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1. INTRODUCTION
This paper discusses problems of the form

() +p(09(0)f (1Y) =0, 0<t<1,
limyo+ p(£)y’(1) = 0, (1.1)
y(1) =420,

where fis allowed to change sign and 1/p is not necessarily in L'[0, 1]. In
addition our nonlinear term f(¢, ) may not be Carathéodory function
due to the singular behaviour of its y variable. When 4 = 0 we will refer to
the problem as singular whereas if 4 >0 we will say the problem is

* Corresponding author.
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622 R. KANNAN AND D. O'REGAN

nonsingular. The theory presented in this paper was motivated by a
nonsingular problem arising in the theory of shallow membrane caps
[3,4,6], namely

3 3
sont o, (B 1)
(ty)+(8y2 aoy bot )_0, 0<t<1
lim,_¢+ £3y'() = 0,
y(1)=A4>0, ay>0, bp>0 and v> 1.

(1.2)

Our paper will be divided into two main sections. In Section 2 we present
aslight variation of the classical theory of upper and lower solutions (see
[3]) so that (1.1) can be discussed in both the singular and nonsingular
situation. Section 3 discusses in more detail the singular problem. The
theory presented here extends and generalizes some ideas introduced in
[1,8]. In particular the results in [1] only hold if f(¢,y)=f(y) for
1€[0,11\(G.9. In our paper we replace this with the less restrictive
assumption f(:,y) is nondecreasing on (0, %) for each fixed y € (0, o0)
(see Remark 3.4 for a more general situation).

2. UPPER AND LOWER SOLUTION APPROACH

In this section we discuss the singular and nonsingular problem
(py") +p(0)q()f(1,y) =0, 0<1<1,
lim,—o+ p(2)y'(2) = 0, (2.1)
y(1)=42>0.

Suppose the following conditions are satisfied:

p€Cl0,1]nC'(0,1) with p >0 on (0,1), (2.2)

g€ C(0,1) withg>0 on (0,1), (2.3)

1 1 1 t
/op(s)q(s)ds<oo and /om./o p(s)g(s)dsdt < o0, (2.4)
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there exists 8 € C[0,1]N C?(0,1) with p3’ € AC[0,1], B(1) >

lim;—o+ p(£)B'(r) < 0 and p()q(2) f (2, B()) + (pB') (1) < O
for t € (0,1),

there exists a € C[0,1] N C?(0, 1) with pa’ € AC[0, 1],
a(t) < B(2) on [0,1], (1) < 4, lim,o+ p(¢)c/(¢) > 0 and
p(0q() f (1, () + (pa/) (1) 2 0 for £ € (0,1)

and
for each 1 € [0,1], f(t,u) e R for u € [a(?), B(1)].
Let

f(t’ﬂ(t)) + r(ﬁ(t) _y): y2z ﬂ(t)>
SH(Ly) = /(1) af) <y < B(1),
St a(t)) +r(e(t) —y), vy <o)

and r:R —[—1, 1]is the radial retraction defined by

Finally we assume

f*:]0,1] x R — R is continuous.
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A,

(2.5)

(2.6)

2.7)

(2.8)

THEOREM 2.1 Suppose (2.2)—(2.8) hold. Then (2.1) has a solution y
(here y € C[0, 11N C*(0, 1) with py’ € AC[0, 1]) with o(f) < (2) < () for

te[0,1].
Proof To show (2.1) has a solution we consider the problem

(o) +p(1)a(O) f*(,y) =0, 0<r<1,
lim,—o+ p(2)y’(£) = 0,
y(1)=4>0.

