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1. Introduction

We consider a version in continuous time of the original parking problem of Knuth. Knuth
was interested in the storage of data on a hardware represented by a circle with n spots. Files
arrive successively at locations chosen uniformly at random and independently among these
n spots. They are stored in the first free spot at the right of their arrival point (at their arrival
point if it is free). Initially Knuth worked on the hashing of data (see, e.g., [1–3]): he studied
the distance between the spots where the files arrive and the spots where they are stored.
Later Chassaing and Louchard [4] have described the evolution of the largest block of data in
such coverings when n tends to infinity. They observed a phase transition at the stage where
the hardware is almost full, which is related to the additive coalescent. Bertoin and Miermont
[5] have extended these results to files of random sizes which arrive uniformly on the circle.

We consider here a continuous time version of this model where the hardware is large
and now identified with the real line. A file labelled i of length (or size) li arrives at time ti ≥ 0
at location xi ∈ R. The storage of this file uses the free portion of size li of the real line at the
right of xi as close to xi as possible (see Figure 1). That is, it covers [xi, xi + li[ if this interval
is free at time ti. Otherwise this file can be split into several parts which are then stored in the
closest free portions at the right of the arrival location. We require uniformity of the location
where the files arrive and identical distribution of their sizes. Thus we model the arrival of
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Figure 1: Arrival and storage of the 5-file and representation of Y (5). The first four files have been stored
without splitting and are represented by the black rectangles.

files by a Poisson point process (PPP): {(ti, xi, li) : i ∈ N} is a PPP with intensity dt⊗dx⊗ν(dl)
on R

+ × R × R
+. We denote m :=

∫∞
0 lν(dl) and assume m <∞. So m is the mean of the sum of

sizes of files which arrive during a unit interval time on some interval with unit length.
We begin by constructing this random covering (Section 2). The first questions which

arise and are treated here concern statistics at a fixed time t for the set of occupied locations
C(t). What is the distribution of the covering at a fixed time? At what time the hardware
becomes full? What are the asymptotics of the covering at this saturation time? What is the
length of the largest block on a part of the hardware?

It is quite easy to see that the hardware becomes full at a deterministic time equal to
1/m. In Section 3.1, we give some geometric properties of the distribution of the covering at
a fixed time and we characterize this distribution by giving the joint distribution of the block
of data straddling 0 and the free spaces on both sides of this block. The results given in this
section will be useful for the problem of the dynamic of the covering considered in [6], where
we investigate the evolution in time of a typical data block.

Then, using this characterization, we determine in Sections 3.2 and 3.3 the asymptotic
regimes at the saturation time, which depend on the tail of ν, as in [4, 5, 7]. More precisely,
we give the asymptotic of C(t) when t tends to 1/m (Theorem 3.6) and the asymptotic of C(t)
restricted to [0, x] when x tends to infinity and t tends to 1/m (Theorem 3.10).

We derive then the asymptotic behavior of the largest block of the hardware restricted
to [0, x] when x tends to infinity and t tends to 1/m (Corollary 3.11). As Chassaing and
Louchard in [4], we observe a phase transition. Results are stated in Section 3 and proved in
Section 4.

It is easy to check that for each fixed time t, C(t) does not depend on the order of arrival
of files before time t. If ν is finite, we can view the files which arrive before time t as customers:
the size of the file l becomes the service time of the customer and the location x where the
file that arrives becomes the arrival time of the customer. We are then in the framework of
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the M/G/1 queue model in the stationary regime and the covering C(t) becomes the union
of busy periods (see, e.g., [8, Chapter 3] or [9]). Thus, results of Sections 3.1 and 3.3 for finite
ν follow easily from known results on M/G/1. When ν is infinite, results are similar though
the busy cycle is not defined. Thus the approach is different and proving asymptotics on
random sets requires results about Lévy processes (see the appendix) and regenerative sets.
One motivation for the case when ν is infinite comes from storage models which appear by
renormalization when both the number of customers who store files independently and the
size of the hardware go to infinity. Moreover, as far as we know, the longest busy period
and more generally asymptotic regimes on [0, x] when x tends to infinity and t tends to the
saturation time (Section 3.4) have not been considered in the queuing model.

2. Preliminaries

In this section, we introduce some notations and recall some definitions we need to state the
results. We also provide an elementary construction of the model studied in this paper.

Throughout this paper, we use the classical notation δx for the Dirac mass at x and
N = {1, 2, . . .}.

If R is a measurable subset of R, we denote by |R| its Lebesgue measure and by Rcl its
closure. For every x ∈ R, we denote by R − x the set {y − x : y ∈ R} and

gx(R) = sup
{
y ≤ x : y ∈ R

}
, dx(R) = inf

{
y > x : y ∈ R

}
. (2.1)

By convention, sup ∅ = −∞ and inf ∅ =∞.

Topology of Matheron

If I is a closed interval of R, we denote byH(I) the space of closed subsets of I. For all x, y ∈ R

and A ⊂ R we define

d
(
x, y
)
= 1 − e−|x−y|, d(x,A) = inf

{
d
(
x, y
)

: y ∈ A
}
, (2.2)

and we endowH(I) with the Hausdorff distance dH defined for all A,B ∈ H(I) by

dH(A,B) = max

(

sup
x∈A

d(x, B), sup
x∈B

d(x,A)

)

. (2.3)

The topology induced by this distance is the topology of Matheron [10]: a sequence Rn in
H(I) converges to R if and only if for each open set G and each compact K,

R ∩G/=∅ implies Rn ∩G/=∅ for n large enough,

R ∩K = ∅ implies Rn ∩K = ∅ for n large enough.
(2.4)

It is also the topology induced by the Hausdorff metric on a compact set using arctan(R ∪
{−∞,∞}) or the Skorokhod metric using the class of “descending saw-tooth functions” (see
[10, 11] for details).
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Tail of ν and Lévy Processes Indexed by R

We give here several definitions which will be useful for the study of the asymptotic regimes.
Following the notation in [5], we say that ν ∈ D2+ if ν has a finite second moment m2 :=∫∞

0 l
2ν(dl). For α ∈ ]1, 2], we say that ν ∈ Dα whenever

∃C > 0 such that ν(x) x→∞∼ Cx−α. (2.5)

Then, for α ∈ ]1, 2[, we put

Cα :=
(
CΓ(2 − α)
m(α − 1)

)1/α

. (2.6)

We denote by (Bz)z∈R a two-sided Brownian motion; that is, (Bx)x≥0 and (B−x)x≥0 are
independent standard Brownian motions. For α ∈ ]1, 2[, we denote by (σ(α)

z )z∈R a càdlàg
process with independent and stationary increments such that (σ(α)

x )x≥0 is a standard
spectrally positive stable Lévy process with index α, that is,

∀x ≥ 0, λ ≥ 0, E

(
exp
(
−λσ(α)

x

))
= exp(xλα). (2.7)

Finally, for all λ ≥ 0 and α ∈ ]1, 2[, we introduce the following processes indexed by z ∈ R:

Y 2+,λ
z = −λz +

√
m2

m
Bz, Y 2,λ

z = −λz +

√
C

m
Bz, Yα,λ

z = −λz + Cασ
(α)
z , (2.8)

and their infimum process defined Iα,λx := inf{Yα,λ
y : y ≤ x} for x ∈ R.

