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Current methods for mapping imprinted quantitative trait locus (iQTL) with inbred line crosses
assume fixed QTL effects. When an iQTL segregates in experimental line crosses, combining
different line crosses with similar genetic background can improve the accuracy of iQTLs inference.
In this article, we develop a general interval-based statistical variance components framework to
map iQTLs underlying complex traits by combining different backcross line crosses. We propose
a new iQTL variance partition method based on the nature of marker alleles shared identical-
by-decent (IBD) in inbred lines. Maternal effect is adjusted when testing imprinting. Efficient
estimation methods with the maximum likelihood and the restricted maximum likelihood are
derived and compared. Statistical properties of the proposed mapping strategy are evaluated
through extensive simulations under different sampling designs. An extension to multiple QTL
analysis is given. The proposed method will greatly facilitate genetic dissection of imprinted
complex traits in inbred line crosses.
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1. Introduction

The genetic architecture of complex phenotypes in agriculture, evolution, and biomedicine
is generally complex involving a network of multiple genetic and environmental factors that
interact with one another in complicated ways [1]. The development of molecular markers
makes it possible to identify genetic locus (i.e., quantitative trait locus (QTL)) underlie vari-
ous traits of interest. Genetic designs with controlled crosses are generally pursued to gener-
ate mapping populations aimed to identify QTL underlying the variation of phenotypes. Sta-
tistical method for QTL mapping with experimental crosses dates back to the seminal work
of Lander and Botstein [2]. Various extensions have been developed since then (e.g., [3, 4]).

For a diploid organism, the expression products of most functional regions from each
one of a chromosome pair are equal. A broken of this equivalence, that is, nonequivalent
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genetic contribution of each parental genome to offspring phenotype, can result in genomic
imprinting, a phenomenon also called parent-of-origin effect [5]. Since its discovery,
imprinting-like phenomena have been commonly observed in mammals and seed plants
(reviewed by Burt and Trivers [6]). However, statistical methods for identifying imprinted
genes have not been extensively studied and well developed.

The imprinted inheritance violates the Mendelian theory and brings challenges in
statistical modeling. Currently, there are two frameworks in mapping imprinted genes.
One is based on the random effect model with pedigree-based natural population such as
humans. Hanson et al. [7] first proposed a variance components framework by partitioning
the additive variance component as two parts, a component due to maternal gene and a
component due to paternal gene. The variance component method is developed based on the
identical-by-decent (IBD) idea in which the expression of the gene for a pair of individuals
is expected to be similar if they share alleles IBD. Liu et al. [8] recently applied the model
to map iQTL underlying canine hip dysplasia in a structured canine population. However,
the current IBD-based variance components method for mapping imprinted genes assumes
noninbreeding population. Their applications are immediately limited with fully or partially
inbreeding population such as the controlled inbreeding design in plants and animals. With
inbred mapping population in humans, Abney et al. [9] proposed a method to estimate
variance components of quantitative traits. However, the extension of the method to map
imprinted gene is not straightforward. No variance components method has been proposed
to map imprinted genes with inbred population in the literature.

Another general framework for mapping imprinted genes is based on the fixed-
effect model in which the effects of genetic factors are considered as fixed. A number of
studies were proposed under this framework for mapping imprinted QTL (iQTL) with
controlled crosses of outbred parents [10–12]. One potential limitation of these methods is
that allelic heterozygosity at a locus between two outbred parents could cause confounding
effects for genomic imprinting. The genetic differences detected by such a fixed-effect model
could be caused by allelic heterozygosity of the parents rather than the imprinted effect
of iQTL [13]. A natural alternative for the mapping population is the inbred lines. Fixed-
effect models based on backcross (BC) and F2 population were recently proposed under
the maximum likelihood framework [14–17]. When inbred lines are used, Xie et al. [18]
pointed out that it is more meaningful to inference QTL effect by its variance rather than
by the allele substitution effect. The QTL variance is generally calculated conditional on
the cross, and it, as a variable, is different from one cross to another [18]. In a single-line
cross, the estimated QTL variance cannot be simply extended to a statistical inference space
beyond that [18]. Multiple parental lines are needed for QTL variance inference. A solution
to this is to combine data from multiple line crosses [18]. An IBD-based variance component
method was proposed by Xie et al. [18] with multiple line crosses. Extension of the IBD-
based variance component method with multiple line crosses to iQTL mapping has not been
studied.

Motivated by the limitations of current methods aforementioned and by the pressing
need for efficient iQTL mapping procedure, in this article, we propose a statistical variance
components framework for iQTL mapping by combining data from multiple inbred line
crosses. The proposed model is robust in iQTL variance inference by extending the iQTL
inference space from single-line cross to multiple line crosses. A parent-specific IBD sharing
partition method is proposed by considering the inbreeding structure in line crosses. As
discussed by Cui in [14], the phenotype of an offspring is not only controlled by its own
genetic profiles, but also controlled by maternal genotype. The effect of maternal genotype on
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the phenotype of her offspring, termed maternal effect, is one potential source of confounding
effect in the inference of genomic imprinting. The existence of such parental effect may lead
to incorrect interpretations of imprinting when they are not properly accounted for in the
analysis. Parameters that model the maternal effect are also included and adjusted when
testing imprinting.

With the developed model, we propose an interval-based method for genome-wide
scan and testing of iQTL. Both maximum likelihood (ML) and restricted maximum likelihood
(REML) methods are proposed and compared for parameter estimation and power analysis.
An extension to multiple QTL is also proposed in which the multiple QTL model provides
improved resolution for QTL inference. Extensive simulations are conducted to compare
the performance of the proposed model under different sampling designs with different
combinations of family and offspring size. Coparisons of the ML and REML methods, single
QTL and multiple QTL methods are discussed. The proposed method provides a general
framework in iQTL mapping with multiple line crosses and has significant implications in
real application.

2. Statistical Methods

2.1. Genetic Design

The dissection of imprinting effects in line crosses depends on appropriate mating designs,
where the allele parental origin can be traced and distinguished. Most commonly used inbred
line crosses are the backcross, F2, and recombinant inbred line (RIL). Reciprocal backcross
design has been proposed in iQTL mapping [14, 16]. Considering parental origin of an
allele, we use the subscripts m and f to refer to an allele inherited from the maternal
and paternal parents, respectively. The merit of a backcross design is that two reciprocal
heterozygotes in offsprings, Amaf and amAf , can be distinguished and their mean effects
can be estimated and tested to assess imprinting [14, 16]. While all individuals in an F2

segregation population share the same parental information, theoretically it is impossible
to distinguish the phenotypic distribution of Amaf and amAf without extra information.
Considering sex-specific recombination rates, Cui et al. [15] recently developed an imprinting
model by incorporating this information into an interval mapping framework. No study has
been reported to use RILs for iQTL mapping.

The methods proposed in Cui [14] and Cui et al. [16] are fixed-effects QTL models
where the effects of an iQTL are considered as fixed. While only four backcross families are
considered, when extending to multiple backcross families, the inference of iQTL variance
calculation is less efficient. The variance components method, initially proposed in human
linkage analysis [19], offers a powerful alternative in assessing genomic imprinting [7]. In
this paper, we will extend the variance components method to inbred line populations by
combining different backcross lines to map iQTL.

