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1. Introduction

Many manufacturing enterprisers use a production inventory system to manage fluctuations
in consumer demand for the product. Such a system consists of a manufacturing plant
and a finished goods warehouse to store those products which are manufactured but not
immediately sold. The advantages of having products in inventory are as follows: first, they
are immediately available to meet demand; second, by using the warehouse to store excess
production during low demand periods to be available for sale during high demand periods.
This usually permits the use of a smaller manufacturing plant than would otherwise be
necessary, and also reduces the difficulties of managing the system.

We are concerned with the optimization problem to minimize the expected discounted
cost control of production planning in a manufacturing systems with degenerate stochastic
demand:

J
(
p
)
= E

[∫∞

0
e−ρt

{
h(xt) + p2t

}
dt

]
(1.1)
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subject to the dynamics of the state equation which says that the inventory at time t is
increased by the production rate and decreased by the demand rate can be written according
to

dxt =
(
pt − yt

)
dt, x0 = x, x > 0, 0 ≤ pmin ≤ pmax, (1.2)

and the demand equation with the production rate is described by the Brownian motion

dyt = Ayt dt + σyt dwt, y0 = y, y > 0, (1.3)

in the class P of admissible controls of production processes pt with nonnegative constant

pt ≥ 0 (1.4)

defined on a complete probability space (Ω,F, P) endowed with the natural filtration Ft

generated by σ(ws, s ≤ t) carrying a one-dimensional standard Brownian motion wt, xt is
the inventory level for production rate at time t (state variable), yt is the demand rate at
time t, pt is the production rate at time t (control variable), ρ > 0 is the constant nonnegative
discount rate, A is the nonzero constant, σ is nonzero constant diffusion coefficient, x0 is the
initial value of inventory level, and y0 is the initial value of demand rate.

This optimization control problem of production planning in manufacturing systems
has been studied by many authors like Fleming et al. [1], Sethi and Zhang [2], Sprzeuzkouski
[3], Hwang et al. [4], Hartl and Sethi [5], and Feichtinger and Hartl [6]. The Bellman
equation associated with production inventory control problem is quite different from
them and it is treated by Bensoussan et al. [7] for the one-dimensional manufacturing
systems with the unbounded control region. Generally speaking, the similar type of linear
control problems has been investigated for the stochastic deferential systems with invariant
measures like Bensoussan [8], and Borkar [9]. The works of Bensoussan and Frehse [10]
Da Prato and Ichikawa [11] on the Bellman equation of ergodic control without convex and
polynomial growth hypothesis and the linear quadratic case are done for the linear ergodic
control problem. This type of optimization problem has been studied also by Morimoto and
Kawaguchi [12] for renewable resources as well as Baten and Sobhan Miah [13] for one-
sector neoclassical growth model with the CES function. The optimality can be shown by an
extension of the results given in Fujita and Morimoto [14], and for another setting of optimal
control in manufacturing systems they are available in Morimoto and Okada [15] and Sethi
et al. [16]. These papers treat the cases with bounded control regions. On the contrary, our
control region is unbounded as in (1.4).

The purpose of the paper is to give an optimal production cost control by an
existence unique solution associated with the two-dimensional HJB equation. We apply
the technique of dynamic programming principle [17] for the Riccati-based solution of the
reduced (one-dimensional) HJB equation corresponding to production inventory control
problem. This paper is organized as follows. In Section 2 by the principle of optimality
Bellman [17], we have obtained theHJB equation and then the two-dimensional HJB equation
has been reduced to one-dimensional second-order differential equation. We have derived
the dynamics of inventory-demand ratio that evolves according to stochastic neoclassical
differential equation through Itô’s lemma. We have finally found the Riccati-based solution
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of production inventory control problem that is satisfied by the value function of this
optimization problem. In Section 3 we have established the properties of the value function
and have shown the existence of an unique solution associated with the reduced (one-
dimensional) Hamilton-Jacobi-Bellman (HJB) equation. Finally in Section 4 we present an
application to production control of optimization problem (1.1) subject to (1.2) and (1.3).

2. Riccati-Based Solution of Hamilton-Jacobi Bellman Equation

2.1. The Hamilton-Jacobi-Bellman Equation

Suppose u(x, y, t) : Rn × Rn × R → R is a function whose value is the minimum value of the
objective function of the production inventory control problem for the manufacturing system
given that we start it at time t in state x, and y. That is,

u
(
x, y, t

)
= inf

p
J
(
p
)
, (2.1)

where the value function u is finite valued and twice continuously differentiable on (0,∞).
We initially assume that u(x, y, t) exists for all x, y, and t in the relevant ranges.

Since (1.2) and (1.3) is a scalar equation, the subscript t here means only time t. Thus,
x and y will not cause any confusion and, at the same time, will eliminate the need of writing
many parentheses. Thus, dwt is a scalar.

To solve the problem defined by (1.1), (1.2), and (1.3), let u(x, y, t), known as the value
function, be the expected value of the objective function (1.1) from t to infinity, when an
optimal policy is followed from t to infinity, given xt = x, yt = y. Then by the principle of
optimality [17],

u
(
x, y, t

)
= min

p

[{
h(xt) + p2t

}
dt + u

(
x + dxt, y + dyt, t + dt

)]
. (2.2)

We assume that u(x, y, t) is a continuously differentiable of its arguments. By Taylor’s
expansion, we have

u
(
x + dxt, y + dyt, t + dt

)
= −ρu(x, y, t)dt + uy dyt + ux dxt + 1

2
uyy(dyt)

2

+ higher order terms.
(2.3)

From (1.2), we can formally write

(dxt)
2 = (p)2(dt)2 + (y)2(dt)2 − 2py(dt)2, (2.4)

(dyt)
2 = (Ay)2(dt)2 + (σy)2(dwt)