(2.9)
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Solving (2.9) is equivalent to finding a y € C[0, 1] to

1 X
Mty = A+ / I%x) /0 P (5 7(s)) dsdx.

Define the operator N: C[0, 1] — C[0, 1] by

1 X
Ny(t)= A4+ / p—(‘x; /0 P()q(s)f* (5, (5)) ds dx.

A standard argument [3,9] implied N: C[0, 1]— CJ0, 1] is continuous
and compact. Now Schauder’s fixed point theorem guarantees that N
has a fixed point i.e. (2.9) has a solution y € C[0,1]NC?(0, 1) with
py' € AC[0, 1]. The result will follow once we show

a(t) <y(f) < B(t) forte]0,1]. (2.10)
We now show
y(t) < B(r) forte|0,1]. (2.11)

Suppose (2.11) is not true. Then y — B has a positive absolute maximum
at ¢, €[0,1) (note y(1)=A4 < B(1)). First let us take ¢, €(0,1). Then

(y—=PB)'(t1)=0and (p(y - B)")'(t) < 0. However since y(t,) > B(t;) we
have

(p(y =B (1)
= —p(t)q(t1)[f (11, B(11)) + r(B(t1) — p(1)] = (pB') (11)
2 —p(t)g(n)r(B(n) — ¥(11)) > 0,
a contradiction. It remains to consider the case ¢, =0. Notice

lim p(6)[y - A'(t) = - lim p(£)8'(¢) > 0,

which is a contradiction unless lim,_q.p()3'(f)=0. So assume
lim,_o: p(£)3'(t)=0. Now there exists u>0 with y(s) — 3(s) >0 for
s €[0, p]. Thus for ¢ € (0, ) we have

p(y—B) (1)

=- /0 t{p(s)q(s)[f (5, 8(5)) + r(B(s) — y(s))] + (pB") (s)} ds > 0,
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and this contradicts the fact that y — S has a positive absolute maximum
at t; =0. Thus (2.11) holds. Similarly we can show

a(t) < y(r) forzelo,1]. (2.12)

Our result follows.

The following examples arise in the theory of shallow membrane caps,
see [2,4,6] and their references.

Example 2.1 Consider

13 ¢3
3 "+(———a0——bt2"‘1)=0, 0<t<l,
lim, o+ £3y/(1) = 0, (2.13)
y(1)=4>0,

t max s = M-

Ify>2let

. 1 a 1
at) =0y where qp = mln{A, 3 (-E+ b—(2)+—2b—0) }, (2.14)

whereas if 1 <vy<2let
a(t) = apt*.

Then (2.13) has a solution y € C[0, 11N C(0, 1) with 2y’ € AC[0, 1] and
ol?) < y(1) < B(2) for 1 €[0, 1].

To see this we will apply Theorem 2.1. Choose ¢, 0 <e <2 so that
v>2—¢/2. Take p(1)=1>, q(f) =t “and

€

! tf 2y—de
f(t,J’)=8y—2—00*}7—bot T,
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Notice (2.2)—(2.4) and (2.7) are satisfied. If v > 2 then

(1€ t€ —
w—aoﬂ—o“botz’y 4+e+r(ﬂ0_y)’ yZﬂO,
0
* 1€ 1€ 2y—4+e
[ (ty) =< W"%;—bot ) ag <y < fo,
1€ 1€ 2y—4
8a —a()—(-)-—bot - +6+r(ao—y) ySOéO,
0

whereas if 1 <y < 2 then

(€ t€ _
8—ﬂ’2‘—a()%—b0t27 4+€+r(ﬂ0_y)9 yZ/BO,
0
1€ L 2y-dte 2
P ) 57 a(); — bot , apt <7 <y < P,
V)=
24+ 2+
—— ao _ b0127—4+e
8o el
 Fr(aotr 7 —y), y < apr*.

Clearly (2.8) is satisfied since € >4 — 2. To see that 3(¢) = 3, satisfied
(2.5) notice (1) > 4, lim,_,¢+ £28'(1) =0 and

p(0)a(0)f (. B8(1)) + (P8 (1)

3
= %— (8—1ﬁ— - ao> - b()tz'y_1 < —b0t27_1 <0
0 0

for t€(0,1) since B(f)=LF>1/(8ay). It remains to show (2.6). We
consider the cases v > 2 and 1 <~y < 2 seperately.

Case (i) v>2 Now a(t) < B(2), (1) < A4, lim,_o+ £’ () =0 and

p(g()f (1, e() + (pe!)' (1)
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for t € (0, 1) since ap < xo; here

M @ j@ L
MZ2\ Tk T\ B 28)

Hence (2.6) is true in this case.

