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We find asymptotically sufficient statistics that could help simplify inference in nonparametric
regression problems with correlated errors. These statistics are derived from a wavelet
decomposition that is used to whiten the noise process and to effectively separate high-resolution
and low-resolution components. The lower-resolution components contain nearly all the available
information about the mean function, and the higher-resolution components can be used to
estimate the error covariances. The strength of the correlation among the errors is related to the
speed at which the variance of the higher-resolution components shrinks, and this is considered
an additional nuisance parameter in the model. We show that the NPR experiment with correlated
noise is asymptotically equivalent to an experiment that observes the mean function in the
presence of a continuous Gaussian process that is similar to a fractional Brownian motion.
These results provide a theoretical motivation for some commonly proposed wavelet estimation
techniques.
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1. Introduction

A nonparametric regression (NPR) problem consists of estimating an unknown mean
function that smoothly changes between observations at different design points. There are
n observations Yi of the form

Yi = μ
(
i

n

)
+ ξi for i = 1, . . . , n, (1.1)

where μ is the unknown smooth mean function on [0, 1] and the errors ξi are observations
from a zero-mean Gaussian process. For NPR problems that have a particular long memory
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structure to the covariance of the error terms, we will find a continuous Gaussian experiment
approximation to the problem of estimating the mean.

Brown and Low [1] showed that the NPR experiment is asymptotically equivalent
to the white-noise model where the mean function is observed in the presence of a
Brownian motion process. This result paralleled the work by Nussbaum [2] in showing that
asymptotic results in nonparametric function estimation problems can be simplified using
approximations by the continuous white-noise experiments that Pinsker [3] studied. The
original asymptotic equivalence results for NPR experiments were extended by Brown et
al. [4] and Carter [5, 6] along with refinements in the approximations from Rohde [7] and
Reiss [8].

All of these results assume that the errors ξi in (1.1) are all independent, and this
assumption is critical in establishing the appropriateness of a white-noise model that also
has independent increments. We want to consider the effect of correlation between the
observations on these approximations. Presumably, if the correlation is weak, then the effect
washes out asymptotically. However, wewish to consider cases where there is sufficient long-
range correlation to affect the form of the approximation. In particular, we will show that the
appropriate approximation is by a continuous Gaussian process experiment that is no longer
white noise but is closer to a fractional Brownian motion.

Our approach is motivated by the work by Johnstone and Silverman [9] and Johnstone
[10]. They investigated the wavelet decomposition of data of this type and used a fractional
Brownian motion approximation in the limit:

dY (t) = μ(t)dt + n−(β+1)/2dBK(t) t ∈ [0, 1]. (1.2)

They argued that the wavelet decomposition resulted in nearly independent coefficients
which simplified the inference significantly. We will assume that the BK(t) process is
decorrelated by a wavelet decomposition and then show that this continuous model is
asymptotically equivalent to the NPR experiment with the same covariance structure.

Theorem 1.1. The nonparametric regression experiment F observes Yi as in (1.1) for an unknown
mean function μ from a parameter set M(M,α) defined in Section 1.2 and a known covariance
structure as described in Section 1.3. This experiment is asymptotically equivalent to the experiment
E that observes

dY (t) = μ(t)dt + σn−(β+1)/2dBK(t), (1.3)

where BK(t) is a Brownian motion with covariance kernel K.

This will be proven in two steps. First, Lemma 2.1 proves that the first n wavelet
coefficients in a decomposition of dY(t) are asymptotically sufficient in E for estimating μ. For
the second step, Lemma 3.1 shows that a discrete wavelet transform of the observations from
F produces observations with nearly the same distribution as these asymptotically sufficient
statistics.

Furthermore, in both experiments the lower-frequency terms in the wavelet decompo-
sition are sufficient for estimating the means, allowing the higher-frequency terms to be used
to give information about the variance process. This leads to Theorem 1.2, which proposes an
experiment that allows some flexibility in the error structure.
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Theorem 1.2. The NPR experiment F̃ observes the Yi as in (1.1), where the covariance structure
depends on the parameters β and γ and is such that the variance of the wavelet coefficients is 2γ+β(j+1).

The experiment Ê observes the pair

(
γ̂

β̂

)
∼ N

((
γ

β

)
,
log 2
2

(
x�Λx

)−1
)
, (1.4)

(where x and Λ are defined in Section 4) and then observes the continuous Gaussian process
conditionally on γ̂ and β̂:

dY (t) = μ(t)dt + n−(1+β̃)2γ̃ dBK̂(t), (1.5)

where the covariance K̂ is such that Var(BK̂(ψjk)) = 2β̃(j+1). The estimators β̃ and γ̃ are the same as
(β̂, γ̂) but truncated so that −1 ≤ β̃ ≤ 0, and γ̃ ≥ −c.

For μ ∈ M(M,α), −1 < β ≤ 0, and γ > −c for some constant c, the experiments F̃ and Ê are
asymptotically equivalent.

This theorem can be seen as an extension of Carter [6] Theorem 1.1 from a case where
there is a single unknown variance for all the wavelet coefficients to a case where the variance
changes as a log-linear function of the resolution level (or frequency).