Construction of the Covering C(t)

We give here an elementary construction of C(t) and some basic identities we will use next.
They are classical in queuing theory (see, e.g., [8]) and storage systems (see, e.g., [9]), and so
we skip details and refer to the version [12] for complete proofs.

We provide a deterministic construction ofC(t) for any fixed t. AsC(t) does not depend
on the order of arrival of files before t, this amounts to construct the covering C associated
with a given sequence of files labelled by i ∈ N. The file labelled by i ∈ N has size li and arrives
after the files labelled by j ≤ i − 1, at location xi on the real line. Files are stored following the
process described in the Introduction and C is the portion of line which is used for the storage.

The covering C is the increasing union of the coverings C(n) (n ≥ 0) obtained by
considering only the first n files, that is,

C :=
⋃

n∈N
C(n), (2.9)

where C(n) can be defined in an elementary way by the following induction. Set C(0) := ∅,
and introduce the complementary set R(n) of C(n) (i.e., the free space of the real line). Let
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yn+1 = inf{y ≥ 0, |R(n) ∩ [xn+1, y[| = ln+1}, so yn+1 is the right-most point which is used for
storing the (n + 1)th file. Define then

C(n+1) := C(n) ∪
[
xn+1, yn+1

[
. (2.10)

Now we introduce R(n)
x as the quantity of data which we have tried to store at the location

x (successfully or not) when n files are stored. These data are the data fallen in [gx(R(n)), x]
which could not be stored in [gx(R(n)), x]; so R(n)

x is defined by

R
(n)
x := −

(
x − gx

(
R(n)
))

+
∑

i≤n
xi∈[gx(R(n)),x]

li.
(2.11)

Note that in queuing systems, R(n) is the workload. This quantity can be expressed using the
function Y (n), which sums the sizes of the files arrived at the left of a point x minus the drift
term x. It is defined by Y (n)

0 = 0 and

Y
(n)
b
− Y (n)

a = −(b − a) +
∑

i≤n
xi∈ ]a,b]

li for a < b.
(2.12)

Introducing also its infimum function defined for x ∈ R by I
(n)
x := inf{Y (n)

y : y ≤ x}, we get
the following expression, for every n ≥ 1:

R(n) = Y (n) − I(n). (2.13)

As a consequence, the covered set when the first n files are stored is given by

C(n) =
{
x ∈ R : Y (n) − I(n) > 0

}
. (2.14)

Finally, we introduce the function Y defined on R by Y0 = 0 and

Yb − Ya = −(b − a) +
∑

xi∈ ]a,b]
li for a < b, (2.15)

and its infimum I defined for x ∈ R by

Ix := inf
{
Yy : y ≤ x

}
. (2.16)

Assuming that the quantity of data arriving on a compact set is finite,

∀L ≥ 0,
∑

xi∈[−L,L]
li <∞, (2.17)
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we can let n → ∞ in (2.14). More precisely, the covering

C =
⋃

n∈N
C(n) (2.18)

is given by the following proposition (see [12, Section 2.1] for the proof).

Proposition 2.1. Assuming (2.17), one has the following.

If limx→−∞Yx = +∞, then C = {x ∈ R : Yx − Ix > 0}/=R.

If lim infx→−∞Yx = −∞, then C = {x ∈ R : Yx − Ix > 0} = R.

3. Properties at a Fixed Time and Asymptotics Regimes

3.1. Statistics at a Fixed Time

Our purpose in this section is to specify the distribution of the covering C(t) using Lévy
processes. This characterization will be useful to prove asymptotics results (Theorems 3.6,
3.10 and Corollary 3.11) and for the dynamic results given in [6]. To that end, following the
previous section, we consider the process (Y (t)

x )x∈R associated to the PPP {(ti, li, xi) : i ∈ N}
defined by

Y
(t)
0 := 0; Y

(t)
b
− Y (t)

a = −(b − a) +
∑

ti≤t
xi∈ ]a,b]

li for a < b,
(3.1)

which has independent and stationary increments, no negative jumps, and bounded
variation. Introducing also its infimum process defined for x ∈ R by

I
(t)
x := inf

{
Y

(t)
y : y ≤ x

}
, (3.2)

we can give now a handy expression for the covering at a fixed time and obtain that the
hardware becomes full at a deterministic time equal to 1/m, which is the random counterpart
of Proposition 2.1 (see Section 4 for the proof).

Proposition 3.1. For every t < 1/m, one has C(t) = {x ∈ R : Y (t)
x > I

(t)
x }/=R a.s. For every

t ≥ 1/m, one has C(t) = R a.s.

One can note that in queuing system, tm is the charge and C(t)/=R ⇔ tm < 1 is the
standard claim of stability for tm < 1, for finite ν.

To specify the distribution of C(t), it is equivalent and more convenient to describe the
distribution of its complementary set, denoted by R(t), which corresponds to the free space
of the hardware at time t. By the previous proposition, there is the following identity:

R(t) =
{
x ∈ R : Y (t)

x = I(t)x
}

a.s. (3.3)
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We begin by giving some geometric properties of this set, which are classical for finite ν for
storage systems (see [13]) and queuing theory (see [14]).

Proposition 3.2. For every t ≥ 0, R(t) is stationary, its closure is symmetric in distribution, and
it enjoys the regeneration property: For every x ∈ R, (R(t) − dx(R(t))) ∩ [0,∞[ is independent of
R(t)∩] −∞, x] and is distributed as (R(t) − d0(R(t))) ∩ [0,∞[.

Moreover for every x ∈ R, P(x ∈ C(t)) = min(1,mt).

Stationarity is plain from the construction of the covering and regeneration property is
a direct consequence of Lemma 4.1 given in the next section. Symmetry is then a consequence
of [15, Lemma 6.5] or [16, Corollary 7.19]. Computation of P(x ∈ C(t)) can be then derived
from [15, Theorem 1]. See [12, Section 3.1] for the complete proof.

Even though for each fixed t the distribution of R(t)cl is symmetric, the processes
(R(t)cl : t ∈ [0, 1/m]) and (−R(t)cl : t ∈ [0, 1/m]) are quite different. For example, we shall
observe in [6] that the left extremity of the data block straddling 0 is a Markov process but
the right extremity is not.

We want now to characterize the distribution of the free space R(t). For this purpose,
we need some notation. The drift of the Lévy process (Y (t)

x )x≥0 is equal to −1, its Lévy measure
is equal to tν, and its Laplace exponent Ψ(t) is then given by (see the appendix for background
on Lévy processes)

Ψ(t)(ρ
)

:= −ρ +
∫∞

0

(
1 − e−ρx

)
tν(dx). (3.4)

For sake of simplicity, we write, recalling (2.1),

g(t) := g0(R(t)), d(t) = d0(R(t)), l(t) = d(t) − g(t), (3.5)

which are, respectively, the left extremity, the right extremity, and the length of the data block
straddling 0, B0(t). Note that g(t) = d(t) = 0 if B0(t) = ∅.