Case (i) 1<y<2 Now a(1)<4, lim,_g. 2%'(t)=a2-7)
lim,_,o+ £*~7=0and

p(0)a(0)f (1, (1)) + (p!) (1)
=ap(2—7)(4 -y + 2! (8%% — % - bo)

1
> aof2 = 2)(4 = )6+ 277 (- 2 by

2'y—1b0

0

= ap(2 = )4 =y =L

(ao - xo)(ao +x0) >0

for t € (0, 1) since a < xo; here

Hence (2.6) is true in this case.
Now Theorem 2.1 guarantees that (2.13) has the desired solution.

Example 2.2 Consider

3
(") + (t——bot”") =0, 0<t<]1,

8y2
2.1
lim,_¢+ £3y'(¢) = 0, (2.15)
y(1)=4>0,

where by > 0 and v > 1 (note (2.15) is (2.13) with gy =0). If y > 2 let

=a; and ﬂ(t)——l-——(l—t)—i—A,

at) = mln{A, =D

)
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whereasif 1 <y<2let

a(t) =oyt>™ and B()=4 +\/%To.
Then (2.15) has a solution y € C[0, 11N C?(0, 1) with £y’ € AC[0, 1] and
a(t) < y(#) < B() for €0, 1].
To see this we will apply Theorem 2.1. Choose ¢, 0 <e<2 so that
4 >2—¢/2. Take p(f) =13, g(1) =t and

_ bO t 2y—4+e

f(t’y) = 8;62

Notice (2.2)—(2.4), (2.7) and (2.8) are satisfied. To show (2.5) and (2.6)
hold we consider the cases v >2 and 1 <« < 2 seperately.

Case (i) v>2 Notice A(f) = (1/(244%)(1 — 1) + A satisfies (2.5) since
B(1)= 4, lim,_¢. £*8'(t)=0 and

(D01 BD) + (p8') (1)
12 3
84 |1/ @adR) (1 - ) 1 AT

1 t
< t2 [—@“Fm—botly—?‘] <0

— bot2’7—1

for t€(0,1). Also a(f)=a, satisfies (2.6) since «a(1)<A4,
lim,_o- ’a’(f) =0 and

P(Oa)f (1, (1) + (pa') (1) = £ (8%2 - bot27_4) > B3 (bo  bot>)

=bhot3(1 =t >0
forr€(0,1).
Case (ii) 1 <y<2 Notice 3(tr) = A + 1/+/8by satisfies (2.5) since

p(Dq(0) f(1,B(t)) + (pB') () < t3by — bot™'™!
= bt N -1)<0
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for 1 € (0, 1). Also a(f) = 02> satisfies (2.6) since
p(q()f (1, (2)) + (po) (2)
1

— =)=+ () 20
1

for 1€ (0, 1).

Now Theorem 2.1 guarantees that (2.15) has the desired solution.

3. SINGULAR PROBLEM USING A GROWTH APPROACH

In this section we discuss the singular problem

(py") +p(0)g()f(t,y) =0, 0<t<1,
lim,_o+ p(£)y'(2) = 0, (3.1)
y(1)=0.

We are interested in nonnegative solutions (in fact solutions y with y > 0
on [0, 1)). One can observe that if we use the upper and lower solution
technique of Section 2 (we use (3.7) and (3.8) to construct the upper
solution and (3.5) and (3.6) to construct the lower solution) we have to
assume (2.8). As a result we present a different approach for singular
problems in this section. We remark here that a similar theory could be
obtained for nonsingular problems (the proofs are a lot easier in this
case). In particular the results in this section improve those in [1] since in
[1] we had to assume f (¢, y) =f(») for ¢t €[0, 1]\(1/n, 1 — (1/n)) for some
ne{3,4,...}.

Throughout this section we will assume (2.1)—(2.4) hold. For our first
result we will suppose the following conditions are satisfied:

f:[0,1] x (0,00) — R is continuous. (3.2)

f(:,») is nondecreasing on (0, }) for each fixed y € (0,00). (3.3)

|f(2,¥)| < g(») +h(y) on [0,1] x (0, 00)

with g > 0 continuous and nonincreasing on (0, 0o),
h > 0 continuous on [0, co) and

h/g nondecreasing on (0, c0).