2 + 2
(
Ay

)(
σy

)
dwt dt, (2.5)

dxt dt = p(dt)
2 − y(dt)2, (2.6)

dyt dt =
(
Ay

)
(dt)2 +

(
σy

)
dwt dt. (2.7)
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The exact meaning of these expressions comes from the theory of stochastic calculus; Arnold
[18, chapter 5] and Karatzas and Shreve [19]. For our purposes, it is sufficient to know the
multiplication rules of the stochastic calculus:

(dwt)
2 = dt, dwt dt = 0, dt2 = 0. (2.8)

Substitute (2.3) into (2.2) and use (2.4), (2.5) (2.6), (2.7), and (2.8) to obtain

u = min
[
−ρu(x, y, t)dt + 1

2
σ2y2uyy dt +Ayuy dt − yux dt +

{
p2 + pux

}
dt + h(x)dt + ◦(dt)

]
.

(2.9)

Note that we have suppressed the arguments of the functions involved in (2.3).
Canceling the term u on both sides of (2.9), dividing the remainder by dt, and letting

t → 0, we obtain the dynamic programming partial differential equation or Hamilton-Jacobi-
Bellman equation

−ρu(x, y) + 1
2
σ2y2uyy +Ayuy − yux + F∗(ux) + h(x) = 0, u

(
0, y

)
= 0, x, y > 0, (2.10)

where F∗(x) is the Legendre transform of F(x), that is, F∗(x) = minp>0{p2 + px} = −x2/4 and
ux, uy, uxx, uyy are partial derivatives of u(x, y, t) with respect to x and y.

2.2. A Reduction to 1-Dimensional Case

In this subsection, the general (two-dimensional) HJB equation has been reduced to a one-
dimensional second-order differential equation. From the two-dimensional state space form
(one state x for inventory level and the other state y for demand rate), it has been reduced to
one-dimensional form for (z = x/y) the ratio of inventory to demand.

There exists a v ∈ C(0,∞) such that u(x, y) = y2v(x/y), y > 0. Since ux =
yv′(x/y), uy = 2yv(x/y)−xv′(x/y), uyy = 2v(x/y)−2(x/y)v′(x/y)+(x/y)2v

′′
(x/y). Setting

z = x/y and substituting these in (2.10), we have

− ρv(z) + 1
2
σ2

[
2v(z) − 2v′(z)z + z2v

′′
(z)

]
+ 2Av(z) −Azv′(z) − v′(z)

+min
p≥0

(
p2 + pyv′(z)

)
+ h(z) = 0.

(2.11)

Since

min
p≥0

(
p2 + pyv′(z)

)
= y2 min

p≥0

((
p

y

)2

+
(
p

y

)
v′(z)

)

= y2 min
q≥0

(
q2 + qv′(z)

)
,

min
q≥0

(
q2 + qv′(z) − v′(z)

)
= min

k+1≥0

(
(k + 1)2 + kv′(z)

)
.

(2.12)
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Then the HJB equation (2.11) becomes

−ρ̃v(z) + 1
2
σ2z2v

′′
(z) + Ãzv′(z) +min

k≥−1

(
(k + 1)2 + kv′(z)

)
+ h(z) = 0, v(0) = 0, z > 0,

(2.13)

where ρ̃ = −ρ + σ2 + 2A, Ã = −(A + σ2), and F∗(z) is the Legendre transform of F(z), that is,
F∗(z) = min(k+1)≥0{(k + 1)2 + kz} = −z2/4 − z.

The main feature of the HJB equation (2.13) is the vanishing of the coefficient of uxx
for x = 0 in partial differential equation terminology, then the equation is degenerate elliptic.
Generally speaking, the difficulty stems from the degeneracy in the second-order term of the
HJB equation (2.13).

2.3. Value Function

Let us consider the minimum value of the payoff function is a function of this initial point.
The value function can be defined as a function whose value is the minimum value of the
objective function of the production inventory control problem (1.1) for the manufacturing
system, that is,

V (z) = infE
[∫∞

0
e−ρ̃t

{
h(zt) + (kt + 1)2

}
dt

]

= inf J̃(kt); (k + 1) ≥ 0.

(2.14)

The value function V (z) is a solution to the reduced (one-dimensional) HJB equation (2.13)
and the solution of this HJB equation is used to test controller for optimality or perhaps to
construct a feedback controller. Again the HJB equation (2.13) arises in the production control
problem (1.1), (1.2), (1.3) with constraint

0 ≤ pt ≤ kt, ∀t ≥ 0. (2.15)

2.4. Stochastic Neoclassical Differential Equation for
Dynamics of Inventory-Demand Ratio

As in the certainty optimal production control model, the dynamics of the state equation of
inventory level (1.2) can be reduced to a one-dimensional process by working in intensive
(per capita) variables. Define

zt ≡ xt
yt
, inventory-demand ratio,

kt ≡
pt
yt
, per capita production.

(2.16)
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To determine the stochastic differential for the inventory-demand ratio, z ≡ x/y, we apply
Itô’s lemma as follows:

z =
x

y
≡ G(

y, t
)
,

∂G

∂y
= − x

y2
= −z

y
,

∂2G

∂y2
= 2

x

y3
= 2

z

y2
,

∂G

∂t
=
ẋ

y
=

(
p − y)

y
=
p

y
− 1 = kt − 1.

(2.17)

From Itô’s lemma,

dz =
∂G

∂y
dy +

∂G

∂t
dt +

1
2
∂2G

∂y2
(dy)2. (2.18)

From (1.3), we have that (dy)2 = σ2y2dt. Substituting the above expressions into (2.18),
we have that the dynamics of zt to be the inventory-demand ratio at time t which evolves
according to the stochastic neoclassical differential equation for demand

dzt =
(
−zt
yt

)
(
Ayt dt + σyt dwt

)
+ (kt − 1)dt +

1
2
2
zt

y2
t

σ2y2
t dt

=
[
−Azt + (kt − 1) + σ2zt

]
dt − σzt dwt

=
[(

−A + σ2
)
zt + (kt − 1)

]
dt − σzt dwt

≤
[
Ãzt + kt

]
dt − σzt dwt, z0 = z, z > 0.