We work with R, a subset of R of the form
⊔

n∈N[an, bn[, and we denote by R̃ :=⊔
n∈N[−bn,−an[ the symmetrical of R with respect to 0 closed at the left, open at the right.

We consider the positive part (resp., negative part) of R defined by

�R := (R − d0(R)) ∩ [0,∞] =
⊔

n∈N:an≥d0(R)
[an − d0(R), bn − d0(R)[,

←
R := �̃R =

⊔

n∈N:bn≤g0(R)

[
g0(R) − bn, g0(R) − an

[
.

(3.6)

Example 3.3. For a given R represented by the dotted lines, we give below �R and
←
R, which are

also represented by dotted lines. Moreover the endpoints of the data blocks containing 0 are
denoted by g0 and d0(see Figure 2).
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R

g0 0 d0

−→
R

←−
R

00

Figure 2

Thus �R(t) (resp.,
←
R(t)) is the free space at the right of B0(t) (resp., at the left of B0(t),

turned over, closed at the left and open at the right). We have then the identity

R(t) =
(
d(t) + �R(t)

)
�
(

˜
−g(t)+

←
R(t)
)

. (3.7)

Introducing also the processes (�τ (t)x )x≥0 and (
←
τ
(t)
x )x≥0 defined by

�τ
(t)
x := inf

{
y ≥ 0 :

∣∣∣ �R(t) ∩
[
0, y
]∣∣∣ > x

}
,

←
τ
(t)
x := inf

{
y ≥ 0 :

∣∣∣∣
←
R(t) ∩

[
0, y
]
∣∣∣∣ > x

}
(3.8)

enables us to describe R(t) in the following way (see Section 4 for the proof).

Proposition 3.4. (i) The random sets �R(t) and
←
R(t) are independent, identically distributed, and

independent of (g(t), d(t)).

(ii) �R(t) and
←
R(t) are the range of the subordinators �τ (t) and ←τ

(t)
, respectively, whose Laplace

exponent κ(t) is the inverse function of −Ψ(t).
(iii) The distribution of (g(t), d(t)) is specified by

(
g(t), d(t)

)
= (−Ul(t), (1 −U)l(t)),

P(l(t) ∈ dx) = (1 −mt)
(
δ0(dx) + 1{x>0}xΠ(t)(dx)

)
,

(3.9)

where U is an uniform random variable on [0, 1] independent of l(t) and Π(t) is the Lévy measure of
κ(t).

Remark 3.5. Such results are classical for regenerative sets (see, e.g., [13, 17, 18]). But we
need this particular characterization and expressions given in the proof in the next section
for forthcoming results.
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3.2. Asymptotics at Saturation of the Hardware

We focus now on the asymptotic behavior of R(t) when t tends to 1/m, that is, when the
hardware is becoming full. First, note that if ν has a finite second moment, then

E(l(t)) =

∫∞
0 l

2ν(dl)

(1 −mt)2
. (3.10)

Thus we may expect that if ν has a finite second moment, then (1 −mt)2l(t) should converge
in distribution as t tends to 1/m. Indeed, in the particular case ν = δ1 or in the conditions
of [19, Corollary 2.4], we have an expression of Π(t)(dx) and we can prove that (1 −mt)2l(t)
does converge in distribution to a gamma variable.

More generally, we shall prove that the rescaled free space (1 −mt)2R(t) converges in
distribution as t tends to 1/m. To that end, we need to prove that the process (Y (t)

(1−mt)−2x
)x∈R

converges after suitable rescaling to a random process. Thanks to (3.3), (1 −mt)2R(t) should
then converge to the set of points where this limiting process coincides with its infimum
process. We shall also handle the case where ν has an infinite second moment and find the
correct normalization, which depends on the tail of ν. Proofs are close to those of Section 3.3
and given simultaneously in Section 4.

In queuing systems, asymptotics at saturation are known as heavy traffic approxima-
tion (ρ = tm → 1), which depend similarly on the tail of ν. And for ν finite, results given
here could be directly derived from results in queuing theory (see [8, Section III.7.2] or [14]
if ν has a second moment order and [7] for heavy tail of ν). The main difference is that ν can
be infinite in this paper. Then the busy cycle is not defined and we consider here the whole
random set of occupied locations.

To state the main result, we introduce now the following functions defined for every
t ∈ [0, 1/m[ and α ∈ ]1, 2[ by

ε2+(t) = (1 −mt)2, ε2(t) = 2
(1 −mt)2

− log((1 −mt))
, εα(t) = (1 −mt)α/(α−1). (3.11)

Recalling Notations of Section 2, we have then the following weak convergence result
for the Matheron topology.

Theorem 3.6. If ν ∈ Dα (α ∈ ]1, 2] ∪ {2+}), then εα(t) · R(t)cl converges weakly inH(R) as t tends
to 1/m to {x ∈ R : Yα,1

x = Iα,1x }cl.

First we prove the convergence of the Laplace exponent Ψ(t) after suitable rescaling as
t tends to 1/m, which ensures the convergence of the Lévy process Y (t) after suitable rescaling
(see Lemma 4.2). These convergences will not a priori entail the convergence of the random
set εα(t) · Rcl(t) since they do not entail the convergence of excursions. Nevertheless, they
will entail the convergence of κ(t) since κ(t) ◦ (−Ψ(t)) = Id (Lemma 4.4). Then we get the
convergence of τ (t) as t tends to infinity and thus of its range εα(t) · Rcl(t).
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Remark 3.7. More generally, as in queuing theory and [5], we can generalize these results for
regularly varying functions ν. If ν is regularly varying at infinity with index −α ∈ ] − 1,−2[,
then we have the following weak convergence inH(R):

z−1R
(
(1 − zν(z))

m

)cl
z→∞=⇒

{
x ∈ R : Yα,1

x = Iα,1x

}cl
with C = 1. (3.12)

For instance, the case ν(x) x→∞∼ cx−α log(x)β with (α, β, c) ∈ ]1, 2[×R × R
∗
+ leads to

(

(1 −mt) log
(

1
1 −mt

)−β)α/(α−1)

R(t)cl t→ 1/m=⇒
{
x ∈ R : Yα,1

x = Iα,1x

}cl
with C =

c

(α − 1)β
.

(3.13)

If ν is regularly varying at infinity with index −2, there are many cases to consider.

We get then the asymptotic of (g(t), d(t)).

Corollary 3.8. If ν ∈ Dα (α ∈ ]1, 2] ∪ {2+}), then εα(t) · (g(t), d(t)) converges weakly as t tends to
1/m to (sup{x ≤ 0 : Yα,1

x = Iα,10 }, inf{x ≥ 0 : Yα,1
x = Iα,10 }).