Wang [11] addressed the issue of asymptotically sufficient statistics in the fractional
Brownian motion process. In Section 3 of that article there is an argument that bounds the
difference between minimax errors in an NPR experiment with correlated errors and an
experiment that observes the mean in the presence of fractional Brownian motion error. This
result extends the sort of approximation by Donoho and Johnstone [12] to correlated errors
and is very much in the spirit of our Theorem 1.1 here. Our results differ from Wang [11] in
that we have made a stronger assumption on the covariance structure of the errors in order
to obtain the full asymptotic equivalence of the experiments as discussed in Section 1.1.

Lemma 2.1 is presented and proven in Section 2. Section 3 presents Lemma 3.1 and the
proof of Theorem 1.1. The proof for Theorem 1.2 is in Section 4 with some relevant bounds in
Sections 5 and 6.

1.1. Asymptotic Sufficiency

Instead of focusing on single estimation techniques, we will consider approximations
of the entire statistical experiment. For large sample sizes, there is often a simpler
statistical experiment that can approximate the problem at hand. One benefit of finding an
approximating experiment is that it may have convenient sufficient statistics even when they
are not available in the original experiment.

Our approximations will therefore be of experiments rather than particular distri-
butions. A statistical experiment P that observes data X consists of a set of probability
distributions {Pθ} indexed by the parameter set θ ∈ Θ. We wish to compare the information
about θ inP to another experimentQ that observes data Y from among the set of distributions
{Qθ} that are indexed by the same parameter θ. Implicitly, we are concerned with two
sequences of experimentsPn andQn where n roughly denotes the increasing sample size, but
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generally, we will leave off the subscript n. It will always be understood that the distributions
depend on the “sample size.”

The NPR experiment will be approximated using Le Cam’s notion of asymptotically
equivalent experiments [13, 14] and asymptotically sufficient statistics [15]. Asymptotically
equivalent experiments have corresponding inference procedures (such as estimators or
tests) in each experiment that perform nearly as well. Specifically, if there is an estimator
τ(X) in P with risk PθL(τ(X)), then, for bounded loss functions, there is an estimator σ(Y )
such that

sup
θ

PθL(τ(X)) − QθL(σ(Y )) −→ 0 (1.6)

as n → ∞. These asymptotic equivalence results are stronger than the equivalence of
minimax rates that is derived under a similar model by, for example, Wang [11]. Our results
imply a correspondence over a range of bounded loss functions. Thus, the equivalence holds
for a global L2 error as well as local error measurements or other distances.

Asymptotic sufficiency is a stronger notion, where if T(X) is a sufficient statistic for
inference about θ in P, then T(Y ) is asymptotically sufficient for Q when the total-variation
distance between Pθ and Qθ is negligible. These asymptotically sufficient statistics generate
experiments that are all asymptotically equivalent. In particular, P and Q are asymptotically
equivalent, and they are also asymptotically equivalent to the experiments generated by the
distributions of T(X) and T(Y ). As a result, an estimator in P should generally be of the form
τ(T(X)) and there is a corresponding estimator τ(T(Y )) that performs nearly as well in the
Q experiment. There is a basic transitive property to the asymptotic equivalence that implies
if P is asymptotically equivalent to Q, and Q is asymptotically equivalent to R, then P is
asymptotically equivalent to R.

Le Cam’s asymptotic equivalence is characterized using the total-variation distance
δ(Pθ,Qθ) between the distributions. We will abuse this notation a bit by writing δ(P,Q) =
supθδ(Pθ,Qθ). It will often be more convenient to use the Kullback–Leibler divergence
(D(P,Q) = P log[dP/dQ]) to bound the total variation distance:

δ(Pθ,Qθ) ≤ 2D(Pθ,Qθ)1/2 (1.7)

See [16]. The divergence is convenient for product experiments because D(
∏

Pi,
∏

iQi) =∑
iD(Pi,Qi).

1.2. Wavelet Basis

We will use orthonormal wavelet bases to characterize the function space and to simplify the
covariance structure of the errors.

Assuming we are considering periodic functions on the interval [0, 1], we can
construct periodic wavelet bases as by Daubechies [17, Chapter 9.3]. We start with a space
Vj which consists of functions of the form

fj(t) =
2j∑
k=1

ajkφjk(t), t ∈ [0, 1], (1.8)
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where φjk is an orthonormal set of periodic functions generated via

φjk(t) = 2j/2φ
(
2j t − k

)
. (1.9)

We will work with a φ function having finite support [0,N], and at the boundaries of the
interval the φjk(t) are given the proper periodic extensions. This space generates wavelet
functions ψjk that span the difference between the Vj and Vj−1 and can be written ψjk(t) =
2j/2ψ(2j t − k) with the proper periodic adjustment at the boundary (e.g., ψj,2j (ε) = 2j/2ψ(2jε)
for a small ε). This periodic adjustment has a small effect at the high resolution levels but
is a larger factor for small values of j. In particular, the scaling function at level 0 is φ0(t) =∑N

k=0 φ(k + t) = 1.
The mean functions μ(t)will be assumed to be constructed from this wavelet basis:

μ(t) = θ0φ0(t) +
∑
j≥0

2j∑
k=1

θjkψjk(t). (1.10)

We will restrict the mean functions to those that belong to a Hölder(α) class of functions.
Specifically, the class of periodic mean functions μ(t) isM(M,α):

sup
M(M,α)

sup
t,s

∣∣μ(t) − μ(s)∣∣
|t − s|α ≤M (1.11)

for some 1/2 < α < 1 and M > 0. This smoothness condition on the functions bounds the
rate of growth of the higher-frequency terms in the orthonormal expansion. Originally from
Meyer [18], in Daubechies [17, page 299 equation, equation (9.2.1)] gives the bound

max
k

∣∣θjk∣∣ ≤M22−j(α+1/2) (1.12)

for a constant M2 related to M. This bounds implies the useful bound on the squared error
in the tail of the basis expansion:

∑
j>j∗

2j
2j∑
k=1

θ2jk ≤M2
22

−εj∗(1 − 2−ε
)−1

, (1.13)

where ε = 2α − 1.