(2.19)

2.5. Riccati-Based Solution

This subsection deals with the Riccati-based solution of the reduced one-dimensional HJB
equation (2.13) corresponding to the production inventory control problem (2.14) subject to
(2.19) using the dynamic programming principle [17].

To find the Riccati-based solution of HJB equation (2.13), we refer to Da Prato [20]
and Da Prato and Ichikawa [11] for the degenerate linear control problems related to Riccati
equation in case of convex function like h(z) = z2.

By taking the derivative of (2.13) with respect to k and setting it to zero, we can
minimize the expression inside the bracket of (2.13) (i.e., F∗(v′(z)) = mink≥−1((k+1)

2+kv′(z)))
with respect to k. This procedure yields

k∗ = −v
′(z)
2

− 1. (2.20)
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Substituting (2.20) into (2.13) yields the equation

−ρ̃v(z) + 1
2
σ2z2v

′′
(z) + Ãzv′(z) − (v′(z))2

4
− v′(z) + z2 = 0 (2.21)

known as the HJB equation. This is a partial differential equation which has a solution form

v(z) = a(t)z2(t). (2.22)

Then

v′(z) = 2a(t)z(t), v
′′
(z) = 2a(t). (2.23)

Substituting (2.22) and (2.23) into (2.21) yields

(
1 − ρ̃a + σ2a − a2 + 2aÃ

)
z2 − 2az = 0. (2.24)

Since (2.24)must hold for any value of z, we must have

a2 − a
(
2Ã + σ2 + ρ̃

)
− 1 = 0, (2.25)

called a Riccati equation from which we obtain

a =
−
(
2Ã + σ2 + ρ̃

)
±
√
(2Ã + σ2 + ρ̃)

2
+ 4

2
= K1

(
say

)
. (2.26)

So, (2.22) is a solution form of (2.21).

3. Bellman Equations for Discounted Cost Control

3.1. Existence and Uniqueness

To solve the Bellman equation (2.13) let us consider this HJB equation associated with the
discounted production control problem in the following form:

−ρ̃v(z) + 1
2
σ2z2v

′′
(z) + Ãzv′(z) + F

(
v′(z)

)
+ h(z) = 0, 0 < ρ̃ < 1, (3.1)

where

F(z) =

⎧
⎪⎨

⎪⎩

−z
2

4
− z if z ≤ 0,

−z if z ≥ 0.
(3.2)
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We make the following assumptions:

h : continuous function on R,

h : non-negative, convex on R,
(3.3)

h satisfies the polynomial growth condition such that

0 ≤ h(z) ≤ K(
1 + |z|n), z ∈ R, (3.4)

for some K > 0, n ≥ 2.
In order to ensure the integrability of J(p), we assume that

−ρ̃ + 2nÃ + n(2n − 1)σ2 < 0. (3.5)

This condition (3.5) is needed for the integrability of zt or J(p). Under (3.5), we have Lemmas
3.1, 3.2, and Theorem 3.5, which ensures the finiteness of J(p) and hence the finiteness of an
existence unique solution of HJB equation of v.

First we have established the properties of the value function of the optimal control
problem.

Lemma 3.1. Under (3.5) and for each n ∈ N+, there exists K > 0 such that

E
[
e−ρ̃t|zt|2n

]
≤ K(1 + t). (3.6)

Proof. We have given its proof here to need the same kind of calculations in the future. By
Itô’s formula we have

e−ρ̃t|zt|2n = |z|2n +
∫ t

0

(−ρ̃)e−ρ̃s|zs|2nds + 2n
∫ t

0
e−ρ̃s|zs|2n−1sgn(zs)dzs

+
1
2
2n(2n − 1)σ2

∫ t

0
e−ρ̃szs2|zs|2n−2ds

= |z|2n +
∫ t

0
e−ρ̃s

{
−ρ̃|zs|2n + 2nÃzs|zs|2n−1sgn(zs) + 2nks|zs|2n−1sgn(zs)

+n(2n − 1)σ2zs
2|zs|2n−2

}
ds

− 2nσ
∫ t

0
e−ρ̃szs|zs|2n−1sgn(zs)dws

= |z|2n +
∫ t

0
e−ρ̃s

{
−ρ̃ + 2nÃ + n(2n − 1)σ2

}
|zs|2nds

+ 2n
∫ t

0
e−ρ̃sks|zs|2n−1sgn(zs)ds − 2nσ

∫ t

0
e−ρ̃szs|zs|2n−1sgn(zs)dws.

(3.7)
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Now by (2.15), (3.5) and taking expectation on the both sides, we obtain

E
[
e−ρ̃t|zt|2n

]
≤ |z|2n + 2nE

[∫ t

0
e−ρ̃s|zs|2nds

]

= |z|2n + E
[∫ t

0
e−ρ̃sZ(zs)ds

]

,

(3.8)

where Z(z) = 2n|z|2n. Obviously, Z(z) is bounded above. Thus we can deduce (3.6).