(3.4)
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let n € {3,4,...} and associated with each » we have a constant p,
such that {p,} is a nonincreasing sequence with lim, ., p, =0
and such that for 1/n <t <1 we have p(t)q(¢)f(t, pn) >0

(3.5)

there exists a function o € C[0, 1] N C%(0,1)
with po’ € AC[0, 1], lim—o+ p(¢)/ () = a(1) =0, @ > 0 on [0, 1)
such that p(1)g(2) f (1, y) + (p(1)/ (1))’ > 0
for (¢,y) € (0,1) x {y € (0,00) : y < a(2)}
(3.6)

for any R > 0, 1/g is differentiable on (0, R] with g’ <0

a.e. on (0, R] and g'/g* € L'[0, R] (3.7)

and

o ({1 R /Jg‘Zii)) >, 1»_(17 [ peoaeaxas. @3)

THEOREM 3.1 Suppose (2.2)—(2.4) and (3.2)—(3.8) hold. In addition
assume

1 1 /s
— x)q(x)g(a(x))dxds < oo 3.9
| 565 eoaetac) (39)
is satisfied. Then (3.1) has a solution y (here y € C[0,1]1N C%0,1) with
py' € AC[0, 1)) with y(t) > o(2) for t €[0, 1].
Proof Choose M >0 and e >0 (e < M) with

1 1 s
{1+ h(M) /g(M)}/ &) / 16) / p(x)q(x) dxds.  (3.10)

Let my€{3,4,...} be chosen so that p, <e and let N* =
{my, my+1,...}. We begin by showing
(py") +p(a(0) f*(1,y) =0, 0<1<]1,
lim,_o+ p(t)yl(t) =0, (311)"
y(l) = Pn
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has a solution for each n € N ; here

( 1 1
f(";ay)y yan and 0§t_<_—’;

1
f(t,y), y>pnand —<1<1
f**(t,y)=< n 1
S(t,pn)+pn—y, y<pnand ;51‘51

1 1
f<—,pn>+pn—y, y<ppand 0 <t <—.
\ n n

Remark 3.1 Notice (3.4) implies |/**(¢, )| < g(y)+h(y) if y > p, and
t€[0, 1]. Also (3.3) implies f**(z, y) > f (¢, ), t € (0, 1) for each fixed y > p,,.

To show (3.11)" has a solution for each ne N* we apply
[1, Theorem 2.9]. Fix n € N* and consider the family of problems

(py") +Ap(Dg() f*(1,y) =0, 0<t<1, 0<A<I,
limeo+ p(1)y"(£) = 0, (3.12)"
y(1) = pn.
First we show
y(t) > p, forte]0,1] (3.13)

for any solution y to (3.12)}. Suppose (3.13) is not true. Then y — p,
has a negative absolute minimum at #, € [0, 1) (note y(1) — p, = 0). First
let us take the case to€(0,1). Then y’(£) =0 and (py’)'(¢) >0 (note
W(to) — pn < 0). However

(py")(10) = —Xp(10)q(0) /™ (20, ¥(t0))
( —p(10)q(20)[ f (20, pn) + pn — ¥(t0))]

iflsto<l
n

=) —p(t0)q(%) [f(,l?Pn) + Pn —y(t")]

. 1
if0<t<-

n
<0,

a contradiction. It remains to consider the case #y=0. Notice
lim, o+ p()[ ¥y — pu]' (1) =0. Also since y(0)— p, <0 there exists §>0
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with y(s) — p, <0 for s €[0, 6]. Thus for € (0, ),

PO =m0 =- AP()a(s) (s, 3(s)) ds <0,

and this contradicts the fact that y — p, has a negative absolute maxi-
mum at ¢o=0. Thus (3.13) holds.

