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1. INTRODUCTION

Consider the system of ODEs

x’ =f(t,x) (’= d/dt) (1.1)

where x (xl,..., x,) andf= (fl,... ,f,) is a continuous vector function
which is defined in/+". Let x be a (classical) solution of (1.1) in . x is
said to be entirely bounded if

sup Ix(t)l < +o. (1.2)
tE]R

Although many papers deal with the existence problem for entirely
bounded solutions of differential systems (see e.g. [A1,AGG] and the
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references therein), only few results can be used for proving the existence
of two or more bounded solutions (see e.g. [A2,AK,K]).

In [AK] the techniques which consist mainly in invariantness of
prescribed sets and transversality arguments on their boundaries were
applied to derive multiplicity results. In this paper we develop mentioned
method for another class of differential systems. For a comparison with
analogous results related to the periodic boundary value problem we
refer the reader e.g. to the paper [FZ].

2. NOTATIONS AND PRELIMINARIES

2.1. In the whole paper we assume that a,/3, % 6, l, m, n, o are natural
numbers and e, w are positive real numbers.

2.2. By {F} we denote a set whose elements satisfy condition F. So,
we can write x E {(1.2)} for an entirely bounded solution x_ of the
system (1.1).
The general quantifier will be denoted by V and for the existence

quantifier we reserve the symbol B.
2.3. If Ad is a subset of some topological space then by cl

fr 3//we mean the closure, interior, boundary ofM, respectively.
2.4. As usual, I+= (0, /oe). The standard scalar product between, b E In will be denoted by . b. Furthermore, 1[ x/-, for In.
By Vr we denote the gradient of a continuously differentiable real

function r.
2.5. For a 4-tuple (a, 3,% 6) and n=a + fl+’7+ 6, define in the

sequel,

2.6. Let A4 C ]1m, 6(./, ]1;n) be a set ofall continuous vector functions
defined in A//and with values in n. If A//is compact we add the norm

Ilqll max Iq()l
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tO obtain the standard Banach space. If A/[ is not compact we endow the
set C(A4, In) with a topology of the uniform convergence on compact
subsets of A4 to make the Fr6chet space.
H c C(A4, n) is said to be globally bounded if

eE+ ’qEb/ sup Iq( )l <

2.7. Let H C C(A4, n). For A/" C /, denote by re(H,A/" the set

{q C(Af, In): pUV q() =p()}.

2.8. Let Nn D O :/: 0 be a bounded domain such that

(9-- { E n: ri() < 0, for i= 1,... ,m},

where r (rl,..., rm) C(In, ]1{m) is continuously differentiable. Then
we say O is canonical and write O can(r). Furthermore, for every

frO, set

ca(j, r) {i: ri() 0).

The following lemmas give appropriate estimates for solutions of
scalar equations and differential systems.

2.9. LEMMA Consider the 5-tuple (x_,f, w, u, v), wheref C(I x , I),
u, v are continuously differentiablefunctions andx is a solution ofa scalar
equation

x’ =f(t,x), [-w,w]. (2.9.1)

Suppose that,for every [-w, w],

u(t) < v(t), (2.9.2)

f(t,u(t)) > u’(t), f(t, v(t)) < v’(t), (2.9.3)

< (2.9.4)

Then u(t) < x(t) < v(t),for every [-w, w].
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Proof We show that x(t) > u(t), for all E [-w, w]. The verification of
the second inequality can be obtained quite analogously. Assume,
contradictionally, the existence of a E (-w, w] such that x(t) < u(t).
Denoting 7- inf{ (-w, w]: x(t) _< u(t)}, we have obviously x(7-) u(7.).
Settingp x u, the inequality p’(7.) =f(7., u(7.)) u’(7-) > 0 implies the
existence ofe I1+ such thatp/(or) > 0, for every cr (7-- e, 7-]. Taking any

(7-- e, 7-), and applying the Lagrange mean value theorem, we get

X(t) u(t) p(t) p(7-) p’ (or) (t 7-) < O,
for some cr E (t, 7.).

Hence x(t) < u(t), for E (7. e, 7.), which disagrees with the defini-
tion of 7-.

2.10. Remark
(2.9.4) by

Under assumptions of the lemma above, replacing

_< _< (2.10.1)

we obtain u(t) < x(t) < v(t), for every (-w, w].