Lemma 3.2. Under (3.5) and for each n ∈ N+, there exists K > 0 such that

ρ̃E

[∫∞

0
e−ρ̃t|zt|2n dt

]
≤ K

(
1 + |z|2n+2

)
. (3.9)

Proof. By an application of Itô’s formula to e−ρ̃t|zt|2n+2,we have

e−ρ̃t|zt|2n+2 = |z|2n+2 +
∫ t

0

(−ρ̃)e−ρ̃szs2n+2 ds + (2n + 2)
∫ t

0
e−ρ̃s|zs|2n+1 dzs

+
1
2
(2n + 2)(2n + 1)σ2

∫ t

0
e−ρ̃szs2zs2n ds

= |z|2n+2 +
∫ t

0

(−ρ̃)e−ρ̃szs2n+2 ds + (2n + 2)
∫ t

0
e−ρ̃s|zs|2n+1

(
Ãzs + ks

)
ds

− 2(n + 1)σ
∫ t

0
e−ρ̃szs|zs|2n+1 dws +

1
2
(2n + 2)(2n + 1)σ2

∫ t

0
e−ρ̃szs2zs2n ds

= |z|2n+2 +
∫ t

0
e−ρ̃s

{
−ρ̃ + 2(n + 1)Ã + (n + 1)(2n + 1)σ2

}
zs

2n+2 ds

+ 2(n + 1)
∫ t

0
e−ρ̃sks|zs|2n+1 ds − 2(n + 1)σ

∫ t

0
e−ρ̃szs|zs|2n+1 dws.

(3.10)

Now by (2.15), (3.5) and taking expectation on the both sides we obtain

E
[
e−ρ̃t|zt|2n+2

]
≤ |z|2n+2 + 2(n + 1)E

[∫ t

0
e−ρ̃s|zs|2n+1ds

]

. (3.11)

Hence

E

[∫∞

0
e−ρ̃sG(zs)ds

]
≤ |z|2n+2, (3.12)

where G(z) = 2(n + 1)|z|2n+1.
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We choose ζ < 0 such that |z|2n ≤ G(z) for all z ≥ ζ. Then

E

[∫∞

0
e−ρ̃t|zt|2ndt

]
=

∫∞

0
e−ρ̃tE

[
|zt|2n1(|zt|<ζ) + |zt|2n1(|zt|≥ζ) dt

]

≤
∫∞

0
e−ρ̃t

[{
ζ2n + E[G(zt)]

}
dt

]

≤ ζ2n

ρ̃
+ |z|2n+2.

(3.13)

Thus we get (3.9) with K > 0 independent of sufficiently small ρ̃.

Proposition 3.3. We assume (3.3), (3.4). Then the value function v(z) is convex.

Proof. For any ε > 0, there exist k, k̂ ∈ Pk such that

E

[∫∞

0
e−ρ̃t

{
h(zt) + (kt + 1)2

}
dt

]
< v(z) + ε,

E

[∫∞

0
e−ρ̃t

{
h(ẑt) + (k̂t + 1)

2
}
dt

]
< v(ẑ) + ε,

(3.14)

where

dzt =
[
Ãzt + kt

]
dt − σzt dwt, z0 = z ∈ R,

dẑt =
[
Ãẑt + k̂t

]
dt − σẑt dwt, ẑ0 = ẑ ∈ R.

(3.15)

We set

k̃t = ξkt + (1 − ξ)k̂t,
z̃t = ξzt + (1 − ξ)ẑt,
z̃0 = ξz + (1 − ξ),

ẑ ≡ z̃,

(3.16)

for 0 < ξ < 1. Clearly,

dz̃t =
[
Ãz̃t + k̃t

]
dt − σz̃t dwt. (3.17)
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Hence, by convexity

v(z̃) ≤ E
[∫∞

0
e−ρ̃t

{
h(z̃t) + (k̃t + 1)

2
}
dt

]

≤ ξE
[∫∞

0
e−ρ̃t

{
h(zt) + (kt + 1)2

}
dt

]
+ (1 − ξ)E

[∫∞

0
e−ρ̃t

{
h(ẑt) + (k̂t + 1)

2
}
dt

]

≤ ξ(v(z) + ε) + (1 − ξ)(v(ẑ) + ε).

(3.18)

Letting ε → 0, we get

v(z̃) = v(ξz + (1 − ξ)ẑ) ≤ ξv(z) + (1 − ξ)v(ẑ), (3.19)

which completes the convexity of the value function v(z).

Theorem 3.4. Assume (3.4) and (3.5). Choose gr(z) = δ + |z|r for any 2 ≤ r ≤ 2n, then there exist
δ ≥ 1 and ζ > 0 depending onM such that

−ρ̃gr(z) + 1
2
σ2z2g

′′
r(z) + Ãzg

′
r(z) +max

|q|≤M

(
q2 + qg ′

r(z)
)
+ ζgr(z) ≤ 0. (3.20)

Further

E

[∫ τ

0
e−ρ̃sζgr(zs)ds + e−ρ̃τgr(zτ)

]
≤ gr(z) for 2 ≤ r ≤ 2n, (3.21)

where τ is any stopping time and zt is the response to (pt) ∈ PM.
Then one has

0 ≤ V (z) ≤ K(
1 + |z|r), (3.22)

where K = Kδ/ζ, for some positive constant K.
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Proof. By (3.5), we choose ζ ∈ (0, ρ̃) such that

−ρ̃ + rÃ +
1
2
r(r − 1)σ2 + ζ < 0, (3.23)

and then δ ≥ 1 such that

(
−ρ̃ + rÃ +

1
2
r(r − 1)σ2 + ζ

)
|z|r +Mr|z|r−1 +

(
M2 + ζδ − ρ̃δ

)
≤ 0. (3.24)

Then (3.20) is immediate.
Applying Itô’s formula to e−ρ̃τgr(zτ),we have

e−ρ̃τgr(zτ) = gr(z) +
∫ τ

0

(−ρ̃)e−ρ̃sgr(zs)ds +
∫ τ

0
e−ρ̃sg ′

r(zs)dzs

+
1
2
σ2

∫ τ

0
e−ρ̃szs2g

′′
r(zs)ds

= gr(z) +
∫ τ

0
e−ρ̃s

{
−ρ̃gr(zs) + Ãzsg ′

r(zs) + qg
′
r(zs) +

1
2
σ2z2sg

′′
r(zs)

}
ds

− σ
∫ τ

0
e−ρ̃szsg ′

r(zs)dws

= gr(z) +
∫ τ

0
e−ρ̃s

{
−ρ̃gr(zs) + Ãzsg ′

r(zs) +
1
2
σ2z2sg

′′
r(zs)

+max
|q|≤M

(
q2 + qg ′

r(zs)
)
+ ζgr(zs)

}
ds

−max
|q|≤M

∫ τ

o

q2e−ρ̃sds −
∫ τ

0
e−ρ̃sζgr(zs)ds − σ

∫ τ

0
e−ρ̃szsg ′

r(zs)dws.