If ν ∈ D2+ (resp., D2), εα(t) · l(t) converges weakly to a gamma variable with parameter
(1/2,m/(4m2)) (resp., (1/2,m/4)).

Remark 3.9. The density of data blocks of size dx in εα(t) · R(t)cl is equal to (mt/(1 −
mt))Π(t)(dx). By the previous theorem or corollary, this density converges weakly as t tends
to 1/m to the density of data block of size dx of the limit covering {x ∈ R : Yα,1

x = Iα,1x }cl.
This limit density, denoted by Πα,1(dx), can be computed explicitly in the cases ν ∈ Dα (α ∈
{2, 2+}), thanks to the last corollary:

Π2+,1(dx) =
√

m
4πm2x3

exp
(
− m

4m2
x

)
, Π2,1(dx) =

√
m

4πx3
exp
(
−m

4
x
)
. (3.14)

Note that this is also the Lévy measure of the limit covering {x ∈ R : Yα,1
x = Iα,1x }cl.

3.3. Asymptotic Regime on a Large Part of the Hardware

Here we look at the set of occupied locations C(t) in a window of size x. We consider the
asymptotics of C(t) ∩ [0, x] when x tends to infinity and t tends to the saturation time. As
far as we know, results given here are new even when ν is finite. We introduce the following
functions defined for all x ∈ R

∗
+ and α ∈ ]1, 2[ by

f2+(x) =
1√
x
, f2(x) =

√
log(x)
x

, fα(x) = x1/α−1. (3.15)

And we have the following asymptotic regime (see Section 4 for the proof).
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Theorem 3.10. If ν ∈ Dα (α ∈ ]1, 2] ∪ {2+}), x tends to infinity and t to 1/m such that 1 −mt ∼
λfα(x) with λ > 0, then x−1(R(t)cl ∩ [0, x]) converges weakly inH([0, 1]) to {z ∈ [0, 1] : Yα,λ

z =
Iα,λz }cl.

Thus as in [4], we observe a phase transition of the size of largest block of data in
[0, x] as x → ∞ according to the rate of filling of the hardware. More precisely, denoting
B1(x, t) = |I1(x, t)| where (Ij(x, t))j≥1 is the sequence of component intervals of C(t) ∩ [0, x]
ranked by decreasing order of size, we have the following.

Corollary 3.11. Let ν ∈ Dα (α ∈ ]1, 2] ∪ {2+}), x tends to infinity and t to 1/m.

(i) If 1 − mt ∼ λfα(x) with λ > 0, then B1(x, t)/x converges in distribution to the largest
length of excursion of (Yα,λ

z − Iα,λz )z∈[0,1].

(ii) If fα(x) = o(1 −mt), then B1(x, t)/x
P→ 0.

(iii) If 1 −mt = o(fα(x)), then B1(x, t)/x
P→ 1.

The phase transition occurs at time t such that 1−mt ∼ λfα(x) with λ > 0. The more data
arrive in small files (i.e., the faster ν(x) tends to zero as x tends to infinity), the later the phase
transition occurs. In [4, 5], the hardware is a circle and processes required for asymptotics are
the bridges of the processes used here. A consequence is that in our model, B1(t, x)/x tends
to zero or one with a positive probability at phase transition, which is not the case for the
parking problem in [4, 5]. More precisely, denoting by Bα,λ the law of the largest length of
excursion of (Yα,λ

x − Iα,λx )x∈[0,1], we have

∀(λ, α) ∈ R
∗
+ × ]1, 2[ ∪ {2+}, P(Bα,λ = 0) > 0, P(Bα,λ = 1) > 0. (3.16)

3.4. Observations

We give here some complementary results about the distribution of the set of occupied
locations at a fixed time and about the storage process.

We have for every ρ ≥ 0 (use (A.10)),

κ(t)
(
ρ
)
= ρ +

∫∞

0

(
1 − e−ρx

)
Π(t)(dx), (3.17)

and using (A.11),

Π
(t)
(0) = tν(0),

∫∞

0
xΠ(t)(dx) =

mt

1 −mt
. (3.18)

Using (A.9), we have also the following identity of measures on [0,∞[×[0,∞[

xP

(
�τ
(t)
l ∈ dx

)
dl = lP

(
−Y (t)

x ∈ dl
)

dx. (3.19)
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We can give the distribution of the extremities of B0:

P
(
−g(t) ∈ dx

)
= P(d(t) ∈ dx) = (1 −mt)

(
δ0(dx) + 1{x>0}Π

(t)
(x)dx

)
. (3.20)

Writing −g(t) = γ(t) (see (4.9) and (4.10)) and using the identity of fluctuation (A.17) gives
an other expression for the Laplace transform of g(t). For all t ∈ [0, 1/m[ and λ ≥ 0, we have

E
(
exp
(
λg(t)

))
= exp

(∫∞

0

(
e−λx − 1

)
x−1

P

(
Y

(t)
x > 0

)
dx

)
. (3.21)

As a consequence, we see that the law of g(t) is infinitively divisible. Moreover this expression
will give the generating triplet of the additive process (g(t))t∈[0,1/m[ [6, Theorem 2, Section 4].

We can also estimate the number of data blocks on the hardware. If ν has a finite mass,
we write N(t)

x as the number of data blocks of the hardware restricted to [−x, x] at time t.
This quantity has a deterministic asymptotic as x tends to infinity which is maximum at time
1/(2m). And the number of blocks of the hardware reaches a.s. its maximal at time 1/(2m).
More precisely, we have the following.

Proposition 3.12. If ν(0) <∞, then for every t ∈ [0, 1/m[,

lim
x→∞

N
(t)
x

2x
= ν(0)t(1 −mt) a.s. (3.22)

Finally, we can describe here the hashing of data. We recall that a file labeled by i is
stored at location xi. In the hashing problem, one is interested by the location where the file
i is stored knowing xi. By stationarity, we can take xi = 0 and consider a file of size l which
we store at time t at location 0 on the hardware whose free space is equal to R(t). The first
point (resp., the last point) of the hardware occupied for the storage of this file is equal to
d(t) (resp., to d(t) + �τ

(t)
l ). This gives the distribution of the extremities of the portion of the

hardware used for the storage of a file.