By the same manner, we can derive

2.11. LEMMA Assume that (x,f,w,u, v) ["]/=1{(2.9.i)} and, for every

f(t,u(t)) < ut(t), f(t, v(t)) > v’(t), (2.11.1)

< < (2.11.2)

Then the same assertion as & Lemma 2.9 holdsfor x.

2.12. Remark Ofcourse, replacing (2.11.2) by

u() _< x() _< v(), (2.12.1)

we obtain u(t) < x(t) < v(t), for every

2.13. LEMMA
system

Let (.9 can(r) and x be a solution of the differential

x’ f(t,x), [-co, w], (2.13.1)
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wherefE C( x IRn, ,n). Assume that (x,f, w, O) satisfies

Vt[_w,w] VEfrO ViEca(,r Vri().f(t, Cs)< O, (2.13.2)

x_(-w) (.9. (2.13.3)

Then,for every I-a;, w], x(t) (.9.

Proof Assume, contradictionally, the existence of (-a;, w] such that
x__(t)qO. Denoting T= inf{t (--w,w]: __x(t) O}, we have obviously
X(T) fr (.9. Hence, ri(x_.(7))--O for some E ca(X_(T), r). Choosing such
and setting p(t)= ri(x_(t)), we obtain p(r) 0 and, for every [-a;, T),
p(t) < O.

But, at the same time, (2.13.2) implies the existence ofe I+ such that
the inequality ri(x_(t))=p(t)=p(t)--p(T)=p’(a)(t--T)>0 holds for

[T e, r), which contradicts the definition of r.

2.14. Remark Instead of (2.13.3) one can assume

x(-w) cl (9, (2.14.1)

to obtain x(t) E (9, for every (-w, co].

Quite analogously as in the proof of Lemma 2.13 we can derive

2.15. LEMMA If(x_,f,w,O) {(2.13.1)} and

Vt[-w,w] V{frO Vica({,r) Vri() f(t, ) > O, (2.15.1)

x(co) (9, (2.15.2)

then the same assertion as in the previous lemma & true.

2.16. Remark Replacing (2.15.2) by

x(w) cl (.9, (2.16.1)

we conclude x(t) E (.9, for every E [-w, w).

The following lemma represents a slightly improved version in [K].
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2.17. LEMMA Consider the pair f, Q), where f E C( x In, ]n) and
Q c C(, Iin) is globally bounded. Assume that theproblems (l 1, 2,...)

=f(t,x), E[-l,l],
(2.17.1)

re(Q, [-l, l])

admit solutions xt). Then there exists an entirely boundedsolution x_. cl Q

ofsystem (1.1).

Proof For abbreviation, let {_x(t)}t+= stand for the sequence of
appropriate extensions of solutions x_t) in . Due to the well-known
Arzelfi-Ascoli theorem and the diagonalization arguments, we are able
to choose a subsequence {x_(ti))i+= which converges to a solution_x cl Q
of the system (1.1) (for more details, see e.g. [K, pp. 178-180]).

To ensure the solvability of problems (2.17.1), we apply the special
form of the Leray-Schauder continuation principle (see e.g. [LS]).

2.18. PROPOSITION Let ld C C([-l, l], ]n) be a nonempty, open and
bounded set, A" clU x [0, 1] C([-l,l],n). Assume that (A, L/) satisfies

A is a continuous operator with relatively compact image

A(clL/ [0, 1]), (2.18.1)

there exists q* bl such that A(q, 0) q*, for every q cl/M,

(2.18.2)

q -7/: A(q, A), for every q frU and all A [0, 1]. (2.18.3)

Then the equation x--- A(x, 1) admits at least one solution in bl.

The last statement of this section follows immediately from the result
developed in [CFM].

2.19. PROPOSITION Lets C C,([--I,I],n) be aclosedset andbl # O be a
bounded subset ofC([-l, 1], In). Consider the problems

x’ =f(t,q(t),A),
(2.19.1)

x8,

wheref C(I x ]In X [0, 1], ]ln), and suppose that
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for every (q,A)E cl/,/ [0, 1], (2.19.1) admits exactly one solution
A(q,)) and A(clb/ [0, 1]) is a boundedsubset ofC([-l,l],n).