(3.25)

Now by (3.20) and taking expectation on the both sides, we obtain

E

[∫ τ

0
e−ρ̃sζgr(zs)ds + e−ρ̃τgr(zτ)

]
≤ gr(z) − M2

ρ̃
, (3.26)

from which we deduced (3.21).
The convexity of the value function V follows from the same line as (Proposition 3.3).

Let (z0t ) be the unique solution of

dz0t = Ãz
0
t dt − σz0t dwt, z00 = z. (3.27)
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Then by (3.4) and (3.21),

V (z) ≤ E
[∫∞

0
e−ρ̃th

(
z0t

)
dt

]

≤ KE
[∫∞

0
e−ρ̃tgr

(
z0t

)
dt

]

≤ Kgr(z)
ζ

=
K

(
δ + |z|r)

ζ

=
Kδ

ζ

(
1 +

|z|r
δ

)

≤ K(
1 + |z|r); 2 ≤ r ≤ 2n,

(3.28)

which implies (3.22) and satisfies (3.4). Hence this completes the proof.

Theorem 3.5. Assume (3.3), (3.4), (3.5). Then there exists a unique solution v ∈ C2(R) of (3.1)
such that

ρ̃v(z) ≤ K
(
1 + |z|n+3

)
, z ∈ R, (3.29)

for some constant K > 0.Moreover, v admits a representation

v(z) = infE
[∫∞

0
e−ρ̃t

{
h(zt) + (kt + 1)2

}
dt

]
; (kt + 1) ≥ 0. (3.30)

Proof. Since F∗(z) = min{(k + 1)2 + kz} is Lipschitz continuous, this follows from Bensoussan
[21] in case of Assumption (3.4) except convexity. For the general case, we take a
nondecreasing sequence hn ∈ C(R) convergent to h with 0 ≤ hn ≤ h. It is well known
(Bensoussan [21]) that, for every n ∈ N+, (3.1) has a unique solution vn for hn of the form

vn(z) = infE
[∫∞

0
e−ρ̃t

{
hn(zt) + (kt + 1)2

}
dt

]
; kt + 1 ≥ 0 (3.31)

in the class C2(R) of continuous functions vanishing at infinitely, where zt is a solution of
(2.19).
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To prove (3.29), we recall (3.30). Hence by (3.4) and Lemma 3.2 we have

0 ≤ ρ̃vn(z) ≤ ρ̃E
[∫∞

0
e−ρ̃t

{
hn(zt) + (kt + 1)2 |

}
dt

]

≤ ρ̃E
[∫∞

0
e−ρ̃t

{
h(zt) + (kt + 1)2 |

}
dt

]

≤ K
(
1 + ρ̃E

[∫∞

0
e−ρ̃t

{(
1 + |zt|n

)
+ (kt + 1)2

}
dt

])

≤ K
(
1 + |z|n+3

)
.

(3.32)

This implies that v satisfies (3.29).
To estimate v′

n on [−s, s] for s ∈ R+,we remember the Taylor expansions of v ∈ C2(R):

εv′(b) = v(b + ε) − v(b) − ε2

2
v

′′
(b + ϑ1ε),

v′(z) = v′(b) + v
′′
(b + ϑ2(z − b))(z − b), x ∈ Vε, 0 < ϑ1, ϑ2 < 1,

(3.33)

where Vε = Vε(b) is any ε-neighborhood of b ∈ [−s, s]. Then wa can obtain the Landau-
Kolmogorov inequality:

sup
Vε

∣∣v′(z)
∣∣ ≤ 2

ε
sup
Vε

|v(z)| + 3ε
2
sup
Vε

∣∣∣v
′′
(z)

∣∣∣. (3.34)

Choosing 0 < ε < 1 ∧ (1/3(k + 2Ã/σ2)), and by (3.1), (3.2), and (3.34)we have

sup
Vε

∣∣v′
n(z)

∣∣ ≤ 2
ε
sup
Vε

|vn(z)| + 3ε
2
sup
Vε

∣∣∣v
′′
n(z)

∣∣∣

≤ 2
ε
sup
Vε

|vn(z)| + 3ε
2
sup
Vε

[
2ρ̃
σ2

∣∣∣∣
vn(z)
z2

∣∣∣∣ +
2Ã
σ2

∣∣∣∣
v′
n(z)
z

∣∣∣∣ +
2
σ2

∣∣∣∣
F(v′

n(z))
z2

∣∣∣∣ +
2Ã
σ2

∣∣∣∣
hn(z)
z

∣∣∣∣

]

≤
(
2
ε
+
3ερ̃
σ2

)
sup
Vε

|vn(z)| + 3ε

(

k +
2Ã
σ2

)

sup
Vε

∣∣v′
n(z)

∣∣ +
3εÃ
σ2

sup
Vε

|hn(z)|,

(3.35)

from which

sup
Vε

∣∣v′
n(z)

∣∣ ≤ 1

1 − 3ε
(
k + 2Ã/σ2

)
(
2
ε
+
3ερ̃
σ2

)
sup
Vε

|vn(z)|

+ 3ε

(

k +
2Ã
σ2

)

sup
Vε

∣∣v′
n(z)