Now since y(1) = p,, and y(¢) > p,, on [0, 1] we may assume the absolute
maximum of y occurs at say , € [0, 1), so lim,,,, p(2)y’(t) = 0. With-
out loss of generality assume y(z,) >e. For x€(0,1) we have from
Remark 3.1 that

—(p)y'(x)) N
—eoG) =P ){”g(y(x»}‘

Integrate from 1z, to #(¢ > ¢,) to obtain

—p(1)y' (1) [-2() 10N12
W+/,n{g2(y(x)) }P(x)[y (x))" dx

) {1 +Z§—§E§—§%} / px)q(x) dx

and so (see (3.7))

-y'(1) h(y(tn))
200) = {‘ o)

1 /’
— s)g(s)ds for t € (t,,1).
b | ra (1)
Integrate from ¢, to 1 to obtain

[ [y A [ g asa

and so

y(tn)ﬂ h(y(t,,)) 1—1__ f e ds
/ g(u)s{ug(y(tn))}/o 5 | roaeasa @14

Now (3.10) and (3.14) imply |y|o=supep,1;|¥(®)|# M. Thus
[1, Theorem 2.9] implies (3.11)" has a solution y, with |y,|o <M.
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Also (as above),
pn < yu(t) <M fortel0,1]. (3.15)
Next we obtain a sharper lower bound on y,, namely we will show
yn(t) > a(t) for t € [0,1]. (3.16)

Suppose (3.16) is not true. Then y,, — a has a negative absolute minimum
at 1; €[0, 1) (note y,(1) — a(1) = p, > 0). First let us take ¢, € (0, 1). Then
(Yu—a)'(t;)=0 and (p(y,—)")'(¢;) > 0. However since 0 < y,(t;) <
a(ty) and y,(t;) > p, we have from (3.6) and Remark 3.1 that

(p(yn = @)Y (n1) = =[p(t1)a(t1) S (11, ya(11)) + (p!) (11)]

< —[p(t1)g(t1) f (1, ya(11)) + (p!) (11)]
<0,

a contradiction. It remains to consider the case ¢;=0. Notice
lim,_,- p(O)[ ¥, — 2]'(¥) = 0. Now there exists u > 0 with 0 < y,,(s) < a(s)
for ¢t € [0, p] (also note y,(s) > p, for s € [0, u]). Thus for 7 € (0, ) we have

p(yn—a) ()=~ /0 t[P(S)q(S)f (8, yn(s)) + (pef) (s)] ds < 0,

and this contradicts the fact that y, — o has a negative absolute mini-
mum at ¢t =0. Thus (3.16) is true.

Remark 3.2 Itiseasy to check directly, using (3.6) and the ideas used to
prove (3.14), that a() < M for all t € [0, 1].

We shall now obtain a solution of (3.1) by means of the Arzela—Ascoli
theorem, as a limit of solutions of (3.11)". To this end we will show

{¥n}nen+ is a bounded, equicontinuous family on [0,1].  (3.17)

To show equicontinuity notice

I/ (8, yn(1))] < g(yn(t)){1 + Zg,,g;;}

< g(a(t)){l +§%} forre(0,1).
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This together with the differential equation gives

L[ RGO [
0] < ;(,—){1 +m} [ p6asstao)ds for e o1

and this together with (3.9) establishes (3.17).

The Arzela—Ascoli theorem guarantees the existence of a subsequence
No of N* and a function y € C[0, 1] with y, converging uniformly on
[0, 1]to y as n — oo through Ny. Also y(1) =0 and y(f) > a(¢) for 1 € [0, 1].
Fix 1€(0,1) and let n;€Ny be such that 1/m;<t<1. Let N;=
{n € Ny: n>n,}. Now y,, n € Ny, satisfies the integral equation

n(t) = yu(0) — /ol/nlﬁ/oxp(s)q(s)f<;11-,yn(s)) dsdx

t 1/n
- /0 lﬁX[l/n,t](x) [ /0 p(8)q(s)f (%syn(s)) ds
+ [ P60 Dm0 ds] dx.

Fors e [0, t]wehavef (s, y,(s)) — f (s, y(s)) uniformly on compact subsets
of [0, £] x (0, M ], so letting n — oo through N; gives

0 =>0- [ ’ & [paoserasax @)

We can do this argument for each ¢ € (0, 1).