Then A is a continuous map with relatively compact image.

3. MAIN RESULTS

3.1. Consider the 5-tuple (f, u, v, O1, O2), where f E C(II ,,n),
n=a++7+6, I7 D O1 ca(r(1)), 6 D O. ca(r(2)). Let
u C(I,+) and v tT(,+) be continuously differentiable.

Denote, in the sequel,

1 (q 1(]t, I[n)" ttE ti=l a+fl ui(t) < qi(t) < vi(t)),

Q2 {q C(,I") VtP(q(t)) 0, R(q(t)) 0},

=2,
d-- { ]1n" qEelQt q(t): }.

THEOREM Suppose that the conditions below holdfor every
andi= 1,...,a,j= a + 1,...,a+fl.

Q is globally bounded and there exists a constant function q* Q,

(3.1.1)

fi( t, S(, ui( t), i) > ui(t), fi(t, S({, vi(t), i)) < v’i(t), (3.1.2)

(t, s(, u(t),)) < u.(t), f(t,s(, v(t),)) > vj(t), (3.1.3)

(P() E frO1 Ak ca(P(),r(1))) = Vr(1)k(P()). P(f(t,)) < O,

(3.1.4)

(R(c) E frO2 k ca(R((), r(2))) = Vr(2)g(R()). R(f(t,()) > O.

(3.1.5)

Then (1.1) admits at least one solution x_ Q.
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Proof It will be divided into four consecutive steps. Denote

sup vi(t) + for a +/3.u inftE]R ui(t) 1, v
tER

A. Let Q* {q E C(I,In)" VtR Vi=I a+fl U < qi(t) < V" } and

Then there exists a function g C(I n,In) with the following
properties:

qEcl Q
VqclQ* ttE Vi=l,...,a
VqEclQ* VtE]R Vi=l,...,a

g(t, q(t)) --f(t, q(t)),
gi(t, S(q(t), u, i)) 1,

gi(t,S(q(t), v;, i)) -1,

tqclQ* Vt]R tj=a+l a+fl gj(t,S(q(t),u,j))---1,
tqEclQ* tt]R j=a+l a+fl gj(t,S(q(t), v,j)) 1.

To assure the statement above, define, for k 1,..., a //3, y ,
X ]n,

Ug(t) for y (--cxz, uk(t)),
rl:(t,y) y for y E [u(t), Vk(t)],

V(t) for y (v(t), +o),
X(t,x) (O(t,x), O+(t,x+),P(x),R(x)).

Then components of the founded function g can take the form

f.(t, x(t,x))
ui(t) u (xi- u) +

gi(t,x) fi(t, X(t,x))
fi(t, x(t, x)) /

(xi v) 1
vi(t)- v

for xi (-oo, ui(t)),

for xi [ui(t), vi(t)],

for X

provided { 1,..., a},

f.(t, X(t,x)) + (- u;)uj(t) u;
gj(t, x) .(t, X(t, x))

..(, x(,x))

for xj (-o, uj(t)),

for x 6 [u(t), v(t)],

for x (v(t), +),
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providedj

P(g(t, x) P(f t, X(t, x) ), R(g(t,x)) R(f(t, X(t,x))).

B. Let l be a fixed natural number and b/= re(Q*, [-l, 1]). Then the
system

x’=g(t,x), E [-l,l] (3.1.6)

admits a solution X(I [.

To prove this part consider a class ofproblems

x’ Ag(t,q(t)), q cl/a, [-l,l],
’i=l,...,a xi(-l) q, j=a+l ,a+/3 Xj(I) q,
P(x(-l)) P(q*), R(x(1)) R(q*).

(3.1.7)

Define the operator A: clb/ [0, 1] 17([-/, /], In), which assigns, to
any pair (q, A) cl b/x [0, 1], the unique solution Xq, A(q, A) of the
related problem in (3.1.7). Clearly, any fixed point ofthe operator A(., 1)
represents a solution of (3.1.6). Denoting by S a set of all functions in

C([-/, l], 1tn) which satisfy the boundary conditions in (3.1.7) we see that
(Ag,/,/,S) satisfies assumptions of Proposition 2.19. Hence, A is a
continuous map with a relatively compact image. Evidently, (2.18.2)
holds for (A, b/) too. Since/g is open we confirm the validity of the part
of (2.18.3) related to A 0. So, it remains to prove

qEfrb/ AE(0,1] q A(q, A).