∣∣ +
3εÃ
σ2

sup
Vε

|hn(z)|.
(3.36)
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Now by (3.34) and (3.4), we have

sup
Vε

∣
∣v′

n(z)
∣
∣ ≤ K

1 − 3ε
(
k + 2Ã/σ2

)
(
2
ε
+
3ερ̃
σ2

)(
1 + (s + 1)n+3

)
. (3.37)

Thus, taking the finite covering Vε(bi), i = 1, 2, . . . , j, of [−s, s],we deduce

sup
−s≤z≤s

∣
∣v′

n(z)
∣
∣ ≤

j∑

i=1

sup
Vε(bi)

∣
∣v′

n(z)
∣
∣

≤ jK

1 − 3ε
(
k + 2Ã/σ2

)
(
2
ε
+
3ερ̃
σ2

)(
1 + (s + 1)n+3

)
,

(3.38)

and hence

sup
n

sup
−s≤z≤s

(∣∣v′
n(z)

∣∣ +
∣∣∣v

′′
n(z)

∣∣∣
)
<∞ for every s ∈ R+. (3.39)

By the Ascoli-Arzelà theorem, we have

vn −→ v, v′
n −→ v′ uniformly on [−s, s], (3.40)

taking a subsequence if necessary. Passing to the limit, we can obtain (3.1) and (3.30).
Following the inequality (3.29), we have

E
[
e−ρ̃tv(zt)

]
−→ 0 as t −→ ∞. (3.41)

Hence by Itô’s formula to e−ρ̃tv(zt), for convex function [19, page 219], we have

e−ρ̃tv(zt) = v(z) +
∫∞

0
e−ρ̃t

{
−ρ̃v(z) + Ãzv′(z) + ktv′(z) +

1
2
σ2z2v

′′
(z)

}
dt

−
∫∞

0
e−ρ̃tσztv′(z)dwt.

(3.42)

By virtue of (3.1) and taking expectation on the both sides we have

E
[
e−ρ̃tv(zt)

]
= v(z) − E

[∫∞

0
e−ρ̃t

{
h
(
zt + (kt + 1)2

)}
dt

]
. (3.43)

Now by (3.41), we obtain

v(z) = infE
[∫∞

0
e−ρ̃t

{
h(zt) + (kt + 1)2

}
dt

]
; kt ≥ −1, (3.44)
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which is similar to (3.30) and here the infimum is attained by the feedback law β(v′(z)) with
β(θ) = argminF(θ). The proof is complete.

Corollary 3.6. Assume (3.3), (3.4), and (3.5). Then there exists a unique solution u ∈ C2(R) of
(2.10) such that

ρu
(
x, y

) ≤ K
(
1 + |x|n+3

)
,

(
x, y

) ∈ R, (3.45)

for some constant K > 0.Moreover, u admits a representation

u
(
x, y

)
= infE

[∫∞

0
e−ρt

{
h(xt) + p2t

}
dt

]
; p ≥ 0. (3.46)

4. An Application to Production Control

In this section we will study the production control problem to minimize the cost (2.14) over
the class Pk of all progressively measurable processes pt such that 0 ≤ pt ≤ kt and

lim
t→∞

1
t
E
[
e−ρ̃t|zt|n

]
= 0 (4.1)

for the response zt to pt.
Let us consider the stochastic differential equation

dz∗t =
[
Ãz∗t + βk

(
v′(z∗t )

)]
dt − σz∗t dwt, z∗0 = z, z > 0, (4.2)

where βk(z) = argminF(z), that is,

βk(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k − 1 if z ≤ −2k,
−z
2
− 1 if − 2k < z ≤ 0

−1 if 0 < z.

, (4.3)

We need to establish the following lemmas.

Lemma 4.1. Under (3.5) and for each n ∈ N+, there exists K > 0 such that

E
[
e−ρ̃t|z∗t |2n

]
≤ K(1 + t). (4.4)
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Proof. Since, we have by Itô’s formula

d(z∗t )
2 = 2z∗t dz

∗
t +

1
2
σ2(z∗t )

22dt

= 2z∗t
[(
Ãz∗t + βkv

′(z∗t )
)
dt − σz∗t dwt

]
+ σ2(z∗t )

2 dt,

d(z̃t)
2 = 2z̃t dzt +

1
2
σ2(z̃t)

22dt

≤ 2z̃t
[
Ãz̃t dt − σz̃t dwt

]
+ σ2(z̃t)

2dt.

(4.5)

Now by the assumptions of comparison theorem we have b1(z) = Ãz + βk(v′(zt)) + σ2(z)2,
b2(z) = Ãz + σ2(z)2, then we have b1(z) < b2(z) and |σz − σz̃| = |σ||z − z̃|, where σz =
η(z), so

∫ε
0η

−2(z)dx =
∫ε
0(σz)

−2dz = ∞. Thus we can see (z∗t )
2 ≤ (z̃t)

2 by the comparison
theorem of Ikeda and Watanabe [22]. Since the explosion time σ = inf{t : |z∗t | = ∞}, we have
∞ = (z∗σ)

2 ≤ (z̃σ)
2. Hence σ = ∞.

By the monotonicity of β(v′(z)), we have βk(v′(z̃)) < β(v′(z)) for z̃ < z. Then

dz̃t =
[
Ãz̃t + β

(
v′(z̃t)

)]
dt − σz̃t dwt, z̃0 = z∗,

dz∗t =
[
Ãz∗t + β

(
v′(z∗t )

)]
dt − σz∗t dwt, z∗0 = z

∗,

d(z̃t − z∗t ) =
[
Ã(z̃t − z∗t ) + βk

(
v′(z̃t)

) − βk
(
v′(z∗t )

)]
dt − σ(z̃t − z∗t )dwt,

(4.6)

by Itô’s formula,

d(z̃t − z∗t )2 = 2(z̃t − z∗t )d(z̃t − z∗t ) +
1
2
σ2(z̃t − z∗t )22dt

= 2Ã(z̃t − z∗t )2dt + 2(z̃t − z∗t )
(
βk

(
v′(z̃t)

) − βk
(
v′(z∗t )

))
dt

− 2σ(z̃t − z∗t )2dwt + σ2(z̃t − z∗t )2dt

≤
(
2Ã + σ2

)
(z̃t − z∗t )2dt − 2σ(z̃t − z∗t )2dwt.