Remark 3.3 Notice to apply this step we need only [ 1/p(x) [y p(s)x
q(s)g(a(s))dsdx < oo for any a € (0, 1). This is automatically satisfied
since (2.4) holds and a(s) > 0 for s € [0, a]. As a result (3.9) is not needed
in this step.

Therefore from the integral equation (3.18) we see that (py’)'(?) +
p(O)g@) f(t, (1)=0,0< < 1and lim, - p(£)y'(t) =0.

Remark 3.4 Ifin (3.5) we replace 1/n<t<1with0<¢<1—1/n then
one would replace (3.3) with: f(z,y) is nonincreasing on (%, 1) for
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each fixed y € (0, 00). More generallyifin (3.5) we replace 1/n < t < 1 with
1/n<t<1-1/n then one would replace (3.3) with the following: for
any fixed y € (0, 00) there exists €,0 <e <1 with f(z, y) nondecreasing
on (0, ¢€) and f(¢,y) nonincreasing on (1 —¢, 1). Finally if in (3.5) we
replace 1/n <t <1 with 0 <7< 1 then assumption (3.3) is not needed.

It is worth remarking that the only place we needed assumption (3.9)

was in proving (3.17). It is possible to put other conditions on p, g and f
to guarantee that (3.17) holds.

THEOREM 3.2 Suppose (2.2)—(2.4) and (3.2)—(3.8) hold. In addition
assume

1
/0 p-izj—) < oo (3.19)
and
0|/ 1/2
[ s

are satisfied. Then (3.1) has a solution y (here y € C[0,1]N C*(0, 1) with
py' € AC[0, 1)) with y(t) > o(t) for t €[0, 1].

Proof The proof is essentially the same as in Theorem 3.1 except to
prove (3.17) we use the argument in [7, p. 74].

Remark 3.5 One can usually “construct” a from the differential
equation. For a more detailed discussion we refer the reader to [1,5,8].

Example 3.1 The boundary value problem
1
3 ”+t2(——— ) =0, 0<r<]l,
(#y") 7 A

lim,_¢+ £3y’(z) = 0,
y1)=0, p>0

(3.21)

has a solution y € C[0, 11N C*0, 1) with py' € AC[0, 1] and y(¢) > 0 for
t€l0,1).

We will apply Theorem 3.1. Take p(f)=1>, q()=1/t, f(t,y) =
1//y—u gy)=1/\/y and h(p)=p. Notice (2.2)—(2.4) and
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(3.2)—(3.4) are satisfied. Choose np € {1,2,...} so that ng > p? and let

_ 1
T n4ny

Pn

Now (3.5) is true since

P(Og(0) f(t, pn) = [(n +np)"* — ]
> 2(n* —p) >0 forte (0,1).

Next let

a(t) = ap(1 —¢) where ap > 0 is chosen so that 3(1(3)/2 + ua(l,/z <1l

Now a(1)=0, lim,_o:%a/(f)=0 and for (¢,y)€(0,1) x {y € (0, 0):
y<a(d},

p(Dq(0) f(2,¥) + (p) (1)

_of b\ 25 42 1 _ _3a
_t(\/)_) ,u) 3a0t2t<\/m ,u) 3ayt

t2
= _\7_(.1;(1 — wy/a —3a)*) > 0.

Thus (3.6) holds. In addition (3.7) and (3.8) are satisfied since

sup (—————1————'/‘6‘&) = sup (__z___fjﬁ) = 00
ce(000) \{1 +5(c)/8(c)} Jo 8(4))  cc0,00)\1 + 1/C 3 :
Finally note (3.9) hold since

11 t2 dsd 1 11 ts2 dsd
/Ot—s‘/osg(a(.?))st—\/—a_o\/o’ﬁ/o‘——‘,.—l_s sdit

I | ty
<— ] ———— [ s°dsdst
—\/a—o/ot%/m/o
_— /1 | dr<

3vao Jo V1—1 )

Now Theorem 3.1 guarantees the result.
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