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1. INTRODUCTION

Let Y = {z € C: |z| < 1}. For f and g which are analytic in U, we say
that f'is subordinate to g, written f'< g or f(z) < g(z), if there exists a
Schwarz function w in U such that f(z) = g(w(z2)).

Let %, denote the class of all meromorphic functions of the form

1 ao
f(z)=27+'z_l,__T+"'+ak+p—lzk+"‘ (peN={1,2,...})

which are analytic in the annulus D = {z: 0 < |z| < 1}. We denote by
¥ (B) the subclass of &, consisting of all functions which are meromor-
phically starlike of order 3 in U.
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The Hadamard product or convolution of two functions fand gin %,
will be denoted by f* g.
Let

: i xf(2) (z€D) (1.1)

D = o

or, equivalently,

. B 1 Zn+2p—1f(z) (n+p-1)
=5 (Gt )

1 1 (n+p+1)(n+p) 1
=5t () 2! Nz
(n+k+2p—1)---(n+p) K
-+ + (k +p)' ak+p_12
+--+ (zeD),

where n is any integer greater than —p.

For various interesting developments involving the operators D"7~!
for functions belonging to %, the reader may be referred to the recent
works of author [1], Uralegaddi and Path [7], and others [8,9].

Let

(D" P11 (7)Y 1+4
(Dn+p—j:}(’()z))(2) ”1+B§’Zeu}’ (1.2)

¥ A4,B) = {fe T —

where —1 < B< A <1. In particular, we note that 2;[—p +1;1,-1]is
the well known class of meromorphically p-valent starlike functions.
From (1.2), we observe [6] that a function fis in X} [n; 4, B] if and only if

|2(D"” f(2))'(2) | p(1 = 4B)

|  Drr-lf(z) 1-B?
Il(li__—léﬁ (-1<B<A<lzelU). (1.3)

The object of the present paper is to give some argument estimates of
meromorphically multivalent functions belonging to ¥, and the integral
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preserving properties in connection with the differential operators
D71 defined by (1.1).

2. MAIN RESULTS

To establish our main results, we need the following lemmas.

LemMA 2.1 [2] Let h be convex univalent in U with h(0)=1 and
Re(Bh(z) +~) > 0 (B,y € C). If q is analytic inU with q(0) =1, then

zq'(2) A (2
q(Z)+—————ﬂq(z)+7<h() (zel)

implies
q(z) < h(z) (zelU).
LEMMA 2.2 [4] Let h be convex univalent in U and \(z) be analytic inU
with Re M(z) > 0. If q is analytic in U and g(0) = h(0), then
q(z) + AN(2)zd'(z) < h(z) (z€lU)
implies

q(z) < h(z) (zel).

LEMMA 2.3 [5] Let q be analytic in U with ¢(0)=1 and q(z) #0 in U.
Suppose that there exists a point zy € U such that

largg(2)] <5 for |2] < |zo] 2.1)
and
jargg(z0)| =50 (0 <a<1). (22)
Then we have
204 (20)

S = e (2.3)
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where
k>l a—f~l when arg g( )—Ea (2.4)
_2 a n gq ZO —2 ] .
k<—l az-l—l when ar (z)——I (2.5)
=72\""a B4lz0) =3¢ '

and
q(z0)V/* = xia (a>0). (2.6)

At first, with the help of Lemma 2.1, we obtain the following

PROPOSITION 2.1 Let h be convex univalent in U with h(0)=1 and Re h
be bounded inU. If f € 3, satisfies the condition

_ D" (2))

—;DT—pf(—z—)——'<h(Z) (zeU),

then

Drrlf(z))
_%W%<h(z) (Zeu)
for max,cy Re h(z) < (n+ 2p)/p (provided D*?~'f(2) 0 inld).

Proof Let

2D 11(2)
=)
By using the equation

2D (2)) = (n+p)D"Pf(2) = (n+2)D" P (2),  (2.7)

we get

_n+2  (n+p)D"f(2)
p  pD"rlf(7)

q(z) (2.8)
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Taking logarithmic derivativesin both sides of (2.8) and multiplying by z,
we have

¢ ey
—pq(z) +n+2p 9(z) = D[ (z) <h(z) (z€lU).

From Lemma 2.1, it follows that g¢(z)<h(z) for Re(—h(z)+
(n+2p)/p) > 0 (z € U), which means

Dn+p—1 /
— %)W‘T‘];‘((iz)))— < h(Z) (Z € U)
for max,eyy Re h(z) < (n+2p)/p.