(4.7)

Hence

(z̃t − z∗t )2 ≤
(
2Ã + σ2

)∫ t

0
(z̃s − z∗s)2ds − 2σ

∫ t

0
(z̃s − z∗s)2dws,

E
[
(z̃t − z∗t )2

]
≤

(
2Ã + σ2

)∫ t

0
E
[
(z̃s − z∗s)2

]
ds.

(4.8)

Set ξ(t) = E[(z̃t − z∗t )2], we obtain ξ(t) ≤ K
∫ t
0ξ(s)ds, ∀t ≥ 0 where K > 2A + σ2. By Gronwall

Lemma, we have ξ(t) = 0 a.s. ∀t ≥ 0. Therefore, E[(z̃t − z∗t )2] = 0 a.s. ∀t ≥ 0, from which we
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have z̃t ≤ z∗t . So, the uniqueness of (4.2) holds. Thus we conclude that (4.2) admits a unique
strong solution (z∗t ), Ikeda and Watanabe [22, Chapter 4, Theorem 1.1], with E[|z∗t |2n <∞].

By (3.5) and Itô’s formula,

E
[
e−ρ̃t|z∗t |2n

]
= |z|2n + E

[∫ t

0
e−ρ̃s

{
−ρ̃ + 2nÃ + n(2n − 1)σ2

}
|z∗s|2nds

]

+ 2nE

[∫ t

0
e−ρ̃sβk

(
v′(z∗s)

)|z∗s|2n−1sgn(z∗s)ds
]

≤ |z|2n + 2nE

[∫ t

0
e−ρ̃sβk

(
v′(z∗s)

)|z∗s|2n−1sgn(z∗s)ds
]

= |z|2n + E
[∫ t

0
e−ρ̃sZ(n)(s)ds

]

,

(4.9)

where Z(n)(s) = 2nβk(v′(z∗s))|z∗s|2n−1sgn(z∗s).
By (4.3) it is easily seen that zβk(v′(z)) ≤ (k−1)|z| if |z| ≥ a, for sufficiently large a > 0.

Clearly

sup
s
E
[
e−ρ̃sZ(n)(s)1(|z∗s|<a)

]
<∞. (4.10)

Also

E
[
e−ρ̃sZ(n)(s)1(|z∗s|≥a)

]
≤ E

[
e−ρ̃s(k − 1)|z|1(|z∗s|≥a)

]
. (4.11)

By the same line as the proof of Lemma 3.1, we see that the right-hand side is bounded from
above. This completes the proof.

Theorem 4.2. One assumes (3.3), (3.4), (3.5). Then the optimal cost control k∗t is given by

k∗t = βk
(
v′(z∗t )

)
, (4.12)

and the minimum value by

J(k∗) = v(z), (4.13)

where z∗t is defined by (4.2).
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Proof. We first note by (4.3) that Fk(z) = min{(k + 1)2 + kz; k + 1 ≥ 0}, and the minimum is
attained by βk(z).We apply Itô’s formula for convex functions [19, page 219] to obtain

e−ρ̃tv(z∗t ) = v(z) +
∫ t

0
e−ρ̃s

(
−ρ̃v(zs) + Ãzv′(zs) + βk(v′(zs)) +

1
2
σ2z2v

′′
(zs)

)∣
∣
∣
∣
z=z∗s

ds

−
∫ t

0
e−ρ̃sσz∗sv

′(z∗s)dws.

(4.14)

Taking expectation on the both sides,

E
[
e−ρ̃tv(z∗t )

]
= v(z) + E

[∫ t

0
e−ρ̃s

(
−ρ̃v(z∗s) + Ãz∗v′(z∗s) + k

∗
sv

′(z∗s) +
1
2
σ2z∗2v

′′
(z∗s)

)
ds

]

.

(4.15)

By virtue of (2.13),

E
[
e−ρ̃tv(z∗t )

]
= v(z) − E

[∫ t

0
e−ρ̃s

{
h(z∗s) + (k + 1)2

}
ds

]

. (4.16)

Choose n ∈ N+ such that 2n > m. By (3.4) and Lemma 3.1, we have

1
t
E
[
e−ρ̃tv(z∗t )

]
≤ K

t

(
1 + E

[
e−ρ̃mt|z∗t |m

])

≤ K

t

(
1 + E

([
e−2nρ̃t|z∗t |2n

])m/2n)

≤ K

t

(
1 + (K(1 + t))m/2n

)
<∞,

(4.17)

which implies that

lim inf
t→∞

1
t
E
[
e−ρ̃tv(z∗t )

]
= 0. (4.18)

Hence z∗t satisfies (4.1). Then we get E[
∫ t
0e

−ρ̃s{h(z∗s) + (k + 1)2}ds] ≤ v(z) from which J(k∗) ≤
v(z). By (3.4), we have J(k∗) ≤ v(z) <∞, hence k∗ = (k∗t ) ∈ Pk.

Clearly Fk(z) ≤ (k + 1)2 + kz for every k ∈ Pk. Again following the same construction
of (3.45) and by the HJB equation (2.13), we have

E
[
e−ρ̃tv(zt)

]
≥ v(z) − E

[∫ t

0
e−ρ̃s

{
h(zs) + (k + 1)2

}
ds

]

, k = (kt) ∈ Pk. (4.19)
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By (4.1)we have

E

[∫∞

0
e−ρ̃s

{
h(zs) + (k + 1)2

}
ds

]
≥ v(z). (4.20)

Thus we deduce J(k∗) ≥ v(z). The proof is complete.