1.3. Error Structure

These results rely on a specific structure to the covariance matrix of the errors in the NPR
experiment. As by Johnstone [10], the fractional Brownian motion is the motivating example
for our continuous Gaussian model. However, this model does not necessarily provide the
independent coefficients that would simplify the inference. Instead, an error structure that
has roughly some of the properties of the fractional Brownian motion will be considered.
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Traditionally, the asymptotics of the NPR experiment have assumed independent
noise. This white-noise model is especially convenient because all of the eigenvalues of the
covariance operator are equal. Thus, any orthonormal basis generates a set of independent
standard normal coefficients. With a more general covariance function, the eigenvalues are
different and only particular decompositions lead to independent coefficients. Thus there is
much less flexibility in the choice of basis, and this basis determines some of the structure of
the covariance.

Following Johnstone [10], Johnstone and Silverman [9], Zhang and Waiter [19], Wang
[11], and Cavalier [20] among others, we will assume a covariance structure that is whitened
by a wavelet decomposition. When there is a long-range positive correlation between the
observations, the wavelet decomposition tends to decorrelate the error process because the
wavelet functions act like bandpass filters.

We will assume that there exists an orthonormal basis φ0 and ψjk for j ≥ 0 and k =
0, . . . , 2j − 1 such that the decomposition of the error process generates independent normal
coefficients. In other words, the error process is a zero-mean Gaussian process that is roughly

dBK(t) = ξ0φ0(t) +
∑
j≥0

∑
k

ξjkψjk(t) (1.14)

in the distributional sense where the ξkj are independent normals. The Var(ξjk) will be
assumed to depend on j and not k as a sort of stationarity condition. In particular, we will
assume that Var(ξ0) = σ2 and then Var(ξjk) = σ22β(j+1) for some β in the interval (−1, 0]. If
β = 0, then this is the white-noise process.

This is a convenient form for the error, but not completely unrealistic. Wavelet
decompositions nearly whiten the fractional Brownian motion process. Wornell [21] argued
that long-memory processes can be constructed via a wavelet basis with variances at
resolution level j shrinking like 2−γj for 0 < γ < 2. McCoy and Walden [22] showed
that the discrete wavelet transform nearly decorrelates the noise in fractionally differenced
white-noise processes. Alternatively, Wang [11] used a wavelet—vaguelette decomposition
[23] to find a decomposition of the fractional Brownian motion that results in independent
coefficients for a nearly orthonormal basis.

Section 7 demonstrates some properties of the specific Gaussian process generated
by using the Haar basis as the wavelet basis. These properties are consistent with the sort
of behavior that we want in the covariances of our observations. The correlation between
observations decreases like d−(β+1) for β < 0 where d measures the distance between the
locations of the coefficients.

A well-established method for estimating the parameter β in these long-range
dependent models is to fit a linear function to the log of an estimate of the variances of the
coefficients at each resolution level. This idea goes back to at least Abry and Veitch [24] and is
now a standard approach that has been improved upon in subsequent work; see Veitch and
Abry [25], Stoev et al. [26], among others. This motivates the asymptotic sufficient statistics
in Theorem 1.2 which are least squares estimates from the fitted line.

The assumptions in Theorem 1.1 on the covariance structure of the errors are strong
and could limit the applicability of the result. However, if we allow the variances at different
scales to have a range of linear relationship, we could then have a sufficiently rich class of
error models. Theorem 1.2 allows for this somewhat larger class of models, and it seems likely
that the changing magnitude of the variances over different resolutions level will have a
greater effect on the distribution of the observed errors than the underlying basis.
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2. Approximate Sufficiency in the Gaussian Sequence Experiment

The first step in the proof of Theorem 1.1 is to establish that a truncated wavelet
decomposition is asymptotically sufficient for the continuous Gaussian experiment.

Lemma 2.1. The experiment E is a Gaussian process experiment that observes

dY (t) = μ(t)dt + σn−(β+1)/2dBK(t), (2.1)

where BK is a zero-mean continuous Gaussian process with covariance K. There are asymptotically
sufficient statistics for estimating μ ∈ M(M,α):

y0, yjk ∼ N
(
θjk, σ

2n−β−12βj
)

(2.2)

for 0 ≤ j ≤ j∗ as long as

j∗ >
log2n
2α

. (2.3)

In the Gaussian sequence experiment E where only the mean μ(t) is to be estimated,
the likelihood is

dPμ

dP0
(y) = exp

⎡
⎣2y0θ0 − θ20

2σ2
+ σ−2n(1+β)

∑
j≥0
σ−22−β(j+1)

∑
k

(
θjkyjk − 1

2
θ2kj

)⎤
⎦, (2.4)

where Pμ is the distribution of Y (t) and P0 is the distribution of the version with mean 0
which would just be σn−(β+1)/2BK(t).