3.5. Examples

Let us now consider three explicit examples.
(1) The basic example is when ν = δ1 (all files have the same unit size as in the original

parking problem in [4]). Then for all x ∈ R+ and n ∈ N,

P

(
Y

(t)
x + x = n

)
= e−tx

(tx)n

n!
,

P

(
�τ
(t)
x = x + n

)
=

x

x + n
e−t(x+n)

(t(n + x))n

n!
,

(3.23)
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where the second identity follows from integrating (3.19). Then,

Π(t)(n) =
(tn)n

n.n!
e−tn, (3.24)

and l(t) follows a size-biased Borel law:

P(l(t) = n) = (1 − t)(tn)
n

n!
e−tn. (3.25)

(2) Another example where calculus can be made explicitly is the gamma case when
ν(dl) = 1{l≥0}l

−1e−ldl. Note that ν(0) =∞ and m = 1. Then, for every x ∈ R+,

P

(
Y

(t)
x ∈ dz

)
= 1[−x,∞[(z)Γ(tx)−1e−(z+x)(z + x)tx−1dz,

P

(
�τ
(t)
x ∈ dz

)
= 1[x,∞[(z)x(zΓ(tz))

−1e−(z−x)(z − x)tz−1dz.
(3.26)

Further

Π(t)(dz) = (zΓ(tz))−1e−zztz−1dz,

P(l(t) ∈ dx) = (1 − t)
(
δ0(dx) + Γ(tz)−1e−xxtx−1dx

)
.

(3.27)

(3) For the exponential distribution ν(dl) = 1{l≥0}e
−ldl, we can get

Ψ(t)(λ) = λ
(
−1 +

t

λ + 1

)
, κ(t)(λ) =

λ + t − 1 +
√
(λ + t − 1)2 + 4λ

2
. (3.28)

4. Proofs

In this section, we provide rigorous arguments for the original results which have been stated
in Section 3.

Proof of Proposition 3.1. First m < ∞ entails that for all L ≥ 0,
∑

ti≤t,xi∈[−L,L] li < ∞ a.s. and
condition (A.7) is satisfied a.s. Then, by Proposition 2.1,

C(t) =
{
x ∈ R : Y (t)

x − I(
t)
x > 0

}
a.s. (4.1)

(i) If t < 1/m, then E(Y (t)
−1 ) = 1 −mt > 0 and the càdlàg version of (Y (t)

(−x)−)x≥0 is a Lévy
process. So we have (see [20, Corollary 2, page 190])

Y
(t)
x

x→−∞−→ ∞ a.s. (4.2)

Then Proposition 2.1 ensures that for every t < 1/m, C(t) = {x ∈ R : Y (t)
x > I

(t)
x }/=R a.s.
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(ii) If t ≥ 1/m, then E(Y (t)
−1 ) ≤ 0 ensures (see [20, Corollary 2, page 190]) that

Y
(t)
x

x→−∞−→ −∞ a.s. or
(
Y

(t)
x

)

x≤0
oscillates a.s. in −∞. (4.3)

Similarly, we get that for every t ≥ 1/m, C(t) = R a.s.

For the forthcoming proofs, we fix t ∈ [0, 1/m[, which is omitted from the notation of
processes for the sake of simplicity.

To prove the regeneration property and characterize the Laplace exponent of �τ , we
need to establish first a regeneration property at the right extremities of the data blocks. In
that view, we consider, for every x ≥ 0, the files arrived at the left/at the right of x before time
t:

Px := {(ti, xi, li) : ti ≤ t, xi ≤ x}, Px := {(ti, xi − x, li) : ti ≤ t, xi > x}. (4.4)

Lemma 4.1. For all x ≥ 0, Pdx(R(t)) is independent of Pdx(R(t)) and distributed as P0.

Proof. The simple Markov property for PPP states that, for every x ∈ R, Px is independent
of Px and distributed as P0. Clearly this extends to simple stopping times in the filtration
σ(Px)x∈R and further to any stopping time in this filtration using the classical argument of
approximation of stopping times by a decreasing sequence of simple stopping times (see also
[21]). As dx(R(t)) is a stopping time in this filtration, Pdx(R(t)) is independent of Pdx(R(t)) and
distributed as P0.

Using well-known results on Lévy processes, which we recall in Section 4, we can
prove Proposition 3.4.

Proof of Proposition 3.4. (i) By symmetry, R(t)cl, �R(t), and
←
R(t) are identically distributed. The

regeneration property ensures that �R(t) is independent of (
←
R(t), g(t), d(t)). By symmetry,

←
R(t)

is independent of (g(t), d(t), �R(t)). So �R(t),
←
R(t), and (g(t), d(t)) are independent.

(ii) As �R(t) is a.s. the union of intervals of the form [a, b[, then x → |R(t) ∩ [0, x]|
increases at x ∈ �R(t). So, for every x ≥ 0,

�τ|R(t)∩[0,x]| = dx(R(t)), �τx = d�τx(R(t)) a.s. (4.5)

So the range of �τ is equal to �R(t). The fact that �τ is a subordinator will be proved below but
could be also derived directly from the regeneration property of �R(t) (see [17]). Similarly the

range of
←
τ is equal to

←
R(t).

Moreover, dY = −1 on R(t) and Ya− = Yb if [a, b[ is an interval component of C(t). By
integrating on [d(t), d(t) + y], we have a.s for every y ≥ 0 such that d(t) + y ∈ R(t),

Yy+d(t) − Yy = −
∣∣R(t) ∩

[
d(t), d(t) + y

]∣∣. (4.6)
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Then using again the definition of �τ given in Section 3.1 and that �R(t) is the range of �τ ,

�τx = inf
{
y ≥ 0 : y ∈ �R(t),

∣
∣
∣ �R(t) ∩

[
0, y
]∣∣
∣ > x

}

= inf
{
y ≥ 0 : d(t) + y ∈ R(t),

∣
∣R(t) ∩

[
d(t), d(t) + y

]∣∣ > x
}

= inf
{
y ≥ 0 : Yy+d(t) − Yd(t) < −x

}
.

(4.7)

Moreover

Yy+d(t) − Yd(t) = −y +
∑

(ti,xi,li)∈Pd(t)
0≤xi≤y

li,
(4.8)

and Lemma 4.1 entails that Pd(t) is distributed as a PPP on [0, t] × R+ × R+ with intensity
ds ⊗ dx ⊗ ν(dl). So (Yy+d(t) − Yd(t))y≥0 is a Lévy process with bounded variation and drift −1
which verifies condition (A.7) (use (A.5) and −1+mt < 0). Then Theorem A.1 in the appendix
entails that �τ is a subordinator whose Laplace exponent is the inverse function of −Ψ(t).

As
←
R(t) is distributed as �R(t), ←τ is distributed as �τ by definition.

(iii) We determine now the distribution of (g(t), d(t)) using fluctuation theory, which
enables us to get identities useful for the rest of the work. We write (Ỹx)x≥0 for the càdlàg
version of (−Y−x)x≥0 and

S(t) := sup
{
Ỹx, x ≥ 0

}
= −I0, γ(t) := arg(S(t)) = inf

{
x ≥ 0 : Ỹx = S(t)

}
. (4.9)

Using (3.3) and the fact that Y has no negative jumps, we have

g(t) = g0(R(t)) = sup{x ≤ 0 : Yx = Ix}

= sup{x ≤ 0 : Yx− = I0} = − inf
{
x ≥ 0 : Ỹx = −I0

}

= −γ(t).