PROPOSITION 2.2 Let h be convex univalent in U with h(0)=1 and Re h
be bounded inU. Let F be the integral operator defined by

F(z) = Zci,, /0 Z () de (e > 0). (2.9)

Iff € %, satisfies the condition

DM (2))
——W<h(z) (ZEU),

then

2(D" 7 F(z))
- p Dr+p—1 F( Z)

<h(z) (zel)
for max, Reh(z) < (c + p)/p (provided D"7?~'F(z) #0 inld).
Proof From (2.9), we have
2(D"P7VF(z)) = eD™P7f(2) — (¢ + p)D"P7VF(z). (2.10)
Let

_ D))

p(z) = pD"PF(7)
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Then, by using (2.10), we get

n+p—1 z
q(z) — (c+p) =—c§n¢;’jj;%—. (2.11)

Taking logarithmic derivatives in both sides of (2.11) and multiplying by
z, we have

2D (2))
pDP=f(2)

zq'(2)

i@ + (€5 D) <h@) (=zel).

+4(z) = -

Therefore, by Lemma 2.1, we have

_z(DMP ()

m%h(z) (ZGU)

for max,cy Re h(z) < (¢ + p)/p (provided D""P~'F(z) #0inU).

Remark Taking p=1 and A(z)=(1+2)/(1 —z) in Propositions 2.1
and 2.2, we have the results obtained by Ganigi and Uralegaddi [3].

Applying Lemmas 2.2, 2.3 and Proposition 2.1, we now derive
THEOREM 2.1 Let f € X,. Choose an integer n such that

n>p(1+A)

_2
=1+ P

where —1<B<A<landpeN.If

z(D"+ !
arg(——%%——v)l<g5 0<y<p;0<6<1)

for some g € ¥j[n+ 1; 4, B, then

2D (2)) ™
(- )| <5
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where o (0 < o < 1) is the solution of the equation

§=a +%tan_1 ((a sinm/2(1 — (4, B)))

J((n+2p)(1 = B)+ 4 - 1)/(1 - B))

+acosm/2(1 — t(A,B))) (2.12)
when
_2. p(4—B)
t(4, B) = —sin 1<(n+2p)(1 iy B —AB)). (2.13)
Proof Let

S (o)

By (2.7), we have
(P —7)24 (2)D"7'g(z) + (1 = 7)q(2)z(D"**~'g(2))’
— (n+2p)z(D"77\f (2))
= —(n+p)z(D"?f(2)) —1z(D"7 'g(2)) ().  (2.14)
Dividing (2.14) by D"*?~'g(z) and simplifying, we get

zq'(2) _ 1 2(D"Pf(2))
_r(z)+n+2p“_ p—fy( D™rg(z) +7>a (2.15)

q(z) +

where

n+p—1 4
PN CalariO)g
Drtr-lg(z)
Since g € £} [n+ 1; A, B], from Proposition 2.1, we have

1+ Az
1+Bz°

r(z) <p
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Using (1.3), we have
—r(z) +n+2p = pe'™/Dg,

where

(n+2p)(1+B)—(1+ A4) (n+2p)1-B)+A4-1
1+ B <P< -8 ’
—1(4,B) < ¢ < (4, B)

when #(4, B)is given by (2.13). Let 4 be a function which maps U/ onto the
angular domain {w: |arg w| < (7/2)6} with 4(0) = 1. Applying Lemma 2.2
for this A with M(z) = 1/(—r(z) + n+ 2p), we see that Re g(z) > 0in I/ and
hence g(z) A0 in U.

If there exists a point zy € U such that the conditions (2.1) and (2.2) are
satisfied, then (by Lemma 2.3) we obtain (2.3) under the restrictions (2.4),
(2.5) and (2.6).

At first, suppose that g(z)"/*

=ia(a > 0). Then we obtain

1 (Zo(D"+‘”f (z0)’ +7)]

arg | —
g[ p—7\ Drtrg(z)

=arg (q(zo) + *r(zzoo)q,f: )+ 2p)

=Za+ arg(1 + iak(pe"/2%) =1

2
_1( nksinm/2(1 — @) )
p+ akcosm/2(1 — @)

a+tan~! ((a sinm/2(1 — (4, B))) / ((n+2p)(1 — B) + A — 1)

2

/(1 — B) + acosm/2(1 — t(A,B))))

where 6 and #(A4, B) are given by (2.12) and (2.13), respectively. This is a
contradiction to the assumption of our theorem.
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Next, suppose that p(zp)"/* =

as the above, we have

—ia (a > 0). Applying the same method

1 (Zo(D"+pf(Zo))/+7)]

arg|—
g[ p—v\ D"Pg(z)

< —ga — tan™! ((a sinm/2(1 — t(4, B)))
S +29)(1 ~ B+ A1)

/(1 = B) + acos/2(1 — 1(4, B))))

iy
R

where 6 and #(4, B) are given by (2.12) and (2.13), respectively, which
contradicts the assumption. Therefore we complete the proof of our
theorem.