We want to approximate this experiment E by a similar experiment F where the mean
is projected onto the first j∗ resolution levels, that is; μ is replaced by μ:

μ(t) = θ0φ0(t) +
j∗∑
j=0

∑
k

θjkψjk(t). (2.5)

The likelihood becomes

dQμ

dQ0
(y) = exp

⎡
⎣2y0θ0 − θ20

2σ2
+ σ−2n(1+β)

j∗∑
j=0

2−βj
∑
k

(
θjkyjk − 1

2
θ2kj

)⎤
⎦. (2.6)

Therefore, this experiment F has sufficient statistics y0 and yjk for 0 ≤ j ≤ j∗. These
observations are approximately sufficient in the E experiment if the distance between the
distributions in the two experiments is small.
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By (5.3), the distance between these two sets of experiments is

δ(P,Q) ≤ σ−1n(β+1)/2

⎛
⎝∑

j>J

2−βj
∑
k

θ2jk

⎞
⎠

1/2

. (2.7)

For the parameter spaceM(M,α), (5.4) bounds the distance between the two experiments as

δ(P,Q) ≤ σ−1n(β+1)/2M2−εJ ≤Mσ−12(J−j
∗)(1+β)/2−εj∗ , (2.8)

which is negligible as n → ∞when the dimension of the sufficient statistics increases like

j∗ >
(

1 + β
β + 2α

)
log2n (2.9)

for −1 < β < 0. The worst case is when β = 0, and thus we have proved Lemma 2.1.

3. Approximating the NPR Experiment

Theorem 1.1 can now be proven by approximating the sufficient statistics from Lemma 2.1
using the observations from the NPR experiment F.

We suppose that we have n observations from the NPR experiment as in (1.1) where
the ξi are Gaussian random variables with a specified covariance function. Specifically, let W
be the n × n matrix that performs the discrete wavelet transform, and let W� be its inverse.
The vector of random wavelet coefficients from Lemma 2.1, y = (y0, y00, y01, . . . , yJ−1,2J−1−1)

�

where J = log2n, can be transformed via the discrete wavelet transform to create ỹJ = W�y.
The expected value of this transformed vector is

EỹJi = μ̃Ji =
∫
2J/2φ

(
2J t − i

)
μ(t)dt. (3.1)

For a μ(t) function that is nearly constant around i/n, μ̃Ji ≈ 2−J/2μ(i/n); so we can
approximate ỹJ by (1/

√
n)(Y1, Y2, . . . , YN)�.

In the original NPR experiment, the variances are Var(Yi) = Var(ξi) = Cσ2 for a
constant C that depends on β and the basis we will be using. The covariance matrix for these
Yi will be assumed to be Σ = WDW� where D is the diagonal matrix of Var(yjk) = σ2

n2
β(j+1).

The variance of the ỹJk should be the same as that of Yin−1/2, and in the model described,
Var(ỹJk) ∝ σ2

nn
β. Therefore, σ2

n should be set to σ2n−1−β.

Lemma 3.1. If the mean function μ(t) is in M(M,α), then the total variation distance between the
distribution Pμ of the vector (1/

√
n)(Y1, Y2, . . . , YN)� and the distribution P̃μ of the vector ỹJ is

sup
μ∈M(M,α)

δ
(
Pμ, P̃μ

)
≤

(
MNα+1

α + 1

)
n1/2−α+β/2. (3.2)
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This lemma essentially goes back to the original work ofMallat [27] and parallels some
of what was done by Brown and Low [1], Johnstone [10], Rohde [7], and Carter [5].

The NPR observations are such that the covariance matrix of ξi is also Σ, and therefore
the total variation distance between the distributions is bounded in (5.2) by

δ
(
P, P̃

)
≤ 1√

2π
Δ1/2 (3.3)

with

Δ =
(
μ

(
i

n

)
− μ̃Ji

)�
Σ−1

(
μ

(
i

n

)
− μ̃Ji

)
. (3.4)

A standard calculation bounds the difference between the means when φ(t) < M with
support on [0,N] and the μ(t) are Hölder (α) for α < 1:

∣∣∣∣μ
(
i

n

)
− μ̃Ji

∣∣∣∣ ≤ n−1/2−α M

α + 1
Nα+1. (3.5)

The covariance matrix is a positive definite matrix such that Σ−1 = MD−1M�. The first
column of the wavelet transform matrix is

√
n1where 1 is the vector of 1’s. Therefore,

Δ ≤
(
MNα+1

α + 1

)
n−1−2αnn1+β =

(
MNα+1

α + 1

)
n1−2α+β, (3.6)

which is negligible for large n and α > 1/2.

3.1. Proof of Theorem 1.1

The theorem follows from the fact that the observations y0, {yjk} for j = 0, . . . , J − 1 are
asymptotically sufficient for the continuous process in (1.2). Then a linear function of these
sufficient statistics ỹ = W�y is still approximately sufficient. Thus, the experiment that seeks
to draw inference about μ from the observations ỹJi is asymptotically equivalent to the
experiment that observes (1.2) by Lemma 2.1.

Furthermore, by Lemma 3.1, the original NPR experiment that has the same
covariance structure as ỹJi is asymptotically equivalent to that experiment and thus, by
transitivity, to the experiment that observes the process (1.2) aswell. This proves Theorem 1.1.