(4.10)

Using again (3.3) and the fact that (Yx)x≥0 is regular for ]−∞, 0[ (see [20, Proposition 8, page
84]), we have also a.s.

d(t) = inf{x > 0 : Yx = Ix} = inf{x > 0 : Yx = I0}

= inf{x > 0 : Yx < I0} = inf{x > 0 : Yx < −S(t)} = TS(t),
(4.11)
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where (Tx)x≥0 is distributed as (�τx)x≥0 by (4.7) and (Tx)x≥0 is independent of (S(t), γ(t)) since
(Yx)x≥0 is independent of (Yx)x≤0. Then for all λ, μ ≥ 0 with λ/=μ,

E
(
exp
(
λg(t) − μd(t)

))
= E
(
exp
(
−λγ(t)

)
E
(
exp
(
−μTS(t)

)))

= E

(
exp
(
−λγ(t) − κ(t)

(
μ
)
S(t)
))

= −
[
Ψ(t)
]′
(0)

κ(t)(λ) − κ(t)
(
μ
)

λ − μ using (A.15)

(4.12)

= (1 −mt)
κ(t)(λ) − κ(t)

(
μ
)

λ − μ using (A.5), (4.13)

which gives the distributions of d(t), g(t), and l(t) letting, respectively, λ = 0, μ = 0,
and λ → μ. Computing then the Laplace transform of (−Ul(t), (1 − U)l(t)) where U is
a uniform random variable on [0, 1] independent of l(t) gives the right-hand side of (20).
So (g(t), d(t)) = (−U′l(t), (1 − U′)l(t)), where U′ is a uniform random variable on [0, 1]
independent of l(t).

Proofs of Theorems 3.6 and 3.10 are close and made simultaneously. For that purpose,
we introduce now Ψα,λ as the Laplace exponent (see (A.1)) of Yα,λ given, for y ≥ 0, λ ≥ 0, and
α ∈ ]1, 2[ by

Ψ2+,λ(y
)
= −λy − m2

m
y2

2
, Ψ2,λ(y

)
= −λy − C

m
y2

2
, Ψα,λ(y

)
= −λy −

(
Cαy
)α
. (4.14)

We denote by D the space of càdlàg function from R+ to R which we endow with the
Skorokhod topology (see [22, page 292]). First, we prove the weak convergence of Y (t) after
suitable rescaling.

Lemma 4.2. If ν ∈ Dα (α ∈ ]1, 2] ∪ {2+}), then for all y ≥ 0 and λ > 0,

εα(t)−1Ψ(t)
(
εα(t)(1 −mt)−1y

)
t→ 1/m−→ Ψα,1(y

)
,

xΨ((1−λfα(x))/m)
((
xfα(x)

)−1
y
)

x→∞−→ Ψα,λ(y
)
,

(4.15)

which entail the following weak convergences of processes in D:

(
εα(t)(1 −mt)−1Y

(t)
εα(t)−1y

)

y≥0

t→ 1/m=⇒
(
Yα,1
y

)

y≥0
,

((
xfα(x)

)−1
Y

((1−λfα(x))/m)
xy

)

y≥0

x→∞=⇒
(
Yα,λ
y

)

y≥0
.

(4.16)

Remark 4.3. If ν is regularly varying at infinity with index −α ∈ ] − 1,−2[, then
ν(x)−1Ψ((1−λxν(x))/m)(x−1y) converges to Ψα,λ(y) as x tends to infinity.
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Proof of Lemma 4.2. Using (A.4), we have

xΨ(t)(y
)
= xy

(
mt − 1 − t

∫∞

0

(
1 − e−yu

)
ν(u)du

)

= xy
(

mt − 1 − ty−1
∫∞

0
e−yuν(u)du

)

= x
(
y(mt − 1) − t

∫∞

0
e−yuν(u)du

)
,

(4.17)

where ν(u) =
∫∞
u ν(v)dv. The first part of the lemma then follows by applying the Tauberian

theorem in [20, page 10] which gives the asymptotic behavior of the last term. For a detailed
proof, we refer to [12].

These convergences ensure the convergence of the finite-dimensional distributions of
the processes. The weak convergence in D, which is the second part of the lemma, follows
from [23, Theorem 13.17].

In the spirit of Section 3.1, we introduce the expected limit set, that is, the free space of
the covering associated with Yα,λ, and the extremities of the block containing 0:

R(α, λ) :=
{
x ∈ R : Yα,λ

x = Iα,λx
}
, g(α, λ) := g0(R(α, λ)), d(α, λ) := d0(R(α, λ)). (4.18)

We have the following analog of Proposition 3.4. �R(α, λ) and
←

R(α, λ) are independent,

identically distributed and independent of (g(α, λ), d(α, λ)). Moreover �R(α, λ) and
←

R(α, λ)
are, respectively, the range of the subordinators �τα,λ and

←
τ
α,λ

, whose Laplace exponent κα,λ is
the inverse function of −Ψα,λ. Finally, using [Ψα,λ]′(0) = −λ, the counterpart of (4.12) gives for
ρ, μ ≥ 0 and ρ /=μ,

E
(
exp
(
ρg(α, λ) − μd(α, λ)

))
= λ

κα,λ
(
ρ
)
− κα,λ

(
μ
)

ρ − μ . (4.19)

The proof of these results follow the proof of Proposition 3.4, except for two points.
(1) We cannot use the point process of files to prove the stationarity and regeneration

property of R(α, λ) and we must use the process Yα,λ instead. The stationarity is a direct
consequence of the stationarity of (Yα,λ

x − Iα,λx )x∈R. The regeneration property is a consequence
of the counterpart of Lemma 4.1 which can be stated as follows. For all x ∈ R,

(
Yα,λ
dx(R(α,λ))+y − Y

α,λ
dx(R(α,λ))

)

y≥0
is independent of

(
Yα,λ
dx(R(α,λ))−y − Y

α,λ
dx(R(α,λ))

)

y≥0
(4.20)

and distributed as (Yα,λ
y )

y≥0. As Lemma 4.1, this property is an extension to the stopping time

dx(R(α, λ)) of the following obvious result: (Yα,λ
x+y − Yα,λ

x )
y≥0

is independent of (Yα,λ
x−y − Y

α,λ
x )

y≥0

and distributed as (Yα,λ
y )

y≥0.
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(2) It is convenient to define directly (�τα,λx )x≥0 by

�τα,λx := inf
{
y ≥ 0 : Yα,λ

d(α,λ)+y − Y
α,λ
d(α,λ) < −x

}
. (4.21)

For λ > 0, [Ψα,λ]′(0) = −λ < 0 and so we can apply Theorem A.1 and �τα,λ is a subordinator
whose Laplace κα,λ is the inverse function of −Ψα,λ. Moreover its range is a.s. equal to �R(α, λ),
since the Lévy process (Yα,λ

d(α,λ)+y − Y
α,λ
d(α,λ))y≥0 is regular for ] − ∞, 0[ [20, Proposition 8, page

84].
To prove Theorems 3.6 and 3.10, we need a final lemma, which states the convergence

of the Laplace exponent of �R(t).