Letting A=1, B=0and § =1 in Theorem 2.1, we have
COROLLARY 2.1 Letfe X. If

—Re{f%%%%))—} >y (0<y<p)

for some g € L, satisfying the condition

2(D"*Pg(z))
TG

then

2D (2))
e B |

Taking A =1, B=0and g(z) = 1/z? in Theorem 2.1, we have
COROLLARY 2.2 Letfe X,. If

|argl[-zP" (D"f(2)) ~ 7]l <58 (0<y<pO<6<),
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then

|arg[—z7T1 (D™ (2)) — ]| < ga.

Making n=0, p=1and §=1in Corollary 2.2, we have
COROLLARY 2.3 Letfe %, If

—Re{Z2(zf"(2) + 3 (2)} >y (0<y<1),

then
—Re{Z’f"(2)} > .

By the same techniques as in the proof of Theorem 2.1, we obtain

THEOREM 2.2 Let f € . Choose an integer n such that

n>——r_2
="1+B ’

where —1 < B<A<landpeN.If

(D771 (2))
arg( (D"7g(2))

+'y)’<—2ﬂ-5 (y>p, 0<6<1)

for some g € X}[n+ 1; 4, B, then

z(D™P7f (z))' m
arg( D"+1’—1g(z) —I—’y)‘ < —z—a,

where a (0 < ae < 1) is the solution of the equation given by (2.12).
Next, we prove

THEOREM 2.3 Let f € X, and choose a positive number c such that

1+ 4
> -
‘=11 P
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where —1 < B<A<landpeN. If

Z(Drtp-1 !

for some g € z [n; A, B], then

Z2(D"™P71F(z)) ™
M\ TG )| T2

where F is the integral operator given by (2.9),

G(z) = ;—i;/oz tP-lg()dt (¢ > 0), (2.16)

and o (0 < a < 1) is the solution of the equation
2 .
6=a+=tan (((a sinm/2(1 — 1(4, B, c)))

[((c+p)1-B)+4-1)

/(1 — B) + acosm/2(1 — t(A4, B, c)))) (2.17)
when
2. p(4— B)
8.0 = 2o (s 2 o —am)
Proof Let

1 ((D"F(2))
92) = p-v( D"G(2) +7)'

Sinceg € z [n; 4, B], from Proposition2.2,g € 2;[11; A, B]. Using (2.10),
we have
(P —7)q(z2)D"77'G(z) — (c + p)D"*?7' F(2)
= —cD"P7If(2) — 4 DMPTIG(2).
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Then, by a simple calculation, we get

(P~ (2 (@) +4(=)(~r(2) + ¢ +p)) +7(~r(2) + ¢ + )
_ @Y ()

Dn+p—lG(Z) ’
where
z(D"™P71G(z))
'@ = = ~pmiG()
Hence we have
zg'(z) 1 (Z(D”’”'f () )
a() + S@ tctp p-a\ Dwrigl) )

The remaining part of the proof'is similar to that of Theorem 2.1 and so
we omit it.

Lettingn=—p+1,4A=1, B=0and § =1 in Theorem 2.3, we have
COROLLARY 2.4 Letc>0andfe X.If

—Re{%é—;)} >y (0<vy<p)

Sfor some g € L, satisfying the condition

zg'(2)
2(2) *”l <P

then

{5

where F and G are given by (2.9) and (2.16), respectively.
Taking n=0, B— A and g(z) = 1/z? in Theorem 2.3, we have
COROLLARY 2.5 Letc>0andfc X,. If

|arg(—z""f(z) =M <56, (0<y<p0<E<)
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then

|arg(—z"'F/(2) = )| < e,

where F is the integral operator given by (2.9) and o (0 < a <1) is the
solution of the equation

6= +Ztan'l S
TeTz c+p—-1)

By using the same methods as in proving Theorem 2.3, we have

THEOREM 2.4 Let f € X, and choose a positive number c such that

14+ 4
>
““1¥B P

where =1 <B<A<landpeN.If

(D7l (2))

+'y)l<g¢5 (y>p;0<6<1)

Jfor some g € ¥}[n; A, B), then

arg (Z————————(g::__:gg; f + ’7) ‘ < ga,

where F and G are given by (2.9) and (2.16), respectively,and o (0 < a < 1)
is the solution of the equation given by (2.17).

Finally, we derive

THEOREM 2.5 Let f € X,. Choose an integer n such that

n>p(1+A)_

=~ 1+B 2,

where -1 <B<A<landpeN.If

(D11 (2)) m
arg(—%rz,_g((z%—')')’ <§6 (OS’Y<P’O<6S 1)
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for some g € Z;[n; A, B, then

where F and G are given by (2.9) and (2.16) with c = n+ p, respectively.

Proof From (2.7) and (2.8) with c=n+p, we have D" \f(z)=
D"™PF(z). Therefore

2D (2)) _ z(DMPF(z))
Drtp-1 g( Z) Dn+p G( Z)

and the result follows.
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