3.2. Remarks on the Covariance Structure

This result is restrictive in that it requires a specific known covariance structure. We are
working under the assumption that the covariance matrix has eigenfunctions that correspond
to a wavelet basis. This does not generally lead to a typical covariance structure. It does not
even necessarily lead to a stationary Gaussian process; see the Haar basis example below.
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The difficulty is that the requirement for having asymptotically equivalent experi-
ments is quite strict, and the total variation distance between the processes with even small
differences in the structure of the covariance is not negligible. For two multivariate Guassian
distributions with the same means but where one covariance matrix is Σ and the other is D,
a diagonal matrix with the same diagonal elements as Σ, the Kullback–Leibler divergence
between the distributions is log |Σ| − log |D|.

If the correlation between the highest level coefficients is Corr(ξj∗,k, ξj∗,k+1) = ρ, then the
contribution to the difference of the log determinants is on the order of ρ2j

∗
. The dimension

of the problem is growing while the correlations are generally not going to 0 significantly
quickly. For instance, in a typical wavelet basis decomposition of the true fractional Brownian
motion Corr(ξj∗,k, ξj∗,k+1) = cβ where cβ is a constant that depends on β but not j∗ or n.

Thus, the difference log |Σ| − log |D| will not go to 0 as the sample size increases.
Therefore, for the sort of long-range correlation structures that we are considering here,
the eigenfunctions of the kernel K need to be known or else the experiments will not be
asymptotically equivalent.

4. Estimating the Covariance of the Increments

The key limitation of Theorem 1.1 is that it supposes that the covariance structure of the errors
is known to the experimenter. To make the approximation more useful, it would help if the
covariance structure was more flexible. A strategy similar to that used by Carter [6] can be
used to estimate the variances of the coefficients.

By Carter [6], I showed that a model with a variance that changes slowly over
time can still be approximated by the Gaussian process as long as all of the observations
are independent. Our result here is that for correlated observations, if the variance is a
linear function of the frequency, then a similar technique can be used to establish a set of
asymptotically sufficient statistics.

Flexibility with regard to the covariance structure is added by allowing the magnitude
of the Var(yjk) to depend on the resolution level j. The variances will be described by two
parameters γ and β, which characterize the size of the error and the speed that it shrinks at
higher resolution levels. These nuisance parameters can be estimated using part of the data,
and then the inference can be carried out conditionally on the estimates.

Specifically, the experiment En observes independent components y0 ∼
N(θ0, n−(1+β)2γ) and

yjk ∼ N
(
θjk, n

−(1+β)2γ+(j+1)β
)

for 0 ≤ j ≤ J, (4.1)

where the n−(1+β) factor is included tomatch upwith the scaling functions at the Jth resolution
level. These observations form a new experiment with a parameter set that includes (μ, γ, β)
where μ(t) ∈ M(M,ε), −1 < β < 0, and γ is bounded below by a constant −c.

This experiment En with the parametric variances is no longer an approximately
sufficient statistic for the experiment that observes all of the θjk. That experiment has too
much information about the variance. If we observed the entire sequence at all resolution
levels j, then γ and β could be estimated exactly. We need to adopt another approximating
experiment as in Carter [6] Many of the bounds in this section follow arguments from that
paper.
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4.1. Proof of Theorem 1.2

The theorem can be proven by applying Lemma 3.1 and then a version of Lemma 2.1 that uses
only a small proportion of the low-frequency wavelet coefficients. The rest of the coefficients
can be used to fix the parameters in the covariance of the observations.

The first step is to decompose the nonparametric regression into a set of wavelet
coefficients. The n NPR observations Yi can be transformed by dividing by

√
n and then

performing the discrete wavelet transformation as in Lemma 3.1. The result is that a sequence
of n wavelet coefficients y0 and yjk for j = 0, . . . , J − 1 is equivalent to the original NPR
observations with a total-variation distance between the distributions of

δ
(
Pμ,γ,β, P̃μγβ

)
≤ C2−γn1−2α+β. (4.2)

The supremum of this bound over all γ > −c and β < 0 is

δ
(
P, P̃

)
≤ C2cn1−2α, (4.3)

which will be negative for α > 1/2.
The key strategy is to break the observations from this wavelet composition into pieces

starting at level j∗, where observations on j ≤ j∗ are assumed to be informative about the
means, and the higher resolution levels are used to estimate the covariance structure.

For each resolution level with j > j∗, we generate the approximately sufficient statistics
Vj =

∑
k y

2
jk
. Along with the yjk for j ≤ j∗, the collection of Vj is exactly sufficient if the means

are θjk = 0 for j > j∗, because if there is no information about the means in the higher-
frequency terms, then we have a piece of the experiment that is like a normal scale family.
This new experiment Ev is asymptotically equivalent to our En.