Assume, contradictionally, the existence of (q, A) E frb/x (0, 1] such
that q=A(q,A). Let 7-[-l,l] be a number for which q(7-)
re(fr L/, {-}).

Define

!

Vk=l ,c+ h/ (7( x ,),hl(t,x) Ag(t,S(q(t),x,k))),
he 6 C( x

h,(t,x) P(Ag(t, ql (t),..., q c+/(t), x, q++.+1 (t),..., _qn(t))),
hl C(I x I6,),hR(t,x) R(Ag(t,q(t),...,q+/+(t), x)).

(3.1.8)
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Then, for 1,..., a andj a + 1,..., a + fl,

4

(qi, hi, l,u;, V) E N{(2.9.k)},
k=l

(P(q_),h,,l, (.9) N{(2.13.k)},
k=l

2

(R(q),h,l, 0) N{(2.15.k)} {(2.13.1)}.
k=l

Hence, applying Lemmas 2.9, 2.11, 2.13 and 2.15, respectively,
we obtain q(7-) E re(/,/, {7-)) which contradicts the characteristic prop-
erty of 7-.

Since all assumptions of Proposition 2.18 are fulfilled, the existence
of a solution _x(t E//is ensured.

C. Recall that g(t, q(t)) =f(t, q(t)), for every q E cl Q and all E . So,
repeating definition (3.1.8) with A= and q=_xq), we can apply
conditions (3.1.2), (3.1.3) to obtain x_(t E re(Q, [-l, l]). Since E 1 was
chosen arbitrarily (f, Q) satisfies assumptions of Lemma 2.17 and we
conclude that

(1.1) admits a solution x__ cl Q.

To finish the proof it is sufficient to confirm

D. Ifthere exists a solution x_ cl Q of(1.1) then x Q.

Assume, for a contradiction, the existence of 7- E IR such that

_x(7-) E re(cl Q, {7-))\re(Q, {7-}).

Let w 17-[ + 1. Define, in the sequel,

/k:l,...,a+ (hk C( x ],]), hk(t,x) fk(t,S(x_.(t),x,k))),
h, C( x l,
he(t,x) P(f(t,X_l (t), +(t), x,_x+a++ (t),... ,__Xn(t))),

hl C(]R x 1R6,6), hR(t,x) R(f(t, xl(t),...,_.x+a+7(t),x)).
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Then we conclude, for 1,..., a andj t + 1,..., c +/3,

(xi, hi, o3, ui, i) E N ((2"9"k)) N {(2"10"1))’
k=l

2

(x_.j, hj,&,uj, vj) A{(2.9.k)} N {(2.11.1)} N {(2.12.1)},
k=l

2

(P(x_),he, w, 01) N{(2.13.k)} N{(2.14.1)},
k=l

(R(x),h,w, 0) ((2.13.1)} N {(2.15.1)) {(2.16.1)).

Hence, applying Remarks 2.10, 2.12, 2.14 and 2.16, we obtain
_x(-) E re(Q, {-}) which contradicts the assumption above.

3.2. Evidently, results similar to the theorem above can be derived if
one or more constant in {a,3, 7, 6} vanish. For example, let c= 1,
/3 -y 6 0 and (1.1) takes a form

x’ a(t)x + g(t,x), (3.2.1)

where a E tT(, ), g E tT( ,). Assume the existence of C E/1+,
/ 9 K< L E such that Kecsgn/ < Le-csgn(L) and

a(s) ds < C, g(t, Kefa(s)cls)>o, g(t, Lefa(s)ds)<o
hold for every E I. Fix q*=ls(KeCSgn(K)-f-Le-Csgn(L)). Then, letting

u(t) Kef a()ra, v(t) Lef(d, we obtain

a(t)u(t) + g(t, u(t) > u’ t),

u(t) < q* < v(t),

a(t)v(t) + g(t, v(t)) <

for all E , hence, (3.2.1) has an entirely bounded solution.
The described technique can be applied to the system

X ai(t)xi + gi(t, x), 1,..., o -+-/3,

x gj t,x), j=c+/3+l,...,c+/3+e+w,
(3.2.2)
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where x (xl,..., xn), n a +/3 + + w and all functions on the right-
hand side of the system are continuous. Omitting an easy proof, let us
illustrate one of the possible results.

COROLLARY System (3.2.2) admits at least 3+ entirely bounded
solutions providing there exist positive real constants C, D < E such that

Vi=I a Vj=a+l a+/ Vk=a+/+l
Vl=a+/3+e+l n VtE VCe-C<y<CeC

o’tai(s)ds
< C,

gi(t, S(, -y, i)) > 0,

gj( t, S(, y,j < O,
gk(t,S(, -D,k)) > O,
g:(t,S(, -E,k)) < O,
gt(t, S(, -D, 1)) < O,
gt(t, S(, -E, l)) > O,

holdfor every

foo a (s) < c,ds

gi(t,S(,y,i)) < O,
gj(t, S(, y,j )) > O,
g(t,S(,D,k)) < O,
gk(t,S(,E,k)) > O,
gt(t,S(,D,l)) > O,
gt(t,S(,E,l)) < 0

e {ff e n. Iff, _< ceC, I jl E,

for i= 1,...,a +/3, j= a+/3+ 1,...,n}.

3.3. Set a 0, 0 and consider (1.1) in a fo

y’= e(t,y,z) +f(t,y,z),
(3.3.1)z’ g(t,y,z) + h(t,y,z),

where e,f are elements in C( x +6,) and g,h belong to
C( x +6, 6). Assuming a continuity of matrices Oe/Oy, Og/Oz let us
denote by (t, y, z) the greatest eigenvalue of a symmetrical matrix

0 0
e(t,y,z)- y e(t, y, z) + -y

and by qo(t, y, z) the smallest eigenvalue of

t, y,:) + -zg(t, y,z
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Recall (see e.g. [D, pp. 284]) that, for any fixed (t, y,z) E ]l+,y+6 and for
every ( E 1’, r/ Re,

COROLLARY Suppose that

sup{(t,, r/)" N, e N-r, 7 e Re} _< * < 0,

inf{(t,, )" N, Nv, N} * > 0,

sup{le(t, 0, )[" N, R} E < +,
sup{[g(t,, 0)[’t N, N} G < +,

lim sup [f(t,, )1= F < [*[, unormly w.r.t, , ,
h(t,,)l

lim sup H < *, unormly w.r.t, , .
Then (3.3.1) admits at least one entirely bounded solution.

Proof Fix E I+ such that

and define, in the sequel,

r(l) (J(]17, ]), r(1)() 1/21 1 ,
r(.) E c(I, ), r(2)07) I,Ia ,
O, { 7" r()() < 0}, 02 { Re: r(2)() < 0},
Q {q e C(,’+)" P(q(t)) O,R(q(t)) 0=,

for every }.
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Clearly, Q is globally bounded and the constant function 0 belongs to Q.
Since

Vr(1)(). (e(t,,z) +f(t,,z)). (e(t, ,z)- e(t, 0,z)) + . e(t, 0,z) + .f(t,,z),

we get, applying the Cauchy inequality and assumptions above,

Vr(1)()- (e(t,,z) +f(t,,z)) < *ll2 + EII +1/2(F+ I*l)l[= < 0,

for all ( E R", 1(1 x/, z E Re. Analogously, we obtain

Vr(2)(r/). (g(t,y,7)+ h(t,y,7)) >_ qa*lr/[- G[r/[- 1/2(H+ *)[r/]2 > 0,

for ally R, r/ Re, It/[ x/, hence our system satisfies (3.1.4), (3.1.5),
which completes the proof.

3.4. The sharp inequalities in assumptions of the previous theorem
can be weakened.

THEOREM Using the notation in 3.1 suppose that Q satisfies (3.1.1).
Assume the existence of vector fields S(l) C(R’,R’r), s(2) [(R6, R6)
such that

V6frO, Vk6ca(,r(,)) 7r()(c). s()(c) < O, (3.4.1)

V(afrOz Vkeca((,r(2)) Vr(2lk((). s()(() > 0. (3.4.2)

Let (f, u, v, 01,02) satisfies, for every R, .M and i= 1,..., a,
j a + 1,..., a + 13, the conditions below:

fi(t,S(,ui(t),i)) >_ u(t), fi(t,S(, vi(t),i)) <_ vi(t), (3.4.3)

fj(t,S(,uj(t),j)) < uj(t), fj(t,S(,vj(t),j)) > vj(t), (3.4.4)

(P() frO1Ak ca(P(), r(1)))
= Vr(1)k(P(C)) P(f(t, )) <_ O, (3.4.5)

(R() e fr 02/ k e ca(R(), r(2)))
:=> Vr(9)(R()). R(f(t,)) >_ O. (3.4.6)

Then (1.1) admits at least one solution s cl Q.
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Proof Define a function e E CORn, IRn) by formulas

Vi=I V1R" ei() q i,

v;:,+, q;,
Vr. P(e()) s(1)(P()), R(e()) s(2)(R()).

It is easy to see that, for every fixed m E N, a 5-tuple (f+ (elm), u, v,
O1,02) satisfies assumptions of Theorem 3.1. Consider the related

+osequence {X(m)}m= of solutions. Evidently, for every fixed EN and
every m, equality

X(m,l)(t X__(m,l)(O + f(s,X(m,l)(S)) +--e(X(m,l)(S))ds,m

(3.4.7)

holds for the restriction x_ (m, l) of__X(m in a compact interval l, 1].
Since {_X(m,/) re(Q, [-l, 1])" rn N) is a uniformly bounded and

equicontinuous set there exists a subsequence {_X(mk,t))k+= such that

limk_+o_X(mk,t) _X(t ), for some _x(t re(cl Q, [-l,/]). Making limit
process in (3.4.7) we obtain x(t)(t)=x_(t)(O)+ff(s,x_(t)(s))ds,
t[-l,l] and, consequently, x_(t) is a solution of the problem in
(2.17.1). Now, the required assertion follows immediately from
Lemma 2.17 applied on the pair (f, cl Q).

3.5. Remark
then

Evidently, if O1,02 satisfy (3.1.4), (3.1.5), respectively

V6frO Vk6ca(,r0)

Vfr02 Vkea(,r(2))

0,

# o.
(3.5.1)

Hence, O1 and 02 have the Lipschitz boundaries. On the contrary, let
(3.5.1) hold for O1 and 02. Moreover, suppose that these sets have
the Lipschitz boundaries. Then (3.4.1) and (3.4.2) hold for some vector
fields S(1), S(2).
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Therefore we can see that conditions (3.4.1) and (3.4.2) do not mean
any restriction on O1,O2 in comparison with the assumptions of
Theorem 3.1.

3.6. We finish with an application of our approach to the existence
problem for an entirely bounded solution whose some components are
nonnegative, while the others are nonpositive. Consider the system

x’ g(t, x, y),
(3.6.1)

y’ h(t,x, y),

wheren =.),+ tS, g C(I x n,’r),h C( x n,6).LetA, B, C, Dbe
positive real numbers, A < B, C < D. Define, for 1,..., "),,j- 1,...,

r(1)i() -i, /’(2)j(ff) j,

r(1)-r+l () A 1/2ll = r(2)6+1 () C

r(l)-r+2({) 1/2112 B, r(2)6+2(ff) 1/211 = D,

r(1) (r(l)l,...,r(l)-r+2), r(2) (r(2)l,...,r(2)6+2),

Ol can(r(1)), 02 can(r(2)),
Recall, (3.5.1) holds for O1,02. Hence, under the remark above, we
confirm the existence of some vector fields s(1), s(2) such that O1 and (.92
satisfy (3.4.1) and (3.4.2), respectively.
Now a natural modification of Theorem 3.4, related to the choice

a 0,/3 0, leads us, immediately, to the verification of the following:

COROLLARY Suppose that, for i= 1,...,’7, J= 1,..., 5 and all E I,
conditions

gi(t,S((,),O,i)) >_ O, hj(t,S((,),O, 9/ +j)) > O,

I1 2x/ . g(t, , ) > O, Il / g(t, , ) < O,

Iffl - ft. h(t, , ) < O, Iffl " h(t, , ) >_ O,

holdfor every cl O1 and every cl 02. Then there exists at least
one entirely bounded solution (x,y) of the system (3.6.1). Moreover,
if(t) E cl O1, y(t) E cl O2,for every
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