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1. INTRODUCTION

We consider nonlinear Volterra equations of the following type:

X

u(x) (x- s)a-lg(u(s))ds (x >_ O, a >_ 1), (1.1)

where the kernel k and the nonlinearity g are nonnegative. Moreover
g(u) 0 for u < 0.

This .type of equation appears in some applications such as nonlinear
diffusion problems or shockwave propagation 1]. It is clear that u(x) 0
is the trivial solution of (1.1) but from the physical point of view only
nonnegative solutions of the considered equation are interesting.
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This problem is a very special case ofthe problem ofthe uniqueness ofthe
trivial solution of the equation

X

u(x) k(x, s, u(s) ds (x >_ o).

If the trivial solution is unique one says that k is a Kamke function and
this question appears in many problems not directly connected with the
uniqueness of the solution [2]. In this paper we will consider only
k(x,s, u) (x s)-lg(u). Ifwe put a in (1.1), then the uniqueness of
the trivial solution is equivalent to the uniqueness of the trivial solution
to the problem" u g(u), u(0)--0. If g is a nondecreasing continuous
function (g(0) 0), then the uniqueness answer is given by

ds
g(s--- "

Ifthe last integral is finite, the problem u’ g(u), u(O) 0 has a nontrivial
solution.
Having in mind the physical applications of (1.1), different mathema-

ticians since the eighties have tried to generalize the Osgood condition
for (1.1). It has been shown [1,3-6] that for a nondecreasing continuous
g (g(0)= 0) the trivial solution is unique for (1.1) if and only if

b0(s----- ’ where 00(s) s (1.2)

Let us note that for we obtain the classical Osgood condition. But in
some applications [7,8] there appear nonlinearities g which behave like
up (p (- 1, 0)). In this case the generalized Osgood condition does not
work. In recent papers [9,10] a new condition for the uniqueness of the
trivial solution in the case of g not necessarily increasing has been
presented. But this was done for an integer a 2. In this note we want to
present the generalization of the condition (1.2) for all the > and
nonlinearities g general enough.
We assume

(i) g(s) is continuous for s > 0 and g(s)s/(-) 0 as s 0+;
(ii) there exists m 0 such that g(s)sm is nondecreasing in the right-hand

side vicinity of zero.
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Now we can formulate

THEOREM Let a > and let g satisfy (i) and (ii). Then the trivial solution
u(x) 0 is unique ifand only if

" ds

O(s) ’ where c(s) s(-2)/(a-1)[b(s)] 1/ (1.3)

and

b(s) s-a (s- t)a-2g(t)t-(a-2)/(a-1) dt. (1.4)

Remark 1.1 We shall prove theorem in the following equivalent form:
Equation (1.1) has a nontrival solution, i.e. a continuous function u

such that u(x) > 0 for x > 0, if and only if

ds

Remark 1.2 Ifg is a nondecreasing continuous function, then an easy
comparison of b with s(g(s)/s)1/ shows that the conditions (1.2) and
(1.3) are equivalent.

Remark 1.3 One can check easily that in the case g(u)= u-, /3 >
1/(a- 1) Eq. (1.1) only has the trivial solution. Because of this we
assume in (i) that limso+g(s)s1/(-1) 0. If (1.1) has a nontrivial
solution, then the condition lims_0+ g(s)s1/(-1) 0 is equivalent to the
following one f g(s)s-(-2)/(-l)ds < . It is also known [10] that the
last condition is necessary for the existence ofnontrivial solutions of(1.1)
in the case a > 2. The case a E (1,2) is still open.

Remark 1.4 Slight modifications of assumptions (i) and (ii) allow us
also to consider g which behave at the origin like Isin(1/x)l [10].

2. MAIN STEPS OF THE PROOF OF THE THEOREM

The proof of the theorem is based mainly on some a priori estimates of
nontrivial solutions and properties of auxiliary functions. Since similar
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arguments to those used in [10] apply to the case a > 2, we concentrate on
a E (1,2). As in 11 we can show

LEMMA 2.1 Let # be a Borel measure on [0, a] (a > 0). Then thefunction
X

u(x) (x s) d#(s) (/3 > O)

is absolutely continuous and there exists constants Cl, c2 > 0 such that

x

cl u’(x) <_ (u(x) u(s))- d#(s) _< c2u’(x)

for x [0, a].

Remark 2.1 The function x-u(x) is nondecreasing.

LEMMh 2.2 Let a > 1. Then the nontrivial solution of(1.1) is increasing
and there exist constants c, c2 > 0 such that

X

c v(x)- < (x- s)-2g(s)[v(s)]-ds < c2v(x)-, (2.1)

where v(x) u’(u-l(x)).
To prove Lemma 2.2 we apply the results of Lemma 2.1 to (1.1) with

/3 a and d#(s) g(u(s)) ds.
Throughout, a function f: [0, a] - [0, o) for which there exists a

constant c > 0 such that

f(x) <_ cf y) for0<x<y_<a

will be called an almost monotonous function.