The error in approximating En by Ev, where the means of the higher-frequencies
coefficients are 0, is bounded by (5.3):

δ(Ev,En) ≤
⎛
⎝ J−1∑

j=j∗+1

n1+β2−(γ+(j+1)β)
∑
k

θ2jk

⎞
⎠

1/2

. (4.4)

For θjk inM(M,ε) space, (5.4) bounds the distance as bound

δ(Ev,En) ≤M2−γ/22(J−j
∗−1)(1+β)/2−β/2−εj∗ ≤M2c/2+1/22J/2−(1/2+ε)j

∗
, (4.5)

which is negligible when j∗ > J/(1 + 2ε).
This Ev experiment has sufficient statistics y0, yjk for j ≤ j∗, and

Vj ∼ Γ
(
2j , n−(1+β)2γ+β(j+1)−j

)
for j = j∗ + 1, . . . , J − 1. (4.6)

Furthermore, there are approximately sufficient statistics in this experiment (yjk, γ̂ , β̂) where
γ̂ and β̂ are the weighted least-squares estimates of γ and β from the data logVj . These are



12 Journal of Probability and Statistics

exactly sufficient statistics in the experiment E� that observes the y0 and yjk for the lower
resolution levels j ≤ j∗ as before, in addition to the observations 2Wj for j∗ < j < J where

Wj ∼ N
(
−(1 + β)J + γ + β(j + 1

)
, 2−j+1

(
log 2

))
. (4.7)

The distance between E� and Ev depends on the distance between the distribution
of the log of the Gamma variables and the normal approximation to this distribution. The
calculation in of [6, Section 10.1] gives a bound on the Kullback–Leibler divergence of
D(Qj , Q̆j) ≤ 2−j where Qj is the distribution of Vj , and Q̆j is the distribution of 2Wj . Therefore,
the total error between the two experiments is

δ(E�,Ev) ≤
⎛
⎝ J−1∑

j=j∗+1

2−j
⎞
⎠

1/2

≤ 2−j
∗/2. (4.8)

Therefore, the observations in E� are asymptotically sufficient for Ev and thus also En (as long
as j∗ → ∞ with n).

In the experiment E� , the sufficient statistics for estimating γ and β are the weighted
least-squares estimators γ̂ and β̂:

(
γ̂

β̂

)
=

(
x�Λx

)−1
x�Λ(W + J), (4.9)

whereΛ is the diagonal matrix with 2j for j = j∗+1, . . . , J−1 along its diagonal, x is the design
matrix with rows (1, j − J + 1), andW + J is the column of observationsWj − J . The vector of
estimators is normal with mean ( γ β )� and covariance (1/2)(log 2)(x�Λx)

−1
.

Therefore, we can compare this experiment E� to an experiment Ê that observes the
same ( γ̂ β̂ )�, but the y0 and yjk for j ≤ j∗ are replaced by Gaussian random variables
ŷjk with variances (conditional on (γ̂ , β̂)) that are Var(ŷjk) = 2γ̂+(j−J+1)β̂−J . The error in
this approximation depends on the distance between the two sets of independent normal
experiments with different variances. Letting Pjk be the distribution of yjk and P̂jk the
distribution of ŷjk, the bound (6.12) in Section 6 gives

D
(
Qjk, Q̂jk

)
≤

(
logn

)2
n − 2j∗

+O

( (
logn

)4
(
n − 2j∗+1

)2
)
,

D
(
Q0, Q̂0

)
≤

(
logn

)2
n − 2j∗

+O

( (
logn

)4
(
n − 2j∗+1

)2
)
.

(4.10)

There are 2j
∗+1 independent normals yjk for j ≤ j∗ so that the total divergence is

δ
(
E�, Ê

)2 ≤ 2
(
logn

)2
2J−j∗ − 1

+O

(
2j

∗(
logn

)4
(
n − 2j∗+1

)2
)
. (4.11)
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Therefore, the experiments E� and Ê are asymptotically equivalent for

j∗ = J − 2 log2 J − ηn (4.12)

for some ηn → ∞.
We can improve this approximation by replacing the estimators β̂ and γ̂ in Ê by using

β̃ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, β̂ ≤ −1,
β̂, −1 < β̂ < 0,

0, β̂ ≥ 0,

(4.13)

and γ̃ = γ̂ ∨ c to match up with the bounds on the parameter space. The new version of this
experiment therefore observes (γ̂ , β̂) and the normal coordinates yjk ∼ N(θjk, n1+β̃2γ̃2β̃(j+1))
for 0 ≤ j ≤ j∗. The error between E� and this new version of Ê is smaller because |γ − γ̃ + (β −
β̃)(j − J)| ≤ |γ − γ̂ + (β − β̂)(j − J)|, which makes the bound in (6.2) uniformly smaller.

Finally, we create a continuous Gaussian version of the Ê experiment. This
approximation Ẽ observes all the ỹkj for k ≥ 0 with means θjk and variances n−(1+β̃)2γ̃+β̃(j+1).
The Ê are actually sufficient statistics for an experiment that observes (γ̂ , β̂) and yjk for
0 ≤ j ≤ j∗ and for j > j∗:

yjk ∼ N
(
0, n−(1+β̃)2γ̃+β̃(j+1)

)
. (4.14)

The difference between the experiments Ê and Ẽ conditional on γ̃ and β̃ is as in Section 2 and
(5.4) less thanM2−γ̃2(J−j

∗)(1+β̃)/2−β̃/2−εj∗ . The expectation of this boundwhen averaged over the
possible values of (γ̃ , β̃) is a bound on the unconditional error. Furthermore, this expectation
is less than the minimum over possible values of (γ̃ , β̃) (this is the real advantage that comes
from going from (γ̂ , β̂) to (γ̃ , β̃)). Thus,

δ
(
Ê, Ẽ

)
≤ 2c−12(J−j

∗)/2−εj∗ . (4.15)

As before, this is asymptotically negligible when j∗ > J/(1 + 2ε).
All that is left to do is to choose the level j∗ at which to split the data so that the

requirements from (4.5) and (4.15) that j∗ > J/(1+2ε) and from (4.12) that j∗ = J −2log2J −ηn
are all fulfilled. We could choose ηn = εJ/(1 + 2ε) − log2J so that

j∗ =
J

1 + 2ε
+

εJ

1 + 2ε
− log2J, (4.16)

which is greater than J/(1 + 2ε) for ε > 0. This choice of j∗ plugged into the bound in (4.5)
gives us

δ(Ev,En) ≤N2(c+1)/2J1/2+ε2−εJ/2 −→ 0 (4.17)



14 Journal of Probability and Statistics

as J → ∞ for ε > 0. At the same time, the bound in (4.11) becomes

δ
(
E�, Ê

)2 ≤ 2
(
log 2

)2
J

2Jε/(1+2ε) − J−1 −→ 0. (4.18)

Thus, Theorem 1.2 is established.