A typical backcross design often starts with the cross between one of the parental lines
and their F1 progeny to create a segregation population. Then large number of offsprings are
collected for QTL mapping. When imprinting effect is considered, reciprocal backcrosses are
needed. A basic design framework is illustrated in Table 1 in Cui [14]. The two reciprocal
backcrosses are treated as the base mapping units. Multiple backcross families are sampled
based on these four crosses. For simplicity, we sample equal number of families for each
backcross category. For example, a sample of 8 families would require two of each of the
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four backcrosses. Noted that the variance components method assesses the degree of allele
sharing among siblings. When it is applied to inbred line crosses, each backcross population
is considered as one family and different families are considered as independent. For fixed
total sample size, one issue is to assess whether we should sample large number of families
each with small offspring size or small number of families each with large offspring size.
For example, to sample 400 individuals, shall we sample 4 backcross families each with 100
offsprings or 100 families each with 4 progenies or other sampling strategies? The choice of
optimal designs is intensively evaluated through simulations.

2.2. The Mixed-Effect Variance Components Model

Suppose there is a putative QTL with two segregating alleles Q and q, located in an interval
responsible for the variation of a quantitative trait. The phenotype, yik, for individual i
measured in backcross family k(=1, . . . , K) can be written as a linear function of QTL,
polygene, and environmental effects:

yik = μ + aik +Gik + eik, k = 1, . . . , K; i = 1, . . . , nk, (2.1)

where nk is the number of offsprings in the kth backcross family; μ denotes the overall
mean; aik is the random additive effect of the major monogenic QTL assuming normal
distribution with mean zero; Gik is the polygenic effect that reflects the effects of unlinked
genes and is assumed to be normally distributed with mean zero; eik ∼N(0, σ2

e) is the random
environmental error uncorrelated to other effects. The phenotypic variance-covariance for the
kth family can be expressed as

Σk = Πkσ
2
a +Φgσ

2
g + Iσ2

e , (2.2)

where σ2
a and σ2

g are the additive and polygene variances; Πk is a matrix containing the
proportion of marker alleles shared IBD for individuals in the kth backcross family; Φg

is a matrix of the expected proportion of alleles shared IBD; I is the identity matrix. The
calculation of the IBD sharing matrix with inbred lines can be found in Xie et al. [18] which
is based on the Malécot coefficient of coancestry [20].

Noted that a backcross offspring with genotypeQmqf may be obtained by theQQ×Qq
or the Qq × QQ cross. When there is a significant maternal effect, the mean expression for
genotype Qmqf may be different depending on whether its maternal parents carrying QQ or
Qq genotype. As described in Cui [14], maternal effect is one source of potential confounding
factor for genomic imprinting. It should be appropriately modeled and adjusted when testing
imprinting. Here, we model the cytoplasmic maternal effects as fixed effects, and the overall
mean μ is replaced by μk which models the maternal effect of the kth distinct backcross family.

To accommodate parent-of-origin effects, the QTL additive effect (a) can be partitioned
as two terms:

(1) a component that reflects the influence of the QTL carried on the maternally derived
chromosome (am);

(2) a component that reflects the influence of the QTL carried on the paternally derived
chromosome (af).
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The model that accommodates the parent-specific effects can be expressed as

yik = μk + aikm + aikf +Gik + eik, k = 1, . . . , K; i = 1, . . . , nk. (2.3)

Note that the proposed design contains three distinct maternal parent genotypes. Thus the k
maternal effects indexed by μk can be compressed to three distinct maternal effects, instead
of k terms. For data vector y in family k, the above model can be reexpressed as

yk = Xkβ + akm + akf +Gk + ek, k = 1, . . . , K, (2.4)

where Xk is an indicator matrix corresponding to the kth backcross family and β contains
parameters associated with the three maternal effects; akm ∼ N(0,Πm|kσ

2
m), akf ∼ N(0,

Πf |kσ
2
f
), Gk ∼ N(0,Φgσ

2
g), ek ∼ N(0, Iσ2

e), where Πm|k and Πf |k are matrices containing
the proportion of marker alleles shared IBD that are derived from the mother and father,
respectively; Φg is a matrix of the expected proportion of alleles shared IBD; I is the identity
matrix; σ2

m and σ2
f

are the variance of alleles inherited from the maternal and paternal parents,
respectively.

With noninbreeding mapping population, Hanson et al. [7] expressed the phenotypic
variance-covariance for the kth family as

Σk = Πm|kσ
2
m + Πf |kσ

2
f +Φgσ

2
g + Iσ2

e . (2.5)

However, for an inbred mapping population, this IBD-based variance partition method
cannot be directly applied. New method considering the inbreeding structure is needed.

2.3. Parent-Specific Allele Sharing and Covariances between
Two Inbreeding Full-Sibs

Before we get the phenotypic variance-covariance of a pair of individuals i and j, let us first
consider the parent-specific allele sharing status. Within each BC family, there are two alleles
segregating at each locus. Because of inbreeding, the IBD values between two backcross
individuals are different from those calculated from outbred full-sibs. Consider two sibs i
and j in the kth backcross family. Without considering allelic parental origin, Xie et al. [18]
proposed to calculate the IBD value at a QTL as

πij = 2θij =

⎧
⎨

⎩

2 for QQ −QQ,

1 for QQ −Qq or Qq −Qq
(2.6)

with θij being the Malécot coefficient of coancestry [20]. Thus, for an inbred population, πij is
not the actual IBD value between individuals i and j, rather interpreted as twice the coefficient
of coancestry [18, 21]. For individuals with itself,

πii = 1 + Fi =

⎧
⎨

⎩

2 for QQ −QQ,

1 for Qq −Qq,
(2.7)
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Figure 1: Possible alleles-shared IBD for individuals i and j in inbreeding backcross families. Lines indicate
alleles-shared IBD.

where Fi is the inbreeding coefficient for individual i at the QTL. The elements in Φg matrix
are just the expected values of πij and πii which are φij = 5/4 and φii = 3/2 [18].

When allelic parental origin is considered, the IBD sharing matrix can also be
calculated based on the coefficient of coancestry. By definition, the coefficient of coancestry
is defined as the probability that two randomly drawn alleles from individuals i and j are
identical by descent. Figure 1 displays possible alleles shared IBD for sibs drawn in backcross
families. Consider two backcross individuals i (with two alleles Aim and Aif ) and j (with two
alleles Ajm and Ajf ). Define θij as the coefficient of coancestry between individuals i and j. By
definition, θij can be calculated as

θij =
1
4
{

Pr
(
Aim = Ajm

)
+ Pr

(
Aim = Ajf

)
+ Pr

(
Aif = Ajm

)
+ Pr

(
Aif = Ajf

)}

=
1
4
(
θimjm + θimjf + θif jm + θif jf

)
,

(2.8)

where θi·j· can be interpreted as the allelic kinship coefficient, that is, the probability that a
randomly chosen allele from individual i is IBD to a randomly chosen allele from individual
j. Note that the two terms θimjf and θif jm are not distinguishable. However, their sum is unique
and therefore the two terms can be combined as one single term, denoted as θim/jf (= θimjf +
θif jm). After the manipulation, the coefficient of coancestry for individuals i and j can be
expressed as θij = (1/4)(θimjm + θim/jf + θif jf ) which is composed of three components.

Following Xie et al. [18], the alleles shared IBD between individuals i and j can be
expressed as

πij = 2θij

=
1
2
(
θimjm + θim/jf + θif jf

)

= πimjm + πim/jf + πif jf ,

(2.9)

where πimjm = (1/2)θimjm and πif jf = (1/2)θif jf are the alleles shared IBD derived from the
mother and father, respectively; πim/jf = (1/2)θim/jf is the alleles shared IBD due to alleles
cross sharing, a special case for inbreeding sibs. Without inbreeding, πim/jf takes value of
zero.

