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1. Introduction

Forward evolution of large populations in genetics has a long history, starting in the 1920s; it
is closely attached to the names of R. A. Fisher and S. Wright; see Nagylaki [1] for historical
commentaries and on the role played by the French geneticist G. Malécot, starting shortly
before the second world war. The book of Ewens [2] is an excellent modern presentation of
the current mathematical theory. Coalescent theory is the corresponding backward problem
obtained while running the forward evolution processes backward in time. It was discovered
independently by several researchers in the 1980s, but definitive formalization is commonly
attributed to Kingman [3]. Major contributions to the development of coalescent theory were
made (among others) by P. Donnelly, R. Griffiths, R. Hudson, F. Tajima, and S. Tavaré (see
the course of Tavaré in Saint-Flour [4] for a review). It included incorporating variations
in population size, mutation, recombination, selection, and so forth. In (1999), Pitman [5]
and Sagitov [6], independently, introduced coalescent processes with multiple collisions
of ancestral lineages. Shortly later, the full class of exchangeable coalescent processes with
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simultaneous multiple mergers of ancestral lineages was discovered by Möhle and Sagitov
[7], and Schweinsberg [8]. All these recent developments and improvements concern chiefly
the discrete neutral case and its various scaling limits in continuous time and/or space.
As was shown by Möhle [9, 10], neutral forward and backward theories learn much from
one another by using a concept of duality introduced by Liggett [11]. Backward theory
in the presence of mutations in the forward process is well understood, as it requires the
study of a marked Kingman’s tree (see Tavaré [4], for a review). In the works of Neuhauser
and Krone [12], there is also some use of the duality concept in an attempt to understand
the genealogies of a Wright-Fisher diffusion (as a limit of a discrete Wright-Fisher model)
presenting a selection mechanism; this led these authors to the idea of the ancestral selection
graph extending Kingman’s coalescent tree of the neutral theory; see also Huillet [13] for
related objectives in the context of Wright-Fisher diffusions with and without drifts. There is,
therefore, some evidence that the concept of duality could help one understand the backward
theory even in nonneutral situations when various evolutionary forces are the causes of
deviation to neutrality (see Crow andKimura [14], Maruyama [15], Gillespie [16], and Ewens
[2], for a discussion on various models of utmost interest in population genetics).

In this note, we focus on discrete nonneutral Wright-Fisher (WF) models and on the
conditions on the bias probabilities under which forward branching population dynamics is
directly amenable to a dual discrete ancestral coalescent. We emphasize that duality formulae
still are of great use when considering discrete nonneutral Wright-Fisher models, at least for
specific deviation forces to neutrality. It is shown that it concerns a large class of nonneutral
models involving completely monotone bias probabilities. Several classical examples are
supplied in the light of complete monotonicity. In the process leading us to focus on these
peculiar bias models, some unsuspected evolutionary mechanisms of potential interest are
introduced and discussed, as suggested by elementary algebra on completely monotone
functions. We emphasize that the relevance of these novel bias mechanisms in Biology seems
to deserve additional work and confrontation with real-world problems is urged for to
pinpoint their biological significance.

We will finally briefly outline the content of this manuscript. Section 2 is designed to
fix the background and ideas. We introduce some basic facts about the discrete-time forward
(Section 2.2) and backward processes (Section 2.3) arising from exchangeable reproduction
laws (Section 2.1). In Section 2.4, we introduce a concept of duality and briefly recall
its relevance to the study of the neutral case problem. The basic question we address
in subsequent sections is whether this notion of duality still makes sense in nonneutral
situations. We start supplying important nonneutral examples in Section 3. In Section 4, we
show that duality does indeed make sense in the framework of discrete nonneutral Wright-
Fisher models, but only for the class of completely-monotone state-dependent transition
frequencies. In Section 5, we show that most nonneutrality mechanisms used in the literature
fall within this class, or are amenable to it via some “reciprocal transformation,” starting with
elementary mechanisms and ending up with more complex ones. In Section 6, we show that
duality can be used in nonneutral situations to compute the extinction probabilities (invariant
measure) of the dual backward ancestral processif one knows the invariant measure (resp.,
extinction probabilities) of the forward branching process.

2. Discrete-Time Neutral Coalescent

In this section, to fix the background and notations, we review some well-known facts from
the cited literature.
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2.1. Exchangeable Neutral Population Models:
Reproduction Laws (the Cannings Model [17])

Consider a population with nonoverlapping generations r ∈ Z.Assume the population size is
constant, say n (n individuals (or genes)) over generations. Assume the random reproduction
law at generation 0 is νn := (ν1,n, . . . , νn,n), satisfying

n∑

m=1

νm,n = n. (2.1)

Here, νm,n is the number of offspring of gene m. We avoid the trivial case: νm,n = 1, m =
1, . . . , n. One iterates the reproduction over generations, while imposing the following
additional assumptions:

(i) exchangeability: (ν1,n, . . . , νn,n)
d= (νσ(1),n, . . . , νσ(n),n), for all permutations σ ∈ Sn;

(ii) time-homogeneity: reproduction laws are independent and identically distributed
(iid) at each generation r ∈ Z.

This model, therefore, consists of a conservative-conditioned branching Galton-Watson
process in [n]Z, where [n] := {0, 1, . . . , n} (see Karlin-McGregor [18]).

Famous reproduction laws are as follows.

Example 2.1. The multinomial Dirichlet model: νn
d∼ Multin-Dirichlet (n; θ), where θ > 0

is a disorder parameter. With kn := (k1, . . . , kn), νn admits the following joint exchangeable
distribution on the simplex |kn| :=

∑n
m=1km = n:

Pθ

(
νn = kn

)
=

n!
[nθ]n

n∏

m=1

[θ]km
km!

, (2.2)

where [θ]k = θ(θ+1) · · · (θ+k−1) is the rising factorial of θ. This distribution can be obtained
by conditioning n independent mean 1 Pòlya distributed random variables ξn = (ξ1, . . . , ξn)

on summing to n, that is to say, νn
d= (ξn | |ξn| = n),where

Pθ

(
ξ1 = k

)
=

[θ]k
k!

(1 + θ)−k
(

θ

1 + θ

)θ

, k ∈ N. (2.3)

When θ ↑ ∞, this distribution reduces to the Wright-Fisher model for which νn
d∼

Multin(n; 1/n, . . . , 1/n). Indeed, νn admits the following joint exchangeable multinomial
distribution on the simplex |kn| = n:

P∞
(
νn = kn

)
=

n!·n−n
∏n

m=1 km!
. (2.4)
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This distribution can be obtained by conditioning n independent mean 1 Poisson distributed

random variables ξn = (ξ1, . . . , ξn) on summing to n : νn
d= (ξn | |ξn| = n). When n

is large, using Stirling formula, n!∼√
2πnn+1/2e−n; it follows that νn

d→
n↑∞

ξ∞ with joint

finite-dimensional law: P(ξn = kn) =
∏n

m=1(e
−1/km!) = (e−n/

∏n
m=1km!) on N

n. Thanks to
the product form of all finite-dimensional laws of ξ∞, we get an asymptotic independence
property of νn.

Example 2.2. In the Moran model, νn
d∼ random permutation of (2, 0, