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This paper studies viscosity solutions of two sets of linearly coupled Hamilton-Jacobi-
Bellman (HJB) equations (one for finite horizon and the other one for infinite horizon)
which arise in the optimal control of nonlinear piecewise deterministic systems where the
controls could be unbounded. The controls enter through the system dynamics as well as
the transitions for the underlying Markov chain process, and are allowed to depend on
both the continuous state and the current state of the Markov chain. The paper
establishes the existence and uniqueness of viscosity solutions for these two sets of HJB
equations, whose Hamiltonian structures are different from the standard ones.
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1. INTRODUCTION

This paper studies viscosity solutions of first order, linearly coupled
partial differential equations of the following types, where f is a subset
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of " (allowed also to be itself):

(I) Finite horizon:

V(t,x,i) + sup [- A(u"u)v(t,x,i) L(x,i, ul)] 0
u e Rr,u e

in (0, tf] x Un

V(tf, x,i) g(x,i) on flieS := {1,2,...,s),
where s is a positive integer, (1.1)

and U2(/) is a finite set for each 8.
(II) Infinite horizon:

fir(x, i) + sup
u Rr,u th(i)

[- G(U"u)V(x,i) L(x,i, ul)] 0

in 1 for each E q, (1.2)

where U2(/) is again a finite set for each ,. Here, the operators
A and G are defined as follows for each u

4(u,,a)v(t,x,i). OV(t,x,i)
at + [DxV(t, x, i)lF(x u i)

+ E AiajV(t,x,j)

and

G(U"a)V(x, i) "= [DxV(x, i)]F(x, u i) + E AiajV(x,j),

with

F(x, u i) :=f(x, i) + B(x, i)u
L(x, i, u1) := Q(x, i) + (u R(x, i)u1)

where the roles of various terms introduced will be clarified short-
ly, with precise technical conditions given in the next section. The
coupled PDE’s (1.1) and (1.2) are the dynamic programming
equations for the following optimum stochastic control problem
with piecewise deterministic dynamics: Consider a dynamic
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system which is nonlinear in the state and linear in the piecewise
continuous control ul:

dx
-(t) =f(x(t),O(t)) + B(x(t),O(t))u(t) (1.3)

x(O) xo

where x ", x0 is a fixed (known) initial state, u is a control,
taking values in U W, and O(t) is a controlled, continuous time
Markov process, taking values in a finite state space S, of cardi-
nality s. Transitions from state S to j S occur at a rate con-
trolled by.a second controller, who chooses at time an action u(t)
from a finite set U(/) of actions available at state i. Let U :=

Ui sU(i). The controlled rate matrix (of transitions within S) is

A {)li,a}, i,j ,.q, a u2(t) U2(i)

where henceforth we drop the "commas" in the subscripts of A.
The Aiaj’S are real numbers such that for any ij, and a U2(/),
Aiaj > O, and for all a U2(0 and S, Aiai _,y#iAiaj. Fix some
initial state i0 of the controlled Markov chain S, and the final time

tf (which may be infinite). Consider the class of policies #k Hk
for controller (k 1,2), whose elements (taking values in U) are
of the form

uk(t) #k(t,x(t),O(t)), [0, tf). (1.4)

For the finite-horizon case, #k is taken to be piecewise continuous
in the first argument and local Lipschitz in second argument and
measurable in the third argument. In the infinite-horizon case, the
dependence of #k on is dropped, but otherwise it is defined the
same way. Define X x S to be the combined state space of
the system and H := b/ x/,/ to be the class of admissible multi-
strategies #:=(u,u2), appropriately defined depending on
whether tf is finite or infinite. Let (.,.) denote the Euclidean
inner product. Define a running cost L" X x L/ as

L(x, i, u1) a(x, i) + (u1, R(x, i)u),

where the definitions of Q and R will be made precise later in
Section 2.
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To any fixed initial state (x0, io) and a multi-strategy # E H, there
corresponds a unique probability measure P0,0 on the canonical
probability space of the states and actions of the players, equipped

Ez the expectationwith the standard Borel r-algebra. Denote by x0,,

operator corresponding to PzXOJO"
For each fixed initial state (x0, i0), multi-strategy # H, and a finite

horizon of duration tf, the discounted (expected) cost function is
defined as

{ /o }](xo io,#;tf)’=E g(x(tf) 8(tf))e-t+ e-tL(x(t),(t),u(t))dtXolo

(1.5)

where g is a terminal cost function,/ > 0 is the discount factor, and
the expectation is over the joint process {x,0}. For tf infinite, a
corresponding discounted cost function is defined as:

](xo, io,) := Eo,i e-tL(x(t),O(t),u(t))dt (1.6)

We further denote the cost-to-go from any time-state pair (t;x,i),
under a multi-strategy E by

](t;x,i,;tf) := E" {

and

JB(t; x, i, #1 := E#x,i e-/O-t)L(x(7.), 0(7-/, u (7.11d7.

for the finite-horizon and infinite-horizon cases, respectively. The
optimal value functions are then defined by:

V(t; x, i; tf) inf inf J(t; x, i, ; t) finite-horizon case
#! GH! #2

inf inf J(t; x, i, #) infinite-horizon caseV(x. i)
.’ eU. . eU2

Dynamic programming arguments (for background on the approach
that can be used here, see [13, 19]), lead to the two coupled HJB
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equations (1.1) and (1.2), corresponding to the finite and infinite-
horizon cases, respectively. More precisely, if these equations admit
unique viscosity solutions on n-a concept that will be introduced in
precise terms later in Section 2, then V(t;x,i; tf) and V(t;x) thus
defined constitute the optimal value functions for the finite-horizon
and infinite-horizon cases, respectively. It is a verification of this
existence of unique viscosity solutions that is the main goal of this
paper.

Remark 1.1 If R(x, 0 is strictly positive definite for all x and i, then
(1.1) can be written as

OV(t,x,i)
Ot + V(t,x,i) (DxV(t,x,i),f(x,i))

inf { E AiayV(t,x,j)} Q(x,i)
a

j8

+ -l (DxV(t, x, i) B(x, i)R-l (x, i)B(x, i)rDxV(t,x, i)) 0

V(tf x, i) g(x, i), (1.7)

with the associated minimizing controller u being (since DxVmay not
be well defined, this expression is quite informal at this point. It will be
made more precise in Section 5):

ul(t) #l(t, x(t), 0(t))
-R-1 (x(t), O(t))Br (x(t), O(t))DxV(t, x(t), O(t))

Under the same condition, (1.2) can be written as

/3V(x, i) (DxV(x, i),f(x, i)) inaf {E A,ayV(x,j) }
(DxV(x, i),B(x, i)R- (x, i)B(x, i)rDxV(x, i)) 0Q(x, i) + - (1.8)

with the corresponding minimizing controller u in this case being

u (t) #1 (x(t), O(t))
-R-(x(t), O(t))Br(x(t), O(t))DxV(x(t), 0(t)).
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For future use, we introduce the Hamiltonian for both finite- and
infinite-horizon cases by-(x,r,p) {i(x,r,p)}is= where//i is given
by

i(x,r,p) ri-inaf _,Aiajrj +Hi(x,p) (1.9)

where r (r,..., r), and

Hi(x,p) -(p,f(x, i)) Q(x, i) + - (p,B(x, i)R- (x, i)B(x, i)Tp).

(1.10)

HJB equations are nonlinear partial differential equations, and it
is well-known that in general such equations do not admit global
classical solutions. Furthermore, the value functions of optimal
control problems (and differential games as well) are not differentiable
in general, and they are not even continuous for some classes of
problems (e.g., cf. [18,21]). The theory of viscosity solutions, first
introduced by Crandall and Lions, provides a convenient framework
to study solutions of HJB equations. The questions of existence and
uniqueness for viscosity solutions of HJB equations have been studied
by a number of authors, and in particular, by Crandall and Lions
[7, 8], Lions [16], Crandall [4], Evans [10], Ishii [14], Crandall, Evans
and Lions [6], Fleming and Soner [13], Ball and Helton [3], and Evans
and Souganidis I11].
The class ofHJB equations (1.1) and (1.2) to be studied in this paper

are different from the ones treated in all these earlier references, first
because they are (linearly) coupled, and second because the
Hamiltonian does not satisfy the "structure condition", which is:

[i(x,r,p)-i(y,r,q)l<mR(lp-ql+lx-yl) (1.11)

where (x,p), (y,q) x Bg(0) and mR is a modulus function (cf.
[4, 7]). When the control set, U, is bounded, the structure condition
(1.11) generally guarantees that HJB equations admit Lipschitz
continuous viscosity solutions (see e.g. [4, 13, 17]). Another type of
assumption in which the value function is required to satisfy certain
growth condition is essentially to require U to be compact [19].
Clearly the boundedness assumption on U could be overly restrictive,
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a ease in point being the linear-quadratic regulator problem (with
pieeewise deterministic dynamics), where the control cannot be taken
to be bounded a priori, and hence (1.11) does not generally hold. Other
assumptions that are commonly made to replace (1.11), for example
polynomial growth assumptions on value functions [19], will also
result in restrictions that are not natural in the framework adopted
here. Moreover since the Hamiltonian is also a coupled system, the
monotonieity property with respect to r no longer holds in general, i.e.,
l(x, r,p) is not monotone with respect to r. Without this property and
(1.11), the standard comparison theorem of [4] and [7] does not apply,
and the proof of uniqueness becomes much more challenging.

Accordingly, in this paper we generalize the standard comparison
theorem to cover the cases of such coupled HJB equations where the
Hamiltonian does not satisfy the structure condition and does not
have the monotonieity property, but instead, has a quadratic structure,
which corresponds to a large class of nonlinear systems in the form
(1.3). We prove the existence of solutions to (1.1) and (1.2), under
assumptions quite different from the standard ones.
The structure of the paper is as follows. In Subsection 2.1, we list a

set ofassumptions on the HJB equations (1.1) and (1.2), necessary to be
able to develop a reasonable theory. Subsection 2.2 provides the
definition of a viscosity solution for coupled HJB equations (1.1) and
(1.2). In Section 3, we show the existence of viscosity solutions to (1.1)
and (1.2) by using a variation of Dynkin’s formula. Generalized
comparison theorems for the coupled HJB equations (1.1) and (1.2) are
provided in Section 4. The proof of the uniqueness is totally different
from that of [19], where a stronger assumption is imposed on the value
functions. The paper ends with the concluding remarks of Section 5.

2. ASSUMPTIONS AND DEFINITIONS

2.1. Assumptions

(A1) For each i, f is an n-vector, and there exists a constant Lf> 0
such that

sup{If(x, i) -f(y, i)l} <- Llx Yl, x "
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(A2) For each i, B(x, i) is an n x r matrix, and

sup{lB(x, i)l} -< Cbl, sup(lB(x, i) B(y, i)l} <- Cb21x Yl,

Vx, y n
for some Cb, Cb2 < o.

(A3) For each i, Q(., 0" "---’ [0, +o), with

0<_ sup{Q(x,i)} <_ Cqlxl

(A4) Foreachi,R(x, /)isann x nmatrixwithR(x, 0 R(x, Or > O,Vx E
/x E Rn, and

sup{lR(x,i)l} < C,, suP{lR(x,i) -R(y,i)l} <_ C’lx- yl, x,y Rn

for some Cr, C’r > 0, and there exists LR > 0 such that

sup{lR- (x, i) R-1 (y, i)1} <_ LRIx y[, Vx, y n

(A5) For #j, 0 < Aiay < CA, where CA is a positive constant, and Aiai+
Y’4#Aaj O, < <_ K.

(A6) For each and any g(.,/)" [n [0, o),

sup(lg(x, i)[} <_ (1 + cg)lxl,
sup{lg(x,i g(y,i)[} < C’g(1 + Ix[ / lyl)lx yl

for all x, y E ", where Cg, ’g are positive constants.
(A7) / is a nonnegative constant.
(A8) For any zE, there exists a nondecreasing function

v" {0} t_J I+ {0} U + such that (0) O, lim_. +(r)/r
+ and

(z,B(x,i)R-l(x,i)B(x,i)*z) _>(11), a=, /i,.q.

Remark2.1 When

f(x, i) A(i)x, B(x, i) B(i), Q(x, i) xrQ(i)x, R(x, i) R(i),
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and g(x,i)= xrQt:x, where A(O, B(O, Q(i), R(O and Qt:(i) are ap-
propriate dimensional matrices which are dependent only on i, then
Assumptions (A1)-(A4) and (A6) are automatically satisfied.

Remark 2.2
xEn

By Assumptions (A8) and (A4), we can see that for fixed

Hi(x,p) +oo as Ipl +o.

Throughout the paper, the following conventions will be adopted,
unless otherwise indicated: (1) u2 and a are used interchangeably to
denote the second control; (2) by an abuse of notation #l(t) will be
used to denote #l(x(t), O(t)).

2.2. Definitions

DEFINITION 2.1 Let V be a vector function

V (V(.,., 1), V(., .,2),..., V(., .,s))" ([0, tf] x 2)s --. ([n)s

(a) V is a viscosity subsolution of (1.1), if for any i, V(.,., 0 is upper
semi-continuous and

/(to, xo, i) + sup [- ji(u"u)(to, xo, i) L(xo, i,u)] <_ 0 on
ill ,g2

(tf, x, i) <_ g(tf, x, i) on f

whenever ( .,.,/) E C ([0, A x f) is such that V(t, x, i) (t, x, i)
attains a local maximum at (to, x0) with (t0, Xo,j)= V(to, Xo,J for
each j S, and (u, u2) U1 x U2;

(b) V is a viscosity supersolution of (1.1) if for any i, V(.,.,/) is lower
semi-continuous and

fl(to, xo, i) + sup [- .4(u"u)(to, xo, i) L(xo, i,u])] >_ 0 on [2
Ill 2

t(tf, x, i) >_ g(tf, x, i)

whenever /,(.,.,/) q cl([0, A X ’) is such that V(t, x, 0 (t, x, 0
attains a local minimum at (to, Xo) with (to, Xo,j)= V(to, Xo,J) for
each j q S, and (u1, u2) E U1 x U2;
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() V is a viscosity solution of (1.1) if V is both a viscosity
supersolution and a viscosity subsolution.

Remark 2.3 The statement "V(t, x, i)- (p(t, x, i) attains a local
maximum (respectively, minimum) at (to, Xo), with i0" means that
there exist /, /2 > 0 and a subset S c_ 8, i0 E S, such that when (t, x) E
[B(t0,) x B(xo, /2)] q [[0, ty] x fl] and S, we have

V(t, x, i) (t, x, i) >_ V(to, xo, io) (to, xo, io)
(respectively, V(t, x, i) (t, x, i) <_ V(to, xo, io) (to, xo, i0))

The notion of a viscosity solution for (1.2) can be introduced
analogously.

3. THE EXISTENCE OF A VISCOSITY SOLUTION

Wc first provide two propositions for convenience in later develop-
ments.

PoPosmo 3.1 For any 0 <_ <_ r <_ tf and with x(t) x, O(t) i,

V(t;x,i;tf) >_ infEx,i e-(r-t) L(x(s),O(s),ul(s))ds

-}- V(T;X(T),O(T);tf)] } (3.1)

In the case that tf= + oo, for any >_ 0

{ [/oY(x,i) >_ infEx,i e-it L(x(s),O(s),ul(s))ds+ V(x(t),O(t)) (3.2)

Proof The results are the direct consequences of the definition of V as
well as the assumption of fl > 0.

The following proposition is a variant of Dynkin’s formula.

PROPOSITION 3.2 Define ," [0, tf] n x -* such that the partial
derivatives ’t, ’x, i= 1,...,n are continuous. Then, for x(t)=x and
O(t)=i,

Ex,i(s, x(s), O(s)) (t, x, i) Ex,, fit(u’’u)(r, x(r), O(r))dr
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where .A(u’u2) is defined as

t(u’u2)t(t,x,i) := t(t,x,i) + x(t,x,i)F(x, ul,i) + AiajP(t,x,j)

(3.3)

with u #l(t, x, O, u2-- a =/z2(t,

Proof See Appendix B of [13]

Remark 3.1 Suppose that the value function V is differentiable with
respect to x and t. By Proposition 3.1, we have

Since

0 > inf Ex,i e-(-,) L(x(s), O(s), u (s))ds

+ e-(r-t)V(r; x(7-), 0(7-); t:) V(t; x, i; tf) }
(3.4)

e-#(r-t)V(7"; x(r), 0(7"); tf V(t; x, i; tf
e-#(r-t)[v(7"; x(7-), 0(7"); tf) V(t; x, i; tf)]

[1 e-(r-t)]V(t; x, i; tf (3.5)

using this in (3.4), and applying Proposition 3.2, we arrive at

0 >_ infEx,i e-/(s-t)[L(x(s),O(s),lzl(s))d-.A(U"U:)V(s,x(s),O(s);tf)]ds

-[1 -e-(r-t)]V(t;x,i;tf)} (3.6)

Dividing (3.6) by --t, and letting 7- t, we have

V(t;x,i; tf) + sup [- jt(u"u2)v(t;x,i; tf) L(x,i,u)] >0.
U [12

On the other hand, according to the definition of V and Proposition
3.2,

/3V(t,x,i) + sup [- jt(u"u)v(t,x,i)] <_ O,
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and since L E O, we have

/V(t, x, i) + sup [- 4(u"u)v(t,x, i) L(x, i, u)] <_ O.
gl tl

Therefore V satisfies the coupled first order partial differential
equations (1.1). In general, the value function V is not differentiable
with respect to either x or t, and hence we would like to explore the
connection between the value functions {V(.,.,i, tz)}= and the
coupled HJB equations (1.1) in the viscosity sense. This brings us to
the following:

THEOREM 3.3 Under the Assumptions (A1)-(AS), for each i, let

x, i; tf inf Ex,i(g(x(tf),V(t; O(tf )e-(t:-t)

+ e-(-t)L(x(’), 0(’), u (-))d

If V(. ;.,i; tf)s C([O,t] x n), then {V(t;x,i; tf)}i8 is a viscosity
solutwn of (1.1).

Proof Suppose that to the contrary {V(t; x, i; t)}i s is not a
viscosity supersolution of (1.1). Then there would exist at least one

i0 E S, a pair (t0, x0) E [0, tf] x n, and a function [0, tf] x n X

S n, such that V(.;., io; tf)-(.,., io) has a local minimum. But
there exists an t > 0 such that

fl(to, xo, io) + sup [- 4(u"u:)(to,xo, io) L(xo, io, u)] < e (3.7)
tl tl

For any admissible control # (#, #2), we now consider the following
system:

dx
(t) f(x(t), O(t)) + B(x(t), 0(t))# (t, x(t), O(t))d-

x(to) xo (3.8)
O(to) io

Note that x(t) Xo as to. Hence for sufficiently small t,

(t,x(t),O(t)) 4(u"u2)(t,x(t),O(t)) L(x(t),O(t),ul) < e (3.9)
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Multiply both sides of (3.9) by e-(t-t). Noting that L > 0, integrating
both sides from to to t, and applying Proposition 3.2, we have

(to xo, io) E {e-#(t-t)qp(t,x(t) O(t))} < e(t to)Xo tO (3.10)

Since (to, Xo) is a local minimizer of V(-;., io; tf)-(.,., io),

V(to; xo, io; tf) V(t; x(t), 0(t); tf) <_ (to, xo, io) (t, x(t), O(t))
(3.11)

Therefore we arrive at

V(to; xo, io; tf Exo,i {e-(t-t)v(t; x(t), 0(t); tf } _< e(t to),
(3.12)

which contradicts the statement of Proposition 3.1 (where we let to,
and r t).
For the subsolution case, let (to, Yo) E [0, tf] x Rn,jo ,.q and p(.,.,/)

E C([0, tf] x Rn) be such that (to, Yo) is a local maximizer of function
V-p, and V(to;Yo,jo; tf)-b(to, Yo,jo)=O. By Proposition 3.1, for any
# (u u2) E H and > to,

b(to, Yo,jo) V(to; yo,jo; t)

< E". e-a’L(x(s) O(s)ul(s))dsYo,Jo

+ o(0, .; } (3.13)

Observing that {x(t,O(t),yo,#)} is continuous in t, when > to is
sufficiently close to to, by Proposition 3.2, (3.13) becomes

Emyoo ( e-(t-t)t to fto --t(u-u)(r’x(r’ O(r),yo,#), O(r))dr}
( e-(t-to) )+ to

b(t0, Y0 ,j0)

<Em { fot }yo,jo to
e-#SL(x(s, 0(s), Yo,/z), 0(s),/z(s))ds (3.14)
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Taking limits when to, observing that the integrand is continuous in
s or r, and X(to,Jo, Yo, u) =Y0, we obtain

P(to,yo,jo) A(u’u)b(to,yo,jo) L(yo,jo,u) < 0 (3.15)

Since (u1, u2) was arbitrary, we have

flP(to,Yo,jo) + sup [- A(u"u’-)b(to,Yo,jo) L(yo,jo, u)] < O, (3.16)

that is to say, V is a viscosity subsolution of (1.1), and this completes
the proof.

Remark 3.3 In Theorem 3.3, we did not need R to be strictly positive
definite as required by Assumption (A4). (A4) will be needed, however,
for uniqueness.

We provide below two sufficient conditions for V to be continuous.

THEOREM 3.4 When the control space U is compact (instead of being
the entire r), and Assumptions (A1)-(A6) hold, we have, for each i,
V(. ;., i; tf)

Proof Suppose that x and y are solutions of (1.3) with initial
conditions x(s)= xo and y(s) Yo, respectively. Since U is compact, we
may assume that there exists a constant M such that [u[ < M for any
u U. By Assumptions (A1)-(A5), we have

Ix(c) Y()I-< Ix0 Y01 / (/-, + CeM) Ix() y(r)ldr (3.17)

Using Gronwall’s inequality, one can see that, for given e > 0, there is
> 0 such that Ixo-yl < implies Ix(t)-y(t)l < e. Noting that L and

g are locally Lipschitz, it follows from the definition of V that

IV(s; x0, i; tf V(s; y0, i; tf

_< sup g(y(tf),o(t),i)]
uU xU2

+

<- F(R)Ix YI, where R < c
(3.18)
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for some locally bounded function F. This leads to continuity of V
with respect to the space variable x0. Now we show the continuity of V
with respect to the time variable. Let 0 < s < sz < tf, and u0 E U. By
(A1)-(A6), L(x, i, u) < o for all x E X and E 8. Consider function
V’[S1, tf] --* UI x U2 defined by

v(t) { u Sl < <s2
U* SE <_t<_tf

where uo (u, Uo2) E U1 x U2 and u* E U1 x U2 is such that

V(s2; xo, i; tf) J(s2; xo, i, u*; tf).

Note that

V(s xo, i; tf V(s2; xo, i; tf

<_ Ex,Z e-(r-S’)L(x (r), 0(r), u)dr

+ ,, e-(-((xl, (, o(,(

L(xu’, (), o(),u*()))&}
+ e-O"-’,(g(xI, (q), o(q))}
-("-’)s;-rx"’ (q), o(q))} (3 9)

where x (t)= X(Sl xo, v) is the solution of (1.3) with x(s)=Xo,$1

(u,O) v, and x: (t)= x(s2 xo is the solution of (1.3) with
x(s2) Xo, (u, O)= u*. On the other hand, x (t) can be viewed as the
solution of

d () =/(x:, (t), O(t)) + (, (t), 0(t))(t)

()x, ()= x,
Hence, we have

x, (t) , (t) < x() xo
+ ( +,c:) I ()

(3.20)



534 M. XIAO AND T. BAAR

By Assumption (A1),

Ix, , _<

_< [[x, (r) x01 + If(x0, 0(r))l + Cbzl,ol]dr

(3.21)

Thus by Gronwall’s inequality, we have

(3.22)

where C is a constant. Since g and L are locally Lipschitz,

Iv(s xo, i; tf V(s2; xo, i; tf < CxolSl s2l (3.23)

where Cxo is independent of s and $2, which completes our proof.

Remark 3.4 From the above proof we can see that for each i,
V(.,.,/) is uniformly locally Lipschitz in x. From elementary analysis,
we know that given R > 0, there exists KR < o such that

[V(t;x,i;ty) V(t;y,i;tf)l <_Kalx- yl, V(t,x),(t,y)[O, tf]
x Ixl_<R}

Ilvv(t;., i; t)[l({ix <_ }) < Ks Vt E [0, ty].

This fact has been used in the earlier literature to prove the uniqueness
of viscosity solutions by assuming the control space to be compact. We
can not, however, make use of this fact because here the control space
is allowed to be unbounded.

THEOREM 3.5 Letf(x, i) A(i)x, Q(x, i) xrQ(i)x, where A(O and Q(i)
are n xn matrices, and let B, R be independent of x, and
g(x, 0 xrQf(i)x. Then we have for each i, V(. ;., 0 E C( [0, tf]; n).

Proof It is not difficult to see that iff, B are linear with respect to x,
L(., i,. ) is convex jointly in (x,/z) and g is convex with respect to x,
then J(t;., i,. tf) is convex jointly in (x,/z) for each S. This implies
that V(t;., i; tf) is convex in , and thus is continuous with respect to
the space variable x (in fact, it is locally Lipschitz in x; for a proof, see
[29]). Now following the proof of Theorem 3.4 by using the fact that B
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is independent of x (thus the condition on boundedness of U can be
removed), we arrive at the desired result.

For the infinite-horizon case, an argument similar to that used in the
proof of Theorem 3.3 leads to the following result for the general case:

THEOREM 3.6 Under Assumptions (A1)-(A6), for each E S, let

V(x, i) inf Ex,i e-rL(x(r), 0(r), u

Then, if V +o and V(.,i)eC(a"), V= {V(x,i)}iS__l is a viscosity
solution of (1.2).

4. UNIQUENESS OF THE VISCOSITY SOLUTION

In this section, we show that the viscosity solution of (1.1) is unique,
and when/3 > 0 the viscosity solution of (1.2) is also unique. For the
finite-horizon case, suppose that V, W are a viscosity supersolution
and a viscosity subsolution, respectively, of (1.1) on Qaq= [0, tf] D,
and introduce V, W as

V(t, x) (V(t,x, 1), V(t,x, 2),. V(t,x,s)}
W(t,x) {W(t,x, 1), W(t,x,2),. .., W(t,x,s)}

Furthermore, assume that

W < V on ({t ty} x f) u ([0, ty] x 0f). (4.1)

and adopt the convention that W < V on Q if and only if for each i,
W(t,x, 0 < V(t,x,i) for any (t,x)Q Vt may be all of ", in which

tf
case the boundary of f (denoted by Of) is empty. Now we are ready
to state the following lemma:

LEMMA 4.1 Let V, W be as above and assume that (A1)-(A8) hold.
Let R < oo and introduce a function A C Q(q), such that A > O,
A(t, x) 0/f Ixl >_ R, and

(QaO. (4.2)-At +A > O on (suppA) f’l q

where the superscript o indicates interior. Then W >_ V on (suppA) fq Q.
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Proof Suppose that

Mo A(to,xo)[W(to, xo, io) V(to,xo, io)]
maxA(t,x)[W(t,x,i) V(t,x,i)] > O, (4.3)

since otherwise result has already been established.
Let a function ’6" [0, A x f x [0, 9] x f x It-, " be introduced

by

e’(t,x,s,y,i) A(s,y)W(t,x,i) A(t,x)V(s,y,i)
1 Ix- y12 it_ sl2 (4.4)2e -Since ’ is upper semi-continuous, A has a compact support and 8 is

a finite set, there exist

(t, xe, s,ye, ke,)Q x Qg x,.q

such that

max ’(t, x, s, y, i) (4.5)

We prove (4.2) in several steps.

1. In this step, we establish the validity of the limits:

12 122 [x y 0 as e t O, Ita sa 0 as t 0 (4.6)

Let M’ I,’(t, x, s,y, k,), and consider 0 < e2 _< e and
0 < 62 _< ; then,



COUPLED HAMILTON-JACOBI-BELLMAN EQUATIONS 537

12 122el Ix*2 y2 2 Ith sh

( ) Ix:-yl2 1 It s
e2 el 2 62 6 2,(t, x, s,y, k,) ,

Hence, we can see that (e, 6)’ is nondecreasing. Let e 2e,
e2 e and 6 2 6; then

Ix-yl2

M2’ M’ 2 2
(4.7)

Note that M2’-’0 as e 0. Thus the first part of (4.6)
holds. For the second part, the proof is similar.

2. Since A has a compact support and 0.6) holds, there exist
sequences {e.} and {6} converging to zero, such that

xe. 2, ye. 2, as n , t6m ,Sm as m

where (, )E Q. In fact it is easy to see that x0, t0. Note
that by our assumption (to, xo) (suppA) (Q)O. Therefore, for
sufficiently large n and m, we have (t6m,Xe.), (S6.,ye.)E (suppA)

flo(Qq) By noting that 8 is a finite set, without loss of generality, we
may assume ke.,6 ko.

3. Since

A(t,x)V(t,y. to)w(,x,) (e.,y.)

It ] (4,.8)+ -s.

attains its maximum at (t,x)= (te.,xe.), by the definition of
viscosity subsolution, we have

,(.,x.)v(.,x.,o) + (.

+ Hi xe., XN;- N 0 (4.9)
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Similarly,

x,)
A(s,y)W(t.,x ko) -enlX, y]2V(s, y, ko) A(t

26,,1 ]Item (4.10)

has a minimum at (s, y,). Note that W(.,., ko) is a supersolution,
which results in

Next we claim that for fixed e,, the sequence {(t.- s6m)16m} is
bounded. If this were not the case, we could then assume that
(tem -s6,)/6m -o as rn +oo by (4.9) and Assumption (A8).
However, by (4.11) this would imply that

y
Ay(s6.,ye.)W(t6.,xe.,ko) + (xe. ye.)/en )

m --, +o

which is impossible because

y
Ay(s6m,ye.)W(t6m,Xe.,ko + (xe. ye.)/en)lim Hi e., A(t6m Xe.)m-,+oo

Ay(,ye.)W(,xe.,ko) + (xe. Ye.)/en " +)A(, x.)
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Thus there exists a converging subsequenee, which we still denote
by {(t6 -S6m)/6,,,}. By (4.9) and Assumption (A8), we have that
(x -y)/en is also bounded. Note that

Ax(tm,x.)V(tm,x.,ko + (x. y.)/en )H xe., A(sm, ye.

H(y, A(sm’Y)W(’ x’k)(--f-.i+ (x. y)/en )
<_ C{L + C2lR-l(x.)Br(x,)l + LnlB(x.)lIBr(y,)l

+ Cb2l_(y.)r(y.)l } {x. ye.I2 + ()lx. Y.I (4.12)
6n

Let rn oo in both (4.9) and (4.11), and subtract (4.11) from (4.9),
and let n --. oo. This yields

At(to,xo)[W(to,xo,ko)- V(to,xo,ko)]
A(t0, x0) + fl[W(to,xo,ko) V(to,xo,ko)]

+inf { EAkayV(t’x’j) -inf { EAkayW(t’x’j) _<0 (4.13)

4. Here we establish the inequality

inf { ZAkoayW(to,xo,j)) -inf { ZAkoayV(to, xo,j)) <_0
u2 uZ

Note that by (4.3), we have

A(to, xo)[W(to, xo, i) V(to, xo, i)]

<_ A(to, xo)[W(to,xo, ko) V(to, xo, ko)] ViES

(4.14)

(4.15)
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By using Assumption (AS), and (4.15), we have

inf ( EAkayW(t’x’j) -inf ( EkayV(t’x’j) )
:8

inf { E xo,j) + AkoakoW(to, Xo ko)}
Y#ko

inf { E xo,j) + Akoako V(to xo, ko) }o

=infu {E Akoay[W(to, xo,j) W(to, xo, ko)]}
j#ko

inf E ,koaj[V(to, Xo,j) V(to xo, ko)]
U2 y#ko

<_ sup { Z Akoaj(W(to, xo,j) W(to, xo, ko)
u2 jko

V(to,xo,j)+ V(to,xo, ko))}
<0

5. (4.3), (4.13) and (4.16) yield that

-At(to, xo) + flA(to, xo) _< 0

which contradicts the hypothesis of the lemma. Therefore

max A(t,x)[W(t,x,i) V(t,x,i)] <_ 0

and this completes the proof of Lemma 4.1.

Now we are ready to state the following comparison theorem:

THEOREM 4.2
have

(4.16)

(4.17)

(4.18)

W <_ on Q (4.19)

Under Assumptions (A1)-(A7), /f (4.1) holds, then we
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Proof We are interested in finding A such that the conditions of
Lemma 4.1 are satisfied. A natural choice for the function A is:

exp{(R2/Ixl2 R2) + (/- 1)t),
A(t,x)

0, Ixl R

Suppose that there were (to x0, i0)E Qfl such thatt

W(t0, x0, i0) > V(t0, x0, i0) (4.20)

Let R > [xo[, and A be as above. Clearly, (4.2) is satisfied under the
choice of the A. Applying Lemma 4.1, we know that (4.20) could not
hold. Therefore (4.19) must be true. m

Under our assumptions, the comparison theorem leads to unique-
ness of viscosity solution of (1.1).

COROLLARY 4.3 Let V, W be two viscosity solutions of (1.1) with
boundary and terminal conditions

V(t, x, i) W(t, x, i) qo(t, x, i) on [0, tf] x 0[2 (4.21)

V(tf, x, i) W(tf, x, i) g(x, i) on [2 (4.22)

Under Assumptions (A1)-(A7), we have

V=W on[O, tA (4.23)

Remark 4.1 In the case f n, the boundary condition (4.21) is no
longer there, and we only consider the terminal condition (4.22).

For the infinite-horizon case, when/3 > 0, we have a similar result:

THEOtEra 4.4 Suppose that [3 > O. Assume that both V1 and V2 are
viscosity solutions of (1.2). If
(1) [2 n, or

(2) Vl(x,

then V V2 on f.
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Proof Since the proof is similar to that in the finite-horizon case, we
only give an outline of the proof of part (1). Let function A be defined
as

A(x) { exp{(R2/Ixl0, R) }’ I1 < R
Ixl >_ R

Assume that there exist Xo R" and i0 S such that V(xo, io)-
V2(xo, io) > 0. Let R be sufficiently large so that R > Ixol. Let a function
q f x ft x IK [n be

ix ylO(x, y, i) A(y)Vl (x, i) A(x)V2(y, i) -e (4.24)

Since A has a compact support and S is a finite set, there exist
(x, y,k) x n x S such that

(x, y, k) max (x, y, i) (4.25)

1. As in Lemma 4.1, we have

2- Ix- ye 0 as e o. (4.26)

2. Since {x}, {y) E supp(A), there exists a sequence e, 0 such that

x. x0, y. x0 (4.27)

3. Since

[A(x)V2(y, ko) + Ix y,l2 (4.28)V1 (x, ko) A(y,)

attains its maximum at x x, by the definition of viscosity
subsolution, we have

/3V(xe., ko) inf {jes,,kkoajV(xe.,j)
+ Hi (xe., A’(xe.)V2(xe.,ko)+(Xe.A(ye,) -ye.)/en)_<0

(4.29)
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Similarly,

V(y, k0) 1[A(y)Vl(x.’k)-
A(x.) .I. -Yl (4.30)

has a minimum at (ye.). Thus

(4.31)

Inequality (4.29) and Assumption (A8) imply that the sequence
{(xe,- ye,)/en} is bounded. Note that

A’(xe.)V2(xe.,ko) + (xe. ye.)/en )Hi xe., A(ye.)

y
A’(ye.)Vl(ye.,ko) + (xe. ye.)/en)- "’ A(x.)

< C{Lf + Cb2[R-I(xe.)BT(x.) %- L[B(xe.)[2

4- Cb2[R-(y,)Br(y,)[} [x. y.[2

(4.32)

Subtracting (4.31) from (4.29), and letting n oo, yields

(V(xo,ko) V(xo,ko)) < u ( Z AkayV(x’j)}
-inf{AkoayV2(Yo,J)}u (4.33)

4. Following the same lines as in proof of the Proposition (4.14),

inf { EAkayVl(xo’j)} --inf { EAkajV2(Yo’J))u2
j8 j8

(4.34)
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5. In view of the assumption Vl(xo, io)- V2(x0, i0) > 0, and (4.25), we
have

(xo, io) V (xo, io)) <_ o, (4.35)

which contradicts the hypothesis that/ > 0. Therefore we arrive at

V(x,i) < V2(x,i), Vxn, ViES (4.36)

The reverse inequality can be shown similarly.

5. CONCLUDING REMARKS

In this paper, we have shown the existence of a viscosity solution to a
set of linearly coupled Hamilton-Jacobi-Bellman (HJB) equations and
have also generalized the standard comparison theorem from a single
HJB equation to a set of coupled HJB equations. The uniqueness of
the viscosity solution for the coupled system is also established, and it
is shown to hold even if the value functions do not meet the growth
conditions invoked in most of the current literature on the topic.
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