For completely inbreeding population, the inbreeding coefficient Fi is 1 if alleles
inherited from both parents are the same since these alleles can be traced back to the same
grandparent. For example, for an individual with genotype QmQf , Pr(Qm = Qf) = 1 since
both alleles Qm and Qf are inherited from the same grandparent. Therefore, for individuals
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with itself, πii = 1+Fi would be the same as πij (i /= j) when i and j carry the same genotypes.
The expected proportion of alleles shared IBD φij can also be calculated.

Thus, the proportion of alleles-shared IBD can be partitioned as three components for
inbreeding sibs, rather than two components considering parent-of-origin effects proposed by
Hanson et al. [7]. To further illustrate the idea, we use one backcross family to demonstrate
the derivation. A full list of possible IBD sharing values for the two reciprocal backcrosses is
given in Table 1. Considering a backcross family initiated with the Qq ×QQ cross. Randomly
selecting two individuals i and j with genotype QmQf and QmQf , the Malécot coefficient of
coancestry can be calculated as

πij = 2θij

=
1
2
{

Pr
(
Qim = Qjm

)
+ Pr

(
Qim = Qjf

)
+ Pr

(
Qif = Qjm

)
+ Pr

(
Qif = Qjf

)}

=
1
2
[1 + 1 + 1 + 1]

= 2.

(2.10)

Thus, πimjm = πif jf = 0.5 and πim/jf = 1. For sib pairs i (with genotype QmQf) and j (with
genotype Qmqf), πimjm = 0.5, πif jf = 0 and πim/jf = 0.5, and πij = 1 which is the same as given
in (2.6) without considering parent-of-origin partition.

Considering the allelic sharing status in a complete inbreeding population, the
relationship between the maternal and paternal alleles is no longer independent if the
two alleles are in identical form. There exists a covariance term (denoted as σ2

mf
) due to

alleles cross sharing for two inbreeding full-sibs when calculating the phenotypic variance.
Corresponding to the partition of the IBD-sharing considering allelic parental origin, the
major QTL additive variance component can be partitioned into three components, that is, σ2

f
,

σ2
m, and σ2

mf , in which σ2
mf can be interpreted as the covariance due to alleles cross sharing

in inbreeding families. Thus, the trait covariance between two individuals i and j can be
expressed as

Cov
(
yi, yj

)
= πimjmσ

2
m + πif jf σ

2
f + πim/jf σ

2
mf + φijσ

2
g + Iijσ

2
e , (2.11)

where Iij is an indicator variable taking value 1 if i = j and 0 if i /= j. The variance-covariance
matrix for a phenotypic vector in the kth backcross family can then be expressed as

Σk = Πm|kσ
2
m + Πm/f |kσ

2
mf + Πf |kσ

2
f +Φgσ

2
g + Iσ2

e , (2.12)

where the elements of Πm|k, Πf |k, and Πm/f |k can be found in Table 1.
For noninbreeding sib pairs with random mating, πim/jf = 0 and hence Cov(am, af) =

0. Model (2.12) reduces to
∑

k = Πm|kσ
2
m + Πf |kσ

2
f + Φgσ

2
g + Iσ2

e , the same as the variance
components partition model considering parent-of-origin effects given by Hanson et al. [7].
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Table 1: The IBD sharing coefficients for full-sib pairs in a reciprocal backcross design considering allelic
parental origin.

Offspring Parent-specific IBD sharing Total IBD
Backcross genotype πmm πff πm/f π

QmQf Qmqf QmQf Qmqf QmQf Qmqf QmQf Qmqf

QQ ×Qq QmQf 0.5 0.5 0.5 0 1 0.5 2 1
Qmqf 0.5 0.5 0 0.5 0.5 0 1 1

QmQf qmQf QmQf qmQf QmQf qmQf QmQf qmQf

Qq ×QQ QmQf 0.5 0 0.5 0.5 1 0.5 2 1
qmQf 0 0.5 0.5 0.5 0.5 0 1 1

qmQf qmqf qmQf qmqf qmQf qmqf qmQf qmqf

qq ×Qq qmQf 0.5 0.5 0.5 0 0 0.5 1 1
qmqf 0.5 0.5 0 0.5 0.5 1 1 2

Qmqf qmqf Qmqf qmqf Qmqf qmqf Qmqf qmqf

Qq × qq Qmqf 0.5 0 0.5 0.5 0 0.5 1 1
qmqf 0 0.5 0.5 0.5 0.5 1 1 2

2.4. Likelihood Function and Parameter Estimation

Assuming multivariate normality, the density function of observing a particular vector of
data y for family k is given by

f
(
yk;μk,Σk

)
=

1

(2π)nk/2∣∣Σk

∣
∣1/2

exp
[

− 1
2
(
yk − μk

)TΣk
−1(yk − μk)

]

, (2.13)

where yk = (y1k, . . . , ynkk)
T is an nk × 1 vector of phenotypes for the kth backcross family,

and nk is the kth backcross family size. The overall log likelihood function for K independent
backcross families is give by

� =
K∑

k=1

log
[
f
(
yk;μk,Σk

)]
. (2.14)

Note that the maternal effect μk is the same for families with the same maternal
genotype. Thus, only three maternal effects need to be estimated. Two commonly used
methods can be applied to estimate parameters in a mixed effects model, the ML method
and the REML method. Both methods have been applied in genetic linkage analysis in
a variance components model framework [19, 22]. In general, ML estimators tend to be
downwardly biased given that it does not account for the loss in degrees of freedom resulted
from estimation of the fixed effects [23]. The REML is based on a linear transformation of
the data such that the fixed effects are eliminated from the model, hence it provides less-
biased estimators. Even though standard softwares such as SAS have standard procedures to
estimate parameters for a mixed effects model, the estimation for the proposed model cannot
be directly fitted into a standard software. The estimation procedures for the two methods
are detailed here.
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2.4.1. The ML Estimation

The phenotype vector in the kth backcross family follows a multivariate normal distri-
bution, that is, yk ∼ MVN(Xkβ,Σk). Parameters that need to be estimated are Ω =
(β, σ2

m, σ
2
f , σ

2
mf , σ

2
g, σ

2
e) with β = (μ1, μ2, μ3)

T .

Define σ2 = σ2
m + σ2

f
+ σ2

mf
+ σ2

g + σ2
e , h2

m = (σ2
m/σ

2), h2
f
= (σ2

f
/σ2), h2

mf
= (σ2

mf
/σ2),

h2
g = (σ2

g/σ
2), and h2

e = 1 − h2
m − h2

f − h
2
mf − h

2
g . σ2 is the total phenotypic variance and hence

h2
m and h2

f
can be considered as the heritability of maternaland paternal alleles, h2

m + h2
f
+ h2

mf

is the total genetic heritability due to the major QTL, h2
g is the polygene heritability, and

h2 = h2
m+h2

f
+h2

mf
+h2

g is the overall heritability. The phenotypic variance-covariance between
any two individuals i and j in the kth backcross family can then be reexpressed as

Var

(
yik

yjk

)

= σ2Hij|k, (2.15)

where

Hij|k =

(
δi δij

δij δj

)

(2.16)

with δi = πimimh
2
m + πif if h

2
f
+ πim/if h

2
mf

+ φiih2
g + h2

e; δj is defined similarly; δij = πimjmh
2
m +

πif jf h
2
f + πim/jf h

2
mf + φijh

2
g .

If there are nk sibs in each backcross family, Hk = {Hij|k}nk×nk is simply an
nk × nk matrix. Instead of estimating Ω = (β, σ2

m, σ
2
f
, σ2

mf
, σ2

g, σ
2
e ), we can estimate Ω =

(β, σ2, h2
m, h

2
f , h

2
mf , h

2
g) and solve above equations to get the original variance estimates. Now,

the log-likelihood can be expressed as

�(Ω) =
K∑

k=1

log
[
f
(
yk | Ω

)]
∝ −

K∑

k=1

{
nk
2

logσ2 − 1
2

log
∣
∣Hk

∣
∣ − 1

2σ2

(
yk −Xkβ

)′
H−1

k

(
yk −Xkβ

)
}

.