5. Bounding the Total Variation Distance

We need a bound on the distance between two multivariate normal distributions with
different means in order to bound the error in many of our approximations.

For shifted Gaussian processes, the total-variation distance between the distributions
is

δ
(
Pμ1 ,Pμ2

)
= 1 − 2Φ

(
−Δ

1/2

2

)
, (5.1)

where Δ = (μ1 − μ2)
�Σ−1(μ1 − μ2). The expression in (5.1) for the total variation distance is

concave for positive Δ, so a simple expansion gives

δ
(
Pμ1 ,Pμ2

) ≤ 1√
2π

Δ1/2. (5.2)

For the Gaussian process with correlated components, we will assume that the
variance of each wavelet coefficient is of the form Var(ψjk) = σ2n−(1+β)2β(j+1) where the
variance is calibrated so that Var(Yi) = σ2 = n Var(BK(φJ,�)). A bound on the error in the
projection onto the span of ψjk for j > j∗ comes from (5.2) which depends on

Δ =
n1+β

σ2

∑
j>j∗

2−β(j+1)
∑
k

θ2jk (5.3)

≤ n1+β

σ2
2−(1+β)j

∗−β∑
j>j∗

2j
∑
j

θ2jk

≤M2
2σ

−22(J−j
∗)(1+β)−εj∗

(
2β − 2ε+β

)−1
,

(5.4)

where the upper bound in (5.4) follows from n = 2J , the definition ofM(M,α) and the bound
in (1.13), and −1 < β < 0. This error is negligible as J → ∞whenever

j∗ >
J

2α
. (5.5)
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6. Bounds from the Estimated Variances

In order to expand our asymptotically sufficient statistics out into a continuous Gaussian
experiment, we need a bound on the total-variation distance between En which, for 0 ≤ j ≤
j∗, observes a sequence of normals with variances n−(1+β)2γ+β(j+1) and Eg , which observes a
similar set of normals with variances n−(1+β)2γ̂+β̂(j+1).

For two normal distributions with the same means μ, and variances σ2
1 and σ2

2 ,
respectively, the Kullback–Leibler divergence is

D(N1,N2) =
1
2

[
σ2
1

σ2
2

− 1 − log

(
σ2
1

σ2
2

)]
. (6.1)

Thus, for Qkj (the distribution of the ykj) and Q̂kj (the distribution of the ŷkj), the divergence
between the conditional distributions given γ̂ and β̂ is

D
(
Qkj , Q̂kj | γ̂ , β̂

)
=

1
2
2γ−γ̂+(j+1−J)(β−β̂)

− 1
2
− 1
2

[
γ − γ̂ + (

j + 1 − J)(β − β̂)] log 2,
(6.2)

D
(
Q0, Q̂0 | γ̂ , β̂

)
=

1
2
2γ−γ̂ − 1

2
−

(
γ − γ̂) log 2

2
. (6.3)

This divergence between conditional distributions can be used to bound the joint divergence:

D
(
Qkj , Q̂kj

)
= ED

(
Qkj , Q̂kj | γ̂ , β̂

)
, (6.4)

where the expectation is taken over the estimators γ̂ and β̂.
To bound the expected value of the divergence in (6.2), we need the distribution of the

estimators:

(
γ̂

β̂

)
∼ N

((
γ

β

)
,
log 2
2

(
x�Λx

)−1
)
. (6.5)

This implies that

E exp
[
log 2

(
γ − γ̂ + (

j + 1 − J)(β − β̂))] = exp

[(
log 2

)2
2

Var
(
γ̂ +

(
j + 1 − J)β̂)

]
, (6.6)

and therefore

ED
(
Qkj , Q̂kj | γ̂ , β̂

)
= exp

[(
log 2

)2
2

Var
(
γ̂ +

(
j + 1 − J)β̂)

]
− 1
2
. (6.7)
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Via elementary linear algebra calculations we get that for

ζ =

⎛
⎝ J−1∑

i=j∗+1

2i
⎞
⎠

⎛
⎝ J−1∑

i=j∗+1

(J − i − 1)22i
⎞
⎠ +

⎛
⎝ J−1∑

i=j∗+1

(J − i − 1)2i
⎞
⎠

2

,

Var
(
γ̂
)
=

log 2
2

⎛
⎝ J−1∑

i=j∗+1

(J − i − 1)22i
⎞
⎠ζ−1,

Var
(
β̂
)
=

log 2
2

⎛
⎝ J−1∑

i=j∗+1

2i
⎞
⎠ζ−1,

Cov
(
γ̂ , β̂

)
=

log 2
2

⎛
⎝ J−1∑

i=j∗+1

(J − i − 1)2i
⎞
⎠ζ−1.