Lemma 4.3. Under (3.5), there exists a unique solution x∗
t ≥ 0 of

dx∗
t =

[
ψk

(
u′
(
x∗
t , yt

)) − yt
]
dt, x∗

0 = x > 0, (4.21)

where

ψk(x) =

⎧
⎨

⎩

−x
2

if x ≤ 0,

0 if 0 < x,

ψ(x) := −x
2

is the minimizer of min
p≥0

{
p2 + pux

}
.

(4.22)

Proof. Set

k
(
x, y

)
= ψ

(
ux

(
x, y

))
if x, y > 0. (4.23)

Since k(x, y) is continuous in x and y, there exists a nonexplosive solution x∗
t of (4.21).

Now we will show x∗
t ≥ 0 ∀t ≥ 0 a.s. Suppose 0 < v′(0+) < ∞. Then L’Hospital’s rule

gives

lim
z→ 0+

z2v′(z)
z

= lim
z→ 0+

z2v
′′
(z) = 0. (4.24)

Letting z → 0+ in (3.1), we have F(v′(0+)) = 0, and hence v′(0+) = −(k + 1)2/k ≤ 0. This
contradicts the assumption. Thus we get v′(0+) = ∞, which implies that ψ(ux(0+, y)) = 0. In
case T = inf{t ≥ 0 : x∗

t = 0} = ∞,we have at t = T ,

dx∗
t

dt
= ψ

(
ux

(
x∗
t , yt

)) − yt = 0. (4.25)

Therefore x∗
t ≥ 0.

To prove uniqueness, let x∗
i (t), i = 1, 2 be two solutions of (4.21). Then x∗

1(t) − x∗
2(t)

satisfies

d
(
x∗
1(t)−x∗

2(t)
)
=

[(
ψp

(
ux

(
x∗
1(t), yt

))−yt
) − (

ψp
(
ux

(
x∗
2(t), yt

)) − yt
)]
dt, x∗

1(0) − x∗
2(0) = 0.

(4.26)



Journal of Probability and Statistics 21

We have

d(x∗
1(t) − x∗

2(t))
2 = 2

(
x∗
1(t) − x∗

2(t)
)
d
(
x∗
1(t) − x∗

2(t)
)

= 2
(
x∗
1(t) − x∗

2(t)
)[
ψ
(
ux

(
x∗
1(t), yt

)) − ψ(ux
(
x∗
2(t), yt

))]
dt.

(4.27)

Note that the function x → ψ(ux(x, y)) is increasing. Hence

(x∗
1(t) − x∗

2(t))
2 ≤ 2

∫ t

0
(x∗

1(s) − x∗
2(s))

2ds. (4.28)

By Gronwall’s lemma, we have

x∗
1(t) = x

∗
2(t), ∀t > 0. (4.29)

So, the uniqueness of (4.21) holds. The proof is complete.

Theorem 4.4. Under (3.5), the optimal production inventory cost control p∗t is given by

p∗t = ψp
(
u′
(
x∗
t , yt

))
, (4.30)

where x∗
t is defined by (4.21).

Proof. By Lemma 4.3, we observe that (p∗t ) belongs to P. Now we apply Itô’s formula

e−ρtu
(
x∗
t , yt

)
= u

(
x, y

)
+
∫ t

0
e−ρs

{
− ρu(x, y) + ux

(
x, y

)(
ps − ys

)
+Ayuy

(
x, y

)

+
1
2
σ2y2uyy(x, y)

}∣∣∣∣
(x=x∗s,y=ys)

ds

+
∫ t

0
e−ρsσysuy

(
x∗, y

)
dws.

(4.31)

By the HJB equation (2.10), we have

e−ρtu
(
x∗
t , yt

)
= u

(
x, y

) −
∫ t

0
e−ρs

{
h(x∗) + p∗2s

}
ds +

∫ t

0
e−ρsσysuy

(
x∗, y

)
dws, (4.32)

from which

E
[
e−ρ(t∧T)u

(
x∗
t∧T , yt∧T

)]
+ E

[∫ t∧T

0
e−ρs

{
h(x∗) + p∗2s

}
ds

]

= u
(
x, y

)
. (4.33)
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Then we obtain by (4.18)

E

[∫∞

0
e−ρs

{
h(x∗) + p∗2s

}
ds

]
= u

(
x, y

)
. (4.34)

Let pt belong to P. By the same line as above, we have

e−ρtu
(
xt, yt

)
=u

(
x, y

)
+
∫ t

0
e−ρs

{
− ρu(x, y) +ux

(
x, y

)(
ps − ys

)

+Ayuy(x, y) +
1
2
σ2y2uyy(x, y)

}∣
∣
∣
∣
(x=xs,y=ys)

ds

+
∫ t

0
e−ρsσysuy

(
x, y

)
dws.

(4.35)

Again by the HJB equation (2.10), we can obtain

E
[
e−ρtu

(
xt, yt

)] ≥ u(x, y) − E
[∫ t

0
e−ρs

{
h(xs) + p2s

}
ds

]

. (4.36)

By the same line as Lemma 4.1 and by (4.1),

u
(
x, y

) ≤ E
[∫∞

0
e−ρs

{
h(xs) + p2s

}
ds

]
, for any

(
pt
) ∈ P. (4.37)

Combining (4.34) with (4.37), we have

J
(
p∗

) ≤ J(p). (4.38)

Therefore the optimal production cost control p∗ which minimizes the production control
problem (1.1) subject to (1.2) and (1.3). The proof is complete.
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