Lemma 4.4. If ν ∈ Dα (α ∈ ]1, 2] ∪ {2+}), then for all z ≥ 0 and λ > 0,

(1 −mt)εα(t)−1κ(t)(εα(t)z)
t→ 1/m−→ κα,1(z),

xfα(x)κ((1−λfα(x))/m)
(
x−1z

)
x→∞−→ κα,λ(z).

(4.22)

Remark 4.5. If ν is regularly varying at infinity of index −α ∈ ] − 1,−2[, we have similarly

ν(x)−1κ((1−λxν(x))/m)
(
x−1z

)
x→∞−→ κα,λ(z). (4.23)

Proof. First we prove that

α(t) t→ 1/m∼ β(t) =⇒ κ(t)(α(t)) t→ 1/m∼ κ(t)
(
β(t)
)
. (4.24)

Indeed the function u ∈ R
∗
+ �→ (1 − e−u)/u decreases so for all x ≥ 0 and u, v > 0, we have

min
(u
v
, 1
)
≤ 1 − e−ux

1 − e−vx ≤ max
(u
v
, 1
)
. (4.25)

This gives

min
(
α(t)
β(t)

, 1
)
≤
∫∞

0

(
1 − e−α(t)x

)
Π(t)(dx)

∫∞
0

(
1 − e−β(t)x

)
Π(t)(dx)

≤ max
(
α(t)
β(t)

, 1
)

(4.26)

and proves (4.24) recalling (3.17).
Then the first part of Lemma 4.2 and the identity κ(t) ◦ (−Ψ(t)) = Id give the first part of

Lemma 4.4. Indeed for every y ≥ 0, Ψ(t)(εα(t)(1−mt)−1y) t→ 1/m∼ εα(t)Ψα,1(y). So (4.24) entails

εα(t)(1 −mt)−1y
t→ 1/m∼ κ(t)

(
−εα(t)Ψα,1(y

))
. (4.27)

Put y = κα,1(z) to get the first limit of the lemma and follow the same way to get the second
one.
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Proof of Theorem 3.6. First, by (4.13), we have

E
(
exp
(
ρεα(t)g(t) − μεα(t)d(t)

))
= (1 −mt)

κ(t)
(
εα(t)ρ

)
− κ(t)

(
εα(t)μ

)

εα(t)
(
ρ − μ

) . (4.28)

Letting t → 1/m using Lemma 4.4 gives the right-hand side of (4.19). Then εα(t) · (g(t), d(t))
converges weakly as t tends to 1/m to (g(α, 1), d(α, 1)).

Moreover εα(t) �R(t)
cl
(resp., εα(t)

←
R(t)

cl
) converges weakly inH(R+) as t tends to 1/m

to �R(α, 1)
cl
(resp.,

←
R(α, 1)

cl
). Indeed, by [11, Proposition 3.9], this is a consequence of the

convergence of the Laplace exponent of εα(t) �R(t) given by Lemma 4.4. Informally, εα(t) �R(t)
cl

is the range of (εα(t)�τ
(t)
(1−mt)εα(t)

−1z
)
z≥0

whose convergence in D follows from Lemma 4.4.

We can now prove the theorem. We know from (3.7) that

εα(t)R(t) = εα(t) ·
(
d(t) + �R(t)

)
�
(

˜

εα(t) ·
(
−g(t)+

←
R(t)
))

, (4.29)

where εα(t)
←
R(t), εα(t)(−g(t), d(t)), and εα(t) �R(t) are independent by Proposition 3.4.

Similarly

R(α, 1) =
(
d(α, 1) + �R(α, 1)

)
�
(

˜
−g(α, 1)+

←
R(α, 1)

)

, (4.30)

where
←

R(α, 1), (−g(α, 1), d(α, 1)), and �R(α, 1) are independent. As remarked above, we have
also the following weak convergences as t tends to 1/m:

εα(t)
←
R(t)

cl
=⇒

←
R(α, 1)

cl
, εα(t)

(
−g(t), d(t)

)
=⇒
(
−g(α, 1), d(α, 1)

)
, εα(t) �R(t)

cl
=⇒ �R(α, 1)

cl
.

(4.31)

So εα(t)R(t)cl converges weakly to R(α, 1)cl inH(R) as t tends to 1/m.

Proof of Corollary 3.8. The first result is a direct consequence of Theorem 3.6. We have then

εα(t)l(t)
t→ 1/m=⇒ d(α, 1) − g(α, 1). (4.32)
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Moreover, as κ2+,1 ◦ (−Ψ2+,1) = Id, we can compute κ2+,1 and (4.19) gives

E
(
exp
(
−μ(d(2+, 1)) − g(2+, 1)

))

=
(
κ2+,1

)′(
μ
)
=

(
1 +
√

1 + 2(m2/m)μ
m2/m

)′
(
μ
)
=

1
√
−1 + 2(m2/m)μ

.
(4.33)

So, by identification of Laplace transform, d(α, 1) − g(α, 1) is a gamma variable of parameter
(1/2,m/(4m2)) and we get the result. The argument is similar in the case α = 2.

Proof of Theorem 3.10. The argument is similar to that of the proof of Theorem 3.6 using the
other limits of Lemma 4.4. We get that if x → ∞ and 1−mt ∼ λfα(x) with λ > 0, then x−1R(t)
converges weakly in H(R) to {x ∈ R : Yα,λ

x = Iα,λx }cl. The theorem follows by restriction to
[0, 1].

To prove the corollary of Theorem 3.10, we need the following result.

Lemma 4.6. The largest length of excursion of (Yα,λ
x − Iα,λx )x∈[0,1], denoted by Bα,λ, converges in

probability to 0 as λ tends to infinity and to 1 as λ tends to 0.

Proof. (i) Let 0 ≤ a < b ≤ 1. Note that for all λ′ ≥ 1 and x ≥ 0, Yα,λ′

x − Yα,1
x = (1 − λ′)x ensures

that Iα,λ
′

x − Iα,1x ≥ (1 − λ′)x. Then,

Yα,λ′

a+2((b−a)/3) − I
α,λ′

a+(b−a)/3 ≤ Y
α,1
a+2((b−a)/3) − I

α,1
a+(b−a)/3 +

(
1 − λ′

)b − a
3

. (4.34)

So a.s. there exists λ′ such that

Yα,λ′

a+2((b−a)/3) < I
α,λ′

a+(b−a)/3. (4.35)

As Yα,λ′ has no negative jumps, it reaches its infimum on ] − ∞, 2(b − a)/3] in a point c ∈
[a+(b−a)/3, a+2(b−a)/3]. Then a.s. there exists c ∈ [a+(b−a)/3, a+2(b−a)/3] and λ′ > 0
such that c ∈ R(α, λ′), which entails that c does not belong to the interior of Bα,λ′ . Adding that
Bα,λ decreases as λ increases, this property ensures that Bα,λ converges in probability to 0 as λ
tends to infinity.

(ii) As (Yα,0
x )x∈R oscillates when x tends to −∞ (see [20, Corollary 2, page 190]), then

Iα,λ0
λ→ 0−→ −∞, (4.36)

which ensures that Bα,λ converges in probability to 1 as λ tends to 0.