(2.17)

Maximizing likelihood (2.14) is equivalent to maximize (2.17). Here, we take an
iterated estimation procedure to estimate the parameters contained in Ω. For given values of
h2
m, h

2
f , h

2
mf , h

2
g , we can get the maximum likelihood estimates (MLEs) of parameters (β, σ2)

by setting the partial derivative of the log-likelihood function (2.17) to zero, that is,

β̂ =
K∑

k=1

(
XT
kH

−1
k Xk

)−1(
XT
kH

−1
k yk

)
,

σ̂2 =
1

∑K

k=1
nk

K∑

k=1

(
yk −Xkβ̂

)T
H−1

k

(
yk −Xkβ̂

)
.

(2.18)
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It can be seen that β̂ and σ̂2 are functions of h2
m, h2

f , h2
mf , and h2

g . Plug the updated
parameter values for β and σ2 into likelihood equation (2.17), the log-likelihood function can
be simplified as

�(Ω) =
K∑

k=1

log
[
f
(
yk | Ω

)]
∝ −

K∑

k=1

nk
2

log σ̂2 − 1
2

K∑

k=1

log|Hk|. (2.19)

The simplex algorithm [24] can be applied to maximize the function (2.19) with respect
to parameters h2

m, h2
f , h2

mf and h2
g subject to the the constraints that 0 ≤ h2

m, h
2
f , h

2
mf , h

2
g ≤ 1 and

0 ≤ h2 ≤ 1.
To guarantee a positive definite covariance matrix when searching for these heritability

values over the constraint parameter space, a reparameterization technique is adopted [25].
Taking δij = h2(πimjmγ

2
m + πif jf γ

2
f
+ πim/jf γ

2
mf

+ φijγ2
g), where γ2

m = h2
m/h

2, γ2
f
= h2

f
/h2, γ2

mf
=

h2
mf/h

2, γ2
g = h2

g/h
2, and h2 = h2

m + h2
f + h

2
mf + h

2
g . We now have four new unknowns with the

constraints: 0 ≤ h2 ≤ 1, γ2
m + γ2

f
+ γ2

mf
+ γ2

g = 1, and γ2
m, γ

2
f
, γ2
mf
, γ2
g ≥ 0.

The new constraints can be easily satisfied by a reparameterization technique. Let u,
vm, vf , vmf , and vg be any real numbers. Estimating h2, γ2

m, γ2
f , γ2

mf , and γ2
g can be done by

maximizing the likelihood function (2.19) via searching through the real domain space with
respect to u, vm, vf , vmf , and vg with the reparameterization

h2 =
eu

1 + eu
,

γ2
m =

evm

evm + evf + evmf + evg
,

γ2
f =

evf

evm + evf + evmf + evg
,

γ2
mf =

evmf

evm + evf + evmf + evg
,

γ2
g =

evg

evm + evf + evmf + evg
.

(2.20)

MLEs of h2, γ2
m, γ2

f
, γ2

mf
, and γ2

g can be obtained through the estimated values for u,
vm, vf , vmf , and vg according to the invariance property of MLEs. These estimated MLEs are
used to update h2, h2

m, h2
f
, h2

mf
, and h2

g , and hence σ2 and β. The iteration steps continue until
converge.

2.4.2. The REML Estimation

The REML method was first proposed by Patterson and Thompson [26]. This method has
been broadly applied to estimate variance components in a mixed-effect model framework.
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Taking Ω = (β,Θ), where Θ = (σ2
m, σ

2
f , σ

2
mf , σ

2
g, σ

2
e). The REML method starts with maximizing

the following likelihood function:

�∗(Θ) =
K∑

k=1

log
[
f
(
yk | Θ

)]
= −1

2

K∑

k=1

{
log
∣
∣Σk

∣
∣ + log

(∣
∣X′kΣ

−1
k Xk

∣
∣
)
+ y′kPkyk

}
, (2.21)

where Pk = Σ−1
k −Σ

−1
k Xk(X′kΣ

−1
k Xk)

−1
X′
k
Σ−1
k . We can combine all family data together as oneN×

1 vector denoted as y, where N =
∑K

k=1nk. All the Xk and the variance-covariance matrix
∑

k

corresponding to each family can be combined. The log-likelihood function for the combined
data is expressed as

�∗(Θ) = log
[
f(y | Θ)

]
= −1

2
{

log
∣
∣Σ
∣
∣ + log

(∣
∣X′Σ−1X

∣
∣
)
+ y′Py

}
, (2.22)

where
∑

is a block diagonal matrix with the kth diagonal block
∑

k corresponding to the
kth family and off-diagonal blocks being zeros; P is also a block diagonal matrix with block
elements given by Pk. The dimension of

∑
is N ×N. With this combination, we develop the

following REML estimation procedure.
We apply the Fisher scoring algorithm to estimate the unknowns, which has the form

Θ(t+1) = Θ(t) + I
(
Θ(t))−1 ∂�∗(Θ)

∂Θ
| Θ(t), (2.23)

where I(Θ(t)) is the Fisher information matrix evaluated at Θ(t) which can be expressed as
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The first derivative of the log-likelihood function �∗ with respective to each variance
components is given by

∂�∗

∂σ2
m

= −1
2
(
tr
(
PΠm

)
− yTPΠmPy

)
,

∂�∗

∂σ2
f

= −1
2
(
tr
(
PΠf

)
− yTPΠfPy

)
,

∂�∗

∂σ2
mf

= −1
2
(
tr
(
PΠm/f

)
− yTPΠm/fPy

)
,

∂�∗

∂σ2
g

= −1
2
(
tr
(
PΦg

)
− yTPΦgPy

)
,

∂�∗

∂σ2
e

= −1
2
(
tr
(
PIN

)
− yTPPy

)
.

(2.25)

The REML estimator of β is the generalized least squares estimator, that is,

β̂ =
(
XT Σ̂−1X

)−1
XT Σ̂−1Y. (2.26)

Under the current mapping framework, the likelihood function is very complex and no
global maxima is guaranteed. Thus, initial values are very important. In both ML and REML
estimation procedures, the estimated values under the null are set as the initial parameters
for the alternative model. The additional variance component(s) to be estimated under the
alternative model is(are) set to a small positive number. In this way, we can guarantee that
the alternative model always produces larger likelihood values than the null model does, and
hence positive likelihood ratio value.

2.5. QTL IBD Sharing and Genome-Wide Linkage Scan

The above IBD computation procedure assumes that a putative QTL is located right on a
marker. When a QTL is located within an interval, a more efficient approach would be to
do an interval scan and to test the imprinting property of QTLs at positions across the
entire linkage group. Under the proposed framework, essentially, we need to estimate the
proportion of putative QTL alleles shared IBD at every genome position. Here, we propose
a method to calculate QTL alleles-shared IBD inside an interval conditional on the flanking
markers. The so-called expected conditional IBD values can be derived at each test position as
a function of recombination fraction between the two flanking markers, and the one between
one flanking marker and the QTL.