(6.8)

As a result,

Var
(
γ̂ +

(
j + 1 − J)β̂)

=
log 2
2

×
[∑

i

(J − i − 1)22i +
(
J − j − 1

)2∑
i

2i − 2
(
J − j − 1

)∑
i

(J − i − 1)2i
]
ζ−1.

(6.9)

To simplify this expression, let X be a random variable with probability mass function
proportional to 2i for i = j∗ + 1, . . . , J − 1. Thus, the ζ is equal to (

∑
2i)2[E(J −X − 1)2 −

[E(J −X − 1)]2] = (
∑

2i)2 Var(X). Similarly, the main factor in (6.9) is equal to

(∑
2i
)[

E(J −X − 1)2 +
(
J − j − 1

)2 − 2
(
J − j − 1

)
E(J −X − 1)

]
=

(∑
2i
)
E
(
X − j)2. (6.10)

A simple bound of 0 < X − j < J leads to E(X − j)2 < J2. Furthermore, the variance of
X is decreasing in j∗, and thus it is greater than 2/9 when j∗ < J − 2. Therefore,

Var
(
γ̂ +

(
j + 1 − J)β̂) ≤ 9 log 2

4
J2∑
2i

≤ J2

2J−1 − 2j∗
(6.11)

because 9 log 2/4 < 2.
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Thus,

D
(
Qjk, Q̂jk

)
=

1
2
exp

[(
log 2

)2
2

Var
(
γ̂ +

(
j + 1 − J)β̂)

]
− 1
2

≤ 1
2
exp

[(
log 2

)2
J2

2J − 2j∗+1

]
− 1
2

≤
(
log 2

)2
J2

2J − 2j∗+1
+

CJ4(
2J − 2j∗

)2

=

(
logn

)2
n − 2j∗+1

+O

( (
logn

)4
(
n − 2j∗+1

)2
)
.

(6.12)

Analogously, the expected divergence between Q0 and Q̂jk is bounded by

ED
(
Q0, Q̂0 | γ̂ , β̂

)
=

1
2
exp

[
−
(
log 2

)2
2

Var
(
γ̂
)] − 1

2

=
1
2
exp

[
−
(
log 2

)2
2

((
log 2

)
E(J −X − 1)2

2(
∑

2i)Var(X)

)]
− 1
2

≤
(
log 2

)2
J2

2J − 2j∗+1
+

CJ4(
2J − 2j∗

)2 .

(6.13)

If we add up these errors over the 2j
∗
observations in the experiment, we get that

the error in the approximation is less than C(logn)2/(n2−j
∗ − 1), which is negligible for j∗

sufficiently small.

7. Haar Basis Covariance

The Haar basis is a simple enough wavelet basis by which we can make some explicit
calculations of the properties of the error distribution. We will show that the resulting errors
ξi will have variances of approximately nβ as we expected, and the correlation between ξi and
ξj will decrease at about a rate of |i − j|−(1+β).

The scaling functions for the Haar basis are constant on 2j dyadic intervals at the
resolution level j. The assumption is that we have a single scaling function coefficient with
Var(y0) = 1, and then every wavelet coefficient yjk is independent and has variance 2β(j+1).
Then the covariances can be calculated from the synthesis formula for the Haar basis.

The formula for synthesizing the scaling function coefficients ỹJk from the wavelet
decomposition is

ỹJk = 2−J/2y0 +
J−1∑
j=0

ζj,J,k2(j−J)/2yjk∗ , (7.1)
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where k∗ is the index such that ψjk∗ has support that includes the support of φJk. The ζj,J,k
is either 1 or −1 depending on whether φJk sits in the positive or negative half of the ψjk∗
function.

Using the covariance structure described above, the variance of ỹJk is

Var
(
ỹJk

)
= 2−J +

J−1∑
j=0

2(j−J)+β(j+1)

= 2−J + 2β−J
[
2(1+β)J − 1
21+β − 1

]

= 2βJ
[

1
2 − 2−β

]
− 2−J

[
2−β − 1
2 − 2−β

]
(7.2)

for −1 < β < 0. For β = 0, the variance of each scaling function coefficient is 1 as in white
noise. For β = −1, direct calculation leads to a variance of 2−J(1 + J/2).

To find the covariance between two variables ỹJk1 and ỹJk2 , we need j∗ which is the
highest resolution level such that the support of ψj∗k∗ includes the support of both scaling
functions φJk1 and φJk2 . The covariance is thus

Cov
(
ỹJk1 , ỹJk2

)
= 2−J +

j∗−1∑
j=0

2(j−J)+β(j+1) − 2j
∗−J+β(j∗+1)

= 2−J − 2j
∗−J+β(j∗+1) + 2β−J

[
2(1+β)j

∗ − 1
21+β − 1

]

= 2j
∗−J+β(j∗+1)

[
2 − 21+β

21+β − 1

]
− 2−J

[
2−β − 1
2 − 2−β

]

= 2βJ
(
2−(1+β)(J−j

∗)
)[ 1 − 2β

1 − 2−β−1

]
− 2−J

[
2−β − 1
2 − 2−β

]
.

(7.3)

For large J the correlation is on the order of d−(1+β) where d = 2J−j
∗
is a proxy for the distance

between the observations. For β = 0, all of these covariances are 0. For β = −1, the correlation
is j∗/(J + 2).
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