Proof of Corollary 3.11. The first result is a direct consequence of Theorem 3.10.
If o(1 − mt) = fα(x) (x → ∞), then for every λ > 0 and x large enough, t ≤ (1 −

λfα(x))/m and

B1(x, t)
x

≤
B1
(
x,
(
1 − λfα(x)

)
/m
)

x
. (4.37)
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The right-hand side converges weakly to Bα,λ as x tends to infinity. Letting λ tend to infinity,
the lemma above entails that B1(x, t)/x

x→∞→ 0 in P.
Similarly if 1 −mt = o(fα(x)) (x → ∞) , then for every λ > 0 and x large enough,

B1(x, t)
x

≥
B1
(
x,
(
1 − λfα(x)

)
/m
)

x
. (4.38)

Letting λ tend to 0, Lemma 4.6 entails that B1(x, t)/x
x→∞→ 1 in P.

Finally, we prove the result stated in Section 3.4.

Proof of Proposition 3.12. As ν(0) < ∞, then Π(0) = tν(0) < ∞ (see (3.18)). So �τ is the sum of
a drift and a compound Poisson process. That is, there exists a Poisson process (Nx)x≥0 of
intensity tν(0) and a sequence (Xi)i∈N of i.i.d. variables of law ν/ν(0) independent of (Nx)x≥0
such that

�τx = x +
Nx∑

i=1

Xi, x ≥ 0. (4.39)

As �R(t) is the range of �τ , the number of data blocks of C(t) between d(t) and d(t)+ �τx is equal
to the number of jumps of �τ before x, that is Nx. Thus,

number of data blocks in [d(t), d(t) + �τx]
�τx

=
Nx

�τx

x→∞−→ E(N1)
E(�τ1)

= tν(0)(1 −mt) a.s.

(4.40)

by the law of large numbers (see [20, page 92]). This completes the proof.

Appendix

Background on Lévy Processes

The results given in this section can be found in [20, Chapters VI and VII] (there, statements
are made in terms of the dual process −Y ). We recall that a Lévy process is càdlàg process
starting from 0 which has i.i.d. increments. A subordinator is an increasing Lévy process.

We consider in this section a Lévy process (Xx)x≥0 which has no negative jumps
(spectrally positive Lévy process). We denote by Ψ its Laplace exponent which verifies for
every ρ ≥ 0,

E
(
exp
(
−ρXx

))
= exp

(
−xΨ

(
ρ
))
. (A.1)

We stress that this is not the classical choice for the sign of the Laplace exponent of Lévy
processes with no negative jumps and a negative drift such as the process (Yx)x≥0 introduced
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in the previous section. However it is the classical choice for subordinators, which we will
need. It is then convenient to use this same definition for all Lévy processes which appear in
this text.

First, we consider the case when (Xx)x≥0 has bounded variations. That is,

Xx := dx +
∑

xi≤x
li, (A.2)

where {(xi, li) : i ∈ N} is a PPP on [0,∞[×[0,∞] with intensity measure dx ⊗ ν such that∫∞
0 xν(dx) < ∞. We call ν the Lévy measure and d ∈ R the drift. Note that (Xx)x≥0 is a

subordinator if and only if d ≥ 0.
Writing ν for the tail of the measure ν, the Lévy-Khintchine formula gives

Ψ
(
ρ
)
= dρ +

∫∞

0

(
1 − e−ρx

)
ν(dx), (A.3)

Ψ
(
ρ
)

ρ
= d +

∫∞

0
e−ρxν(x)dx, (A.4)

Ψ′(0) = d +
∫∞

0
xν(dx), (A.5)

lim
ρ→∞

Ψ
(
ρ
)

ρ
= d, lim

ρ→∞

(
Ψ
(
ρ
)
− dρ

)
= ν(0). (A.6)

Second, we consider the case when Ψ has a right derivative at 0 with

Ψ′(0) < 0, (A.7)

meaning that E(X1) < 0. And we consider the infimum process which has continuous paths
and the first passage time defined for x ≥ 0 by

Ix = inf
{
Xy : 0 ≤ y ≤ x

}
; τx = inf{z ≥ 0 : Xz < −x}. (A.8)

As −Ψ is strictly convex and −Ψ′(0) > 0, −Ψ is strictly increasing from [0,∞[ to [0,∞[ and so
is strictly positive on ]0,∞]. We write κ : [0,∞[→ R for the inverse function of −Ψ and we
have the following theorem (see [20, Theorem 1 page 189, Corollary 3 page 190]).

Theorem A.1. (τx)x≥0 is a subordinator with Laplace exponent κ.
Moreover the following identity holds between measures on [0,∞[×[0,∞[:

xP(τl ∈ dx)dl = lP(−Xx ∈ dl)dx. (A.9)

Note that if (Xx)x≥0 has bounded variations, using (A.6), we can write

∀ρ ≥ 0, κ
(
ρ
)
= −

ρ

d
+
∫∞

0

(
1 − e−ρz

)
Π(dz), (A.10)
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where Π is a measure on R
+ verifying (use (A.6) and Wald’s identity or (A.5))

Π(0) = −ν(0)
d

,

∫∞

0
xΠ(dx) =

1
d
− 1
d +
∫∞

0 xν(dx)
. (A.11)

Now we introduce the supremum process defined for x ≥ 0 by

Sx := sup
{
Xy : 0 ≤ y ≤ x

}
, (A.12)

and the a.s. unique instant at which X reaches this supremum on [0, x]:

γx := inf
{
y ∈ [0, x] : Xy = Sx

}
. (A.13)

By duality, we have (Sx, γx)
d= (Xx − Ix, x − gx) where gx denotes the a.s. unique instant at

which (Xx−)x≥0 reaches its overall infimum on [0, x] (see [20, Proposition 3] or [19, page 25]).
If T is an exponentially distributed random time with parameter q > 0 which is independent
of X and λ, μ > 0, then we have (use [20, Theorem 5 page 160, Theorem 4 page 191])

E
(
exp
(
−μST − λγT

))
=

q
(
κ
(
λ + q

)
− μ
)

κ
(
q
)(
q + λ + Ψ

(
μ
))

= exp
(∫∞

0
dx
∫∞

0
P
(
Yx ∈ dy

)(
e−λx−μy − 1

)
x−1e−qx

)
,

(A.14)

which gives

E
(
exp
(
−μS∞ − λγ∞

))
=

1
κ′(0)

κ(λ) − μ
λ + Ψ

(
μ
) = −Ψ′(0)

κ(λ) − μ
λ + Ψ

(
μ
) , (A.15)

E
(
exp
(
−μS∞

))
= μ

Ψ′(0)
Ψ
(
μ
) , (A.16)

E
(
exp
(
−λγ∞

))
= exp

(∫∞

0

(
e−λx − 1

)
x−1

P(Xx > 0)dx
)
. (A.17)
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