We use one backcross initiated with the cross QQ × Qq as an example to illustrate
the idea. For a putative QTL with two alleles Q and q, four QTL genotype pairs QQ − QQ,
QQ − Qq, Qq − QQ, and Qq − Qq can be formed. If the QTL genotype is observed, the
corresponding QTL alleles-shared IBD can be calculated (see Table 1). In general, the QTL
genotype is unobservable, but its conditional distribution can be calculated from the two
flanking markers. For individuals i and j with flanking marker genotypes gi and gj , let
πv|GiGj be the IBD values calculated at the QTL position between individual i carrying QTL
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genotype Gi (= 1 or 2 corresponding to QQ or Qq, resp.) and individual j carrying genotype
Gj (similarly 1 or 2), where v = imjm, if jf or im/jf . For example, πimjm|GiGj is the proportion
of IBD sharing between individual i carrying QTL genotype Gi and individual j carrying
genotype Gj for alleles derived from the mother.

Let ϕGi|gi and ϕGj |gj be the conditional distribution of QTL genotype Gi and Gj for
individuals i and j given on the flanking markers gi and gj , respectively. This conditional
probabilities can be easily calculated and can be found at standard QTL mapping literature
(see [27]). The probability to observe πv|GiGj is just ϕGi|giϕGj |gj . Thus, the expected IBD
values between individuals i and j at the tested QTL position conditioning on the flanking
markers gi and gj can be calculated as π̂v = E(πv|GiGj ) =

∑2
Gi=1
∑2

Gj=1πv|GiGjϕGi|giϕGj |gj . For
the above example, the IBD values derived from the maternal and paternal parents can be
calculated as π̂imjm = E(πimjm|GiGj ) = 0.5 ϕ1|giϕ1|gj + 0.5 ϕ1|giϕ2|gj +0.5 ϕ2|giϕ1|gj + 0.5 ϕ2|giϕ2|gj and
π̂if jf = E(πif jf |GiGj ) = 0.5 ϕ1|giϕ1|gj + 0.5 ϕ2|giϕ2|gj . Similarly, we can calculate the conditional
expectation of IBD sharing for other backcross families.

Since ϕGi|gi and ϕGj |gj are functions of recombinations, the conditional QTL IBD values
vary at different testing positions. Once the estimated IBD matrix is calculated at every 1 or
2 cm on an interval bracketed by two markers throughout the entire genome, a grid search
can be done at all testing positions. The amount of support for a QTL at a particular map
position can be displayed graphically through the use of likelihood ratio profiles, which plot
the likelihood ratio test statistic as a function of testing positions of putative QTL (see details
in Section 2.6). The peaks of the profile plot that pass certain significant threshold correspond
to the positions of significant QTL.

2.6. Hypothesis Testing

With the estimated parameters using either the ML or REML method, we are interested in
testing the existence of QTL across the genome and assess their imprinting mechanism. The
first hypothesis is to test the existence of major QTL, termed overall QTL test, which can be
formulated as

H0 : σ2
m = σ2

f
= σ2

mf
= 0,

H1 : at least one parameter is not zero.
(2.27)

Likelihood ratio (LR) test is applied which is computed between the full (there is a
QTL) and the reduced model (there is no QTL) corresponding to H1 and H0, respectively.
Let Ω̃ and Ω̂ be the estimates of the unknown parameters under H0 and H1, respectively. The
log-likelihood ratio can be calculated as

LR1 = −2
[
logL

(
Ω̃ | y

)
− logL

(
Ω̂ | y

)]
. (2.28)

When testing the hypothesis, the polygene and the residual variances are nuisance
parameters which are constrained to be nonnegative. The three tested genetic variance
components under the null are lied on the boundaries of their alternative parameter spaces.
Following Self and Liang [28], when the null is true, LR1 may asymptotically follows a
mixture of χ2 distribution on 0, . . . , 3 degrees of freedom (df) with the mixture proportion
for the χ2

k
components being ( 3

k )2
−3. The theoretical distribution can be used to assess
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significance in linkage scan. However, since there are many point tests across the genome,
the pointwise significance value may not guarantee an appropriate genome-wide error rate.
Another approach to assess significance is to use nonparametric permutation tests in which
the critical threshold value can be empirically calculated on the basis of repeatedly shuffling
the relationships between marker genotypes and phenotypes [29]. In simulation studies, we
also simulate the null distribution and compare it with the theoretical distribution.

For those detected QTL, the next step is to assess their imprinting property. An
identified QTL can be imprinted, completely imprinted, partially imprinted, or not imprinted
at all. These can be tested through the following sequential tests. The first imprinting test is
to assess whether a QTL shows imprinting effect, which can be done by formulating the
following hypotheses:

H0 : σ2
m = σ2

f = σ2, H1 : σ2
m /=σ

2
f . (2.29)

Rejection of H0 provides evidence of genomic imprinting and the QTL is called iQTL.
Again, likelihood ratio test can be applied in which the log-likelihood ratio test statistics
asymptotically follows an χ2 with one df [7]. We denote the log-likelihood ratio test statistic as
LRimp. If the null is rejected, one would be interested to test if the detected iQTL is completely
maternally or paternally imprinted. The corresponding hypotheses can be formulated as

H0 : σ2
m = 0, H1 : σ2

m /= 0 (2.30)

for testing completely maternal imprinting and

H0 : σ2
f = 0, H1 : σ2

f /= 0 (2.31)

for testing completely paternal imprinting. The likelihood ratio test statistics for the above
two tests asymptotically follow a 50 : 50 mixture of χ2

0 and χ2
1 distributions [28]. Rejection of

complete imprinting indicates partial imprinting.

2.7. Multiple QTL Model

In reality, more than one QTL may contribute to the phenotypic variation located in one
chromosome region or across the whole genome. The polygenic effect in model (2.4) absorbs
the effects of multiple QTL located on other chromosomes. However, when there are multiple
QTL located on the same linkage group as the tested QTL, if their effects are not properly
adjusted, the estimation could be biased due to interference caused by these QTL outside of
the testing interval [3, 30–32]. A multiple QTL model that can test the putative QTL effect
while adjusting the effects of interference QTL deserves more attention.

Zeng [32] previously showed that IBD variables share the same property as the
indicator variables in which the shared proportion of alleles IBD for a QTL conditional on the
IBD of one flanking marker is independent of that of a QTL on the other side of that flanking
marker. Thus, conditional on one flanking marker, the interference of QTL located on the
other side of the marker can be eliminated. By conditional on the IBD of the flanking markers,
the IBD sharing of a QTL is uncorrelated with that outside this interval. Xu and Atchley [25]
showed that one marker is enough to block the interference caused by other QTL located on



Journal of Probability and Statistics 15

the same linkage group. The authors derived the next-to-flanking markers structure to block
additional QTL effects from both sides of testing region in one chromosome. We derive a
multiple QTL model adopting a similar idea as Xu and Atchley [25]. Assume there are total S
QTL located on a linkage group. Considering parent-specific allelic effects, the multiple QTL
model can be expressed in general as

yik = μk +
S∑

s=1

aikms +
S∑

s=1

aikfs +Gik + eik, k = 1, . . . , K; i = 1, . . . , nk. (2.32)

In an interval-based linkage scan, only one putative QTL is considered at each testing
position conditioning on the effects of all other QTL. Assuming there are total L and R QTL
located on the left and right sides of the putative QTL on a linkage group, model (2.32) can
be modified as

yik = μk +
L∑

l=1

aikl +
(
aikm + aikf

)
+

R∑

r=1

aikr +Gik + eik, k = 1, . . . , K; i = 1, . . . , nk, (2.33)

where aikl and aikr are the lth and rth QTL random effects on the left and right sides of the
putative QTL, respectively. When testing the putative QTL effect, we are only interested in
blocking the total effects of QTL outside of the tested interval. Therefore, in the modified
model, the effects of QTL outside of the tested interval are not partitioned. This, however,
does not affect the inference of the tested QTL.

