weakly lower semicontinuous. Hence there exists a minimizing
solution. We prove

LFMMA 3 There exists a solution of problem (30) with ui u,

Proof Let (U1,..., Um) a minimizing solution. By Corollary 1 we have

G(U,..., Um, Ixl)dx _< / G(Ixl) dx.
f

(R) JB(R)
(3)

Furthermore, there hold the following well-known inequalities (see
e.g. [11):

IVUilqdx>_l IV qdx,u;
(R) aB(R)

i= 1,...,m. (32)

Now (31) and (32) yield J(U,..., Un _J(U1,..., Urn), and the
assertion follows.

Remark 4 IfG C((R-)m+) then a solution (Ul,..., Um) ofproblem
(30) solves the following variational inequalities:

[Vuilq-2VuiV(v ui)dx > / aYi(Ul,... [xl)(v Ui)dx
f

Um
(R) ,]B(R)

VvEK, i= 1,...,m. (33)

Next suppose that ui> 0, i--1,...,m. (Note that this follows from
the maximum principle in case that Gi(Ul,...,urn, Ixl)_> 0 in B(R),
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i-- 1,... ,m, for instance.) Then (ul,...,/’/m) is a weak solution of the
following semilinear elliptic system,

mqui -v(lVuilq-2vui) avi(ul, urn, Ixl)in B(R)
ui=O on0B(R), i= l,...,m.

(34)

The system is cooperative by (26). Systems ofthis form arise in modelling
spatial phenomena in a variety of physical and chemical problems (see
e.g. [5,6,15]).

It is worth to mention the following special case.
Let q 2, and assume that the functions ui and Gvi, 1,..., rn in (34)

are smooth. Then the radial symmetry of ui, i-1,... ,m, follows as
well via the method ofmovingplanes (see [13,15]).
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