LEMMA 2.3
monotonous.

Let a (1,2). Then thefunction b defined by (1.4) is almost

Proof of Lemma 2.3 First we note that

b(s) (s- t)-2[(s- t)+ tl2-b (t)dt,

where (s) g(s)s-(-2)/(-1).
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We introduce the following auxiliary functions:

f0 J0
"s

b2 (s) bl (t) dt + (s t)-2t2-abl (t) dt,

b3 (s) bl (s)s + m bl (t)dt,

where m is given by (ii) and

fos f04(S) 31 (t) dt + (s t)a-2tl-a3(t) dt.

Making the following observations

b3(x) lim t-md(tm+lpl(t))
-0+

and

f0 f01(s t)-2tl-ab3(t) dt (1 t)a-2tl-ab3(st) dt,

we infer that the functions b3 and b4 are nondecreasing. Furthermore,
we note that

b2(s) < ba(s) < max(-y, + 7m)b2(s) (s E (0,a]),

where 7 f(s t)a-2t1- dt. Thus )2 is almost monotonous.
Finally, we easily see that

,=(s) _< (,) < 2V,2(s) (s e (o, a])

for some constants C1, C2 > 0, which gives our assertion.

Now we can prove the lemma:

LEMMA 2.4 Let 4 be given by (1.3) and u be a nontrivial solution to (1.1).
Then there exist constants Cl, c2 > 0 such that

c,(x) <_ v(x) <_ c2,;b(x) (x E (0, a]), (2.2)

where v(x) u’(u-l(x)).
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Proof of Lemma 2.4 Let a E (1, 2). We shall denote
x

/0
x

h(x) (x-s)-g(s)[v(s)]-ds and h(x)= g(s)[v(s)]-ds.

We have the following relations

/0
x

/o
x

h (x) const (x s)-h(s) ds and h(x) (x s)’-2"n (s) ds.

By (2.1) we can write

I(S) h’ (s)(s2-av(s)a-1) l/(a-1)

const h’ (s)(s2-h(s)) 1/(-).

Since

Zsw(s; x) (x t)-t-h (t) dt s-h(s) (0 < s < x),

by (2.3) we get

h (s)(s; x)/(- N const (s)

for s (0, x]. We also have the inequality

Ix

(x) ((x- s) + s)-(x- s)- (s)ds

R const (s) ds + const (x s)-s- (s) ds

(the constants are positive). By (2.4) we can write

"X

b(x) _> const hl (s)hl (s)1/(a-l) ds

X

+ const (x s)-2s2-’h (s)w(s; x)/(-) ds.

(2.3)

Since the last integral is equal to const [w(x; X)]a/(z-1), by (2.5) we get

(2.4)

b(x) >_ const(h (x) + co(x; X))a/(a-1) (2.6)
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Noting that

"X

h (x) I t)’-:(x t):-’h’ (t) dr,

from (2.6) and the left-hand side of (2.1) we get

b(x) > const[x2-h(x)]/(-1) > constx(-)/(-l)v(x).
Hence we obtain the right-hand side of (2.2) for a E (1,2). By the right-
hand side of (2.2) and the monotonous properties ofb we have

X

h(x) > const (x- s)-Zg(s)s-(-)/(-)ds b(x)-/

which gives

h(x) >_ constx-[b(x)](-)/. (2.7)

From (2.7) and the right-hand side of (2.1) we get the left-hand side of
(2.2) for a E (1,2). The lemma is proved.

Remark 2.2 Ifwe consider the equation

X

u,(x) ex- + (x- s)-g(u,(s))ds (a > 1) (2.8)

then putting #(s) e60 + g(u,(s)) ds and repeating our considerations
we have

c(e.x,- + b(x)-) 1/(-) 1/(-1)

(2.9)

where cl c2 > 0 and v,(x) -( (x)).

Sketch ofthe Proofof Theorem If(1.1) has a nontrivial solution u, then

), fu-(x) (u- (s)is [(s)]-a.



504 W. MYDLARCZYK AND W. OKRASIlqSKI

By (2.2) we get
X

O > u-l(x) >_ [b(s)]-lds

and the necessary condition for the existence of nontrivial solutions is
proved.
By Schauder-type arguments it can be shown that for every e E (0, e0)

Eq. (2.8) has a nontrivial solution u,. Since all solutions satisfy (2.9), by
the Arzela-Ascoli theorem [12] there exists a sequence
and the corresponding solutions un of (2.8) such that un(x) converges
uniformly to a solution u(x) of(1.1) on the interval [0, a] (a > 0) as n

Since by (2.9)
x ds

U-1 (X) const
b(s)

F -1 (x),

or equivalently u,,(x) >_ F(x) on [0, a] for all n. This implies u(x) >_ F(x)
on [O,a] and u is a nontrivial solution to (1.1). Thus the sufficient
condition for the existence of nontrivial solutions is proved.
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