As shown by Zeng [32] and Jansen [31, 33], one marker is enough to block the
correlation between a locus on its left and a locus on its right. Therefore, only two additional
markers flanking the current interval are needed to block interference caused by outside QTL
[25]. LetMl andMr denote two flanking markers for the tested interval, andL and R denote
the two markers next to Ml and Ml+1 with the marker order L - Ml - Ml+1 - R. With the
modified model given in (2.33), the covariance of phenotypes between individuals i and j in
the kth backcross family can be expressed as

Cov
(
yik, yjk

)
=

L∑

l=1

Cov
(
aikl, ajkl

)
+ Cov

(
aikm, ajkm

)
+ Cov

(
aikf , ajkf

)
+ Cov

(
aikm, ajkf

)

+
R∑

r=1

Cov
(
aikr , ajkr

)
+ φijσ2

g + Iijσ
2
e

=
L∑

l=1

πl|kσ
2
l + πimjmσ

2
m + πim/jf σ

2
mf + πif jf σ

2
f +

R∑

r=1

πr|kσ
2
r + φijσ

2
g + Iijσ

2
e ,

(2.34)

where πl|k and πr|k are the IBD values for QTL located on the left and right sides of the
putative QTL in the kth backcross family, and can be calculated following (2.6) and (2.7)
if their genotype information is known. Unfortunately, the number and exact locations of
QTL outside the testing interval are unknown. Hence, πl|k and πr|k are not observable. Xu
and Atchley [25] showed that when πl|k and πr|k are unknown, they can be estimated by
some composite terms K(θlL, πL|k) and K(θlR, πR|k), where K(θlL, πL|k) is a function of the
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recombination fraction between the lth QTL and the left marker L as well as a function of
πL|k, the IBD value for a pair of individuals at the left marker L. K(θlR, πR|k) can be similarly
defined. Following Xu and Atchley [25], K(θlL, πL|k) can be expressed as a function of πL|k
multiplied by a function of recombination frequency between the lth QTL and the marker
L, f(θlL), that is, K(θlL, πL|k) = πL|kf(θlL). Similarly, K(θlR, πR|k) = πR|kf(θrR). When doing
an interval scan, the covariance function given in (2.34) between individuals i and j can be
reexpressed as

Cov
(
yik, yjk | πL|k, π̂imjm , π̂im/jf , π̂if jf , πR|k

)

=
L∑

l=1

K
(
θlL, πL|k

)
σ2
l + π̂imjmσ

2
m + π̂im/jf |kσ

2
mf + π̂if jf σ

2
f

+
R∑

r=1

K
(
θlR, πR|k

)
σ2
r + φijσ

2
g + Iijσ

2
e

= πL|k
L∑

l=1

f
(
θlL
)
σ2
l + π̂imjmσ

2
m + π̂im/jf σ

2
mf + π̂if jf σ

2
f

+ πR|k
R∑

r=1

f
(
θrR
)
σ2
r + φijσ

2
g + Iijσ

2
e

= πL|kσ2
L + π̂imjmσ

2
m + π̂im/jf |kσ

2
mf + π̂if if σ

2
f + πR|kσ

2
R + φijσ2

g + Iijσ
2
e .

(2.35)

Instead of estimating individual variance components σ2
l and σ2

r , now we estimate the
composite terms

∑L
l=1f(θlL)σ

2
l = σ2

L and
∑R

r=1f(θrR)σ
2
r = σ2

R. By conditioning the IBD
sharing information for the left and right markers L and R, the effects of those interference
QTL are blocked. σ2

L and σ2
R absorb the random effects of all QTL that are outside of the

testing interval but are on the same linkage group as the putative QTL. Estimation of the
variance components terms follows the same procedure as the single QTL analysis with slight
modification to consider multiple variance components.

3. Results

3.1. Simulation Design

To investigate the performance of the proposed models and estimation methods, we conduct
intensive computer simulations. We start with the single-QTL simulation followed by the
multiple QTL analysis. Six evenly spaced markers (M1 −M6) are simulated. The total length
for the simulated linkage group is 100 cm. We assume that all the backcross families share
the same linkage map constructed using Haldane map function. For simplicity, we assume
the sample size for all backcross families is the same (i.e., nk = n). The position of the
simulated QTL is assumed to be located 48 cm away from the first marker (M1). The effect
of the putative QTL is simulated by assuming different imprinting mechanisms, that is, no
imprinting, completely imprinting, and partial imprinting. Once QTL genotypes are simu-
lated, phenotypes can be simulated by randomly drawing multivariate normal distribution
with the covariance structure given in (2.12) with different parameter combinations.
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To evaluate the effect of family and offspring size combination on testing power
and parameter estimation, we simulate data assuming different sample size combinations.
We fix the total sample size as 400 and vary the family and offspring size with different
combinations, that is, 4×100, 8×50, 20×20, and 100×4. The first number for each combination
indicates the family size. For example, in the combination 4 × 100, 4 families each containing
100 offsprings are simulated. For each sib-pair, the IBD value at a putative position at every
2 cm along the linkage group is calculated as described in Section 2.7. For each simulation
scenario, 100 simulation replications are recorded, and the ML and the REML methods are
used to estimate the unknown parameters.

3.2. Simulation Results

3.2.1. Single QTL Analysis

The single QTL model assumes one QTL is located at the third interval in the simulated
linkage group, 48 cm away from the first marker. Results using both ML and REML
estimation methods are summarized in Table 2. nF denotes the number of families and nk
denotes the number of offsprings for each family. Without loss of generality, we assume equal
offspring size for all families in each simulation scenario. The simulated parameter values
are listed under each parameter. The root mean square errors (RMSEs) are recorded for each
parameter estimate to assess the estimation precision. Overall, the fixed effects (three means)
and most variance components can be better estimated with large number of families. For
example, the RMSE of parameter μ1 is reduced from 1.869 (2.45) to 0.321 (0.305) when the
number of families increases from 4 to 100 with the ML (REML) estimation method. The
only exception is the two variance components terms (σ2

m and σ2
f) which are better estimated

with the 20 × 20 combination design. Through the combination of different line crosses, the
parameter inference space is expanded, and as a result, better estimations are achieved as
expected. However, the QTL position is better estimated with the 8 × 50 and 20 × 20 designs
than the other two among the four simulation scenarios. The 100 × 4 design gives the worst
QTL position estimation with the largest RMSEs for both estimation methods. Therefore,
a balance of family and offspring size is needed. A moderate family size with moderate
offspring size would be necessary in order to achieve reasonable parameter estimation for
both QTL effects and position.

Table 2 also lists the results of power analysis under different scenarios with two
different estimation methods. Power1 denotes the empirical power calculated from the
simulated null distribution corresponding to hypothesis test (2.27). We simulate the null
distribution by simulating data assuming no QTL effect (i.e., σ2

m = σ2
f
= σ2

mf
= 0). The LR

test statistics is calculated for each simulation run, and the 95% cutoff is reported as the
threshold value. Power2 refers to the theoretical power which is calculated assuming the
mixture chi-square distribution, that is, (1/8)χ2

0 + (3/8)χ2
1 + (3/8)χ2

2 + (1/8)χ2
3 [28]. Results

show that the threshold calculated from the theoretical distribution is smaller than the one
calculated from the simulation. Thus, the testing power based on the theoretical cutoff is
greater than the empirical power. The testing powers under different sampling designs are
very comparable except for the 100 × 4 design in which the power is dramatically reduced
compared to other designs. No remarkable difference in power for both estimation methods
is observed. Figure 2 shows the log-likelihood ratio test statistic calculated under the four
sampling designs across the simulated linkage group by using both ML and REML estimation
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Figure 2: The LR profile plot. The left and right figures correspond to the LR profiles generated using the
ML and REML methods, respectively. The arrow indicates the true QTL position.

methods. The plotted LR curve is from averaged LR values out of 100 replications. It is clear
that large offspring size always gives large test statistics. As the family size increases from
4 to 100 and so decreased offspring size, we observe a huge LR value decrease. Clearly, the
100 × 4 design is less powerful than the others. The last column listed in Table 2 shows type
I error for testing genomic imprinting, that is, H0 :σ2

m = σ2
f
. The simulated data assume no

imprinting (σ2
m = σ2

f = 1.5). The imprinting test is only conducted at the position where the
overall QTL test shows significance. The imprinting test statistic LRimp is compared with a
chi-square distribution with 1 df. Overall, the REML estimation method results in smaller
type I error rate than the ML method does. As the number of families increase, type I error
decreases. The 4 ×100 design yields the largest type I error.

In comparison of the ML and REML methods, the REML method gives smaller
estimation biases but larger RMSEs than the ML method does. This reflects the large
variability of the REML estimation. In terms of computation speed, the ML method is faster
than the REML method. For example, in a single-simulation run with the one-QTL model, the
ML method takes about 9 minutes to scan the linkage group compared to 26 minutes with
the REML method. The difference is more remarkable with the multiple QTL model (e.g., 10
minutes for ML versus 43 minutes for REML). Even though the QTL position estimation
is better estimated by using the REML method when family size is small, as family size
increases, the REML method performs worse than the ML method (Table 2). In checking the
LR profile plot in Figure 2 and the power analysis in Table 2, we do not observe significant
gain in power by using the REML method. The two methods do no dominate each other
and are very comparable in power analysis. With large sample size and limited computing
resources, one might want to try the ML method first. However, the REML method is
suggested when testing imprinting since it has small type I error.

In a short summary of the results listed in Table 2, the 8 × 50 and 20 × 20 designs give
better QTL position estimation and testing power. In terms of the type I error for imprinting
test, the 20×20 and 100×4 designs provide reasonable type I error. Thus, a practical guidance
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is to choose the 20 × 20 design, and one should always avoid designs with extremely large or
extremely small family size.

To evaluate the proposed model under different imprinting mechanisms, we
simulated data assuming different degrees of imprinting. Since the results in Table 2 indicate
that a 20 × 20 design provides relatively reasonable parameter estimation, good power, and
small type I error rate for imprinting test, the evaluation of imprinting analysis is thus focused
on this design. The results for 100 simulation replications are summarized in Table 3. Three
imprinting models are assumed complete maternal imprinting (σ2

m = 0 and σ2
f = 3), complete

paternal imprinting (σ2
m = 3 and σ2

f
= 0), and partial maternal imprinting (σ2

m = 1 and
σ2
f
= 2). Both ML and REML estimators are reported. Overall, the two estimation methods

produce very comparable results with less-biased estimations by the REML method as we
expected. All the parameters can be properly estimated with reasonable precision. Large
imprinting power is observed when the variance difference between the two parent-specific
variance components is large. When the difference between the two parent-specific variance
components is reduced, the power to detect imprinting is largely reduced. For example, when
data are simulated assuming complete paternal imprinting, the power is 0.91(0.86) by using
the ML(REML) estimation method. With partially imprinted data, the imprinting power
reduces to 0.24(0.09) by using the ML(REML) method, even though it can be increased by
increasing the offspring sample size (data not shown).

In reality, whether a QTL is imprinted or not is an unknown prior. When a QTL
has Mendelian effect and is not imprinted, is there any power loss by analyzing with the
proposed imprinting model? Or when a QTL is actually imprinted, is there any power loss by
analyzing with regular variance components approach? To answer these two questions, we
simulated data under different scenarios and analyzed with both Mendelian and imprinting
models. The first and second columns in Table 4 refer to the simulation and analysis models,
respectively. M refers to the Mendelian model without variance components partition and
I refers to the imprinting model with allelic-specific partition of the variance components.
For comparison purpose, heritabilities are recorded instead of original variance components
estimates. The polygene and residual variances are fixed as 0.5 (h2

g = 0.083) and 2,
respectively for all the simulation scenarios. We first simulated data with one additive genetic
effect without partitioning variance into allelic-specific components. This is equivalent to
simulate data assuming the Mendelian model. A single additive variance component of 3.5 is
assumed which corresponds to a heritability of h2

a = 0.583. The second scenario is to simulate
data with three allelic-specific variance components. Simulation models I1 and I2 correspond
to a complete maternal imprinting model (i.e., h2

m = 0 and h2
f = 0.5) and a partial maternal

imprinting model (i.e., h2
m = 0.083 and h2

f
= 0.417), respectively. The variance component

σ2
mf is assumed to be 0.5 (h2

mf = 0.083) for I1 and I2. In all the simulations, we use the
20×20 design to make the comparison. Similar results are expected under the other sampling
designs. Since the true variance components values for the imprinting model are unknown
when data are simulated assuming Mendelian effect and vice versa, only standard deviations
for these parameter estimates are recorded (listed as italic font in the parentheses).

The simulation results are summarized in Table 4 analyzed with the ML method. When
the simulated model is Mendelian, QTL position is better estimated with the Mendelian
model than with the imprinting model. No remarkable difference in power is observed for
both models. The estimated parent-specific variances due to maternal and paternal alleles
are almost identical and no imprinting is detected. When data are simulated assuming
imprinting (model I1 and I2), large power is observed when analyzed with the imprinting
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Table 5: The MLEs and REMLs of the QTL position and effect parameters estimated based on 100
simulation replicates for data simulated with two QTL under the 20 × 20 design. The square roots of the
mean squared errors are given in parentheses.

Q1 Q2

Estimation Position σ2
m σ2

f
σ2
mf

Position σ2
m σ2

f
σ2
mf

method 28 cm 0.25 68 cm 0.25
0.75 0.75 0.75 0.75

ML 31.06 0.960 0.819 0.381 64.560 0.806 0.891 0.414
(12.825) (0.760) (0.693) (0.533) (12.126) (0.552) (0.679) (0.646)

REML 32.32 0.949 0.924 0.440 64.60 0.943 1.002 0.461
(13.951) (0.739) (0.686) (0.678) (12.169) (0.713) (0.711) (0.601)

1.5 0 0.75 0.75
ML 29.52 1.568 0.210 0.601 63.86 1.210 0.532 0.533

(12.153) (0.872) (0.382) (0.836) (11.913) (0.932) (0.572) (0.847)
REML 31.22 1.668 0.282 0.433 64.16 1.355 0.665 0.529

(12.557) (0.881) (0.457) (0.598) (13.030) (1.128) (0.554) (0.650)

Q1 and Q2 refer to two QTL located at 28 cm and 68 cm.

model. For example, the power is 86% when analyze the I1 imprinting data by the Mendelian
model. The power is increased to 95% when data are analyzed by the imprinting model.
When imprinting data are analyzed with the Mendelian model, the major QTL variance
is underestimated, and the polygene variance is slightly overestimated. No remarkable
differences are observed for the estimation of the three fixed mean effects and the residual
variance under all simulation cases. In any case, the imprinting model performs better or no
worse than the Mendelian model in terms of power. In checking type I error rate based on
the theoretical threshold, we find the imprinting model has slightly higher type I error rate
compared with the Mendelian model. In real data analysis, it is more important to control the
false negatives than the false positives. Thus, it is safe to apply the imprinting model for data
with any inheritance pattern in this regard.

3.2.2. Multiple QTL Analysis

To see the relative merit of multiple QTL analysis against single QTL analysis when multiple
QTL are located on the same linkage group, two QTL are simulated with QTL 1 (denoted
as Q1) located at the second interval, 28 cm away from the first marker (M1), and QTL
2 (denoted as Q2) located at the fourth interval, 68 cm away from the first marker. Two
simulation scenarios are considered. The first scenario considers two nonimprinted QTL with
equal genetic effects. The second scenario assumes Q1 is imprinted and Q2 is not imprinted.
Simulated parameters for the two QTL are listed in Table 5. Data are simulated assuming the
20×20 design. Parameters are estimated by the ML and REML approaches with 100 replicates.

Figure 3 shows the LR profile plots for the single and multiple QTL analyses. The
single QTL model indicates three major peaks. The highest peak for the single QTL analysis
is located at the wrong QTL interval where no QTL is assumed. The so-called “ghost image”
of QTL can be removed and the positions of the two QTL can be precisely mapped on
the chromosome by the multiple QTL model. Two clear peaks indicating the correct QTL
positions (arrow signs) are observed by the multiple QTL analysis. However, we observe a
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Figure 3: The LR profile plot for single QTL and multiple QTL analyses. The true QTL positions are
simulated at 28 cm and 68 cm (see the arrow sign). The dotted curve and the solid curve represent the
LR profiles by single QTL and multiple QTL analyses, respectively. The left and right figures correspond
to the LR profiles generated using the ML and REML methods, respectively.

remarkable reduction in LR values by multiple QTL analysis compared to those by the single
QTL analysis. Since the threshold for multiple QTL analysis is unknown, we cannot make
the conclusion that multiple QTL analysis is less powerful than the single QTL analysis. It
is possible that we may gain accuracy in QTL position estimation at the cost of power loss.
Similar phenomenon and issues were also observed and discussed in the literature [3, 25].

The results of the multiple QTL analysis are summarized in Table 5. The fixed mean
effects, the polygene, and residual variance components can be reasonably estimated with
small RMSEs, similar results shown in Table 2 for the 20 × 20 design and hence are not
reported here. Only the genetic factors for the two simulated QTLs are reported. It can be
seen that both ML and REML methods provide reasonable parameter estimates and are very
comparable. Under the first simulation scenario in which both QTL are not imprinted, the
genetic effects are all slightly overestimated by both methods. This might be due to the
interference of the two QTL in the same linkage group. The multiple QTL model may not
completely block the effects of QTL outside of the tested interval. For the second simulation
scenario, an interesting pattern is observed. When one QTL is imprinted (Q1), the maternal
and paternal variance components for the second one (Q2) tend to be estimated with bias in
the direction as the first imprinted QTL, that is, σ2

m tends to be overestimated and σ2
f

tends
to be underestimated. As we gain accuracy in QTL position estimation, we lose precision for
the parameter estimation. These effects are expected as described in Zeng [3] and Xu and
Atchley [25]. More investigations are needed in multiple QTL analysis in order to maintain a
good balance of QTL position and parameter inference.

4. Discussion

Statistical methods assuming fixed effect models for iQTL mapping in controlled outbred and
inbred lines have been proposed (e.g., [11, 14–16]). Considering the limitation of fixed-effect
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models, a random model that estimates the QTL variance by extending single line cross to
multiple line crosses should be more powerful in QTL variance inference [18]. The IBD-based
variance components method assuming random genetic effect for iQTL mapping has been
developed in human linkage analysis [7]. However, no study has been proposed to map iQTL
using variance components method with inbred or partially inbred line cross. In this article,
we have first time presented an IBD-based variance components framework to search for the
existence and distribution of iQTL throughout the entire genome in multiple experimental
line crosses. The idea of the method is demonstrated through a backcross design. It can also
be extended to multiple F2 line crosses using the sex-specific recombination information as
proposed by Cui et al. [15].

The key point of the proposed iQTL variance components analysis is to partition
the additive genetic variance into parent-specific components. We have proposed a new
parent-specific allelic sharing method which characterizes the relatedness of parent-specific
alleles between pairs of individuals in a backcross pedigree. The calculation of parent-specific
allelic sharing is based on the information of the coefficient of coancestry. More complicated
calculation of the coefficient of coancestry can be found at Harris [21]. The quantification of
the coefficient of the coancestry proposed by Harris [21] can also be utilized to calculate the
parent-specific IBD sharing in an inbred human population, and thus for iQTL mapping in
inbred human populations.

There have been extensive studies in the literature about various methods in the
estimation of variance components in a mixed-effect model framework. The ML and REML
are two commonly applied methods in variance components estimation with less-biased
estimation by the REML method. Simulations show that the ML method yields high precision
in parameter estimation but with relatively large bias than the REML method. Power analysis
indicates that the ML method is a little more powerful than the REML method but with large
type I error when testing imprinting. In terms of computing speed, the ML method is faster
than the REML method. Thus, no single method dominates the other. In terms of overall QTL
test, we suggest to use the ML method for the genome-wide linkage scan and use the REML
method for the imprinting test.

The effect of sampling design is investigated by extensive simulations. Results indicate
that one can always achieve large power with large offspring size when the total sample size
is fixed. The LR value differences under different sampling designs are shown in Figure 2.
However, the combination of small families each with large offsprings gives poor parameter
estimation and large type I error for imprinting test (Table 2). As the number of families
increase, we observe less-biased parameter estimates for both fixed and random effects, but
with poor QTL position estimation and small power. This information implies that it is
necessary to enlarge the number of families to improve precision of parameter estimation.
Meanwhile, a balance of family and offspring size is needed to maintain good QTL detection
power and position estimation. Our simulations indicate that for a fixed total sample size
(n = 400), both 8 × 50 and 20 × 20 designs yield comparable results and both designs
outperform the other two designs (Table 2). Moreover, the 20 × 20 design produces relatively
small type I error in imprinting test. With the 20×20 design, results in Table 4 indicate that the
imprinting model is better or as good as the regular Mendelian analysis without considering
imprinting. In real data analysis, it should be safe to apply the proposed imprinting model
for data with any imprinting pattern.

In this study, we have extended the single marker-based analysis to an interval-based
mapping for genome-wide scan and testing of iQTL effects. Considering the interference of
QTL located on the same linkage group, we have extended the single QTL model to multiple
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QTL analysis following the derivation of Xu and Atchley [25]. Simulation results indicate
the relative merits of the multiple QTL analysis with improved QTL position inference, but
with possible power loss (Figure 3). This, however, has been a common issue in multiple
QTL modeling (see [3, 25]). More investigations are needed in deriving efficient and robust
multiple QTL mapping models to improve precision without suffering too much from power
loss.

The theoretical distribution for the likelihood ratio test has been a challenging problem
in QTL mapping. Dupuis and Siegmund [34] first proposed theoretical properties for LR
test statistics in a genome-wide linkage scan for QTL in an interval mapping framework
with a fixed-effect model. Currently, most linkage analysis using the variance components
method assumes that the LR test statistic follows a mixture of chi-square distribution [35].
The mixture distribution is derived following Self and Liang [28]. With multiple testings and
multiple nuisance parameters in a genome-wide scan, the assumptions to get the mixture chi-
square distribution may not satisfy. Moreover, the multivariate normal assumption for the
phenotypic data required to get the mixture distribution may not even valid. No theoretical
work has been done to investigate this in an IBD-based variance components linkage
mapping. Our simulations indicate that the theoretical threshold calculated from the mixture
chi-square distribution is smaller than the simulated cutoff. Thus, the power calculated with
the theoretical threshold is slightly inflated. A modified mixture chi-quare distribution may
be more appropriate. More theoretical investigations are needed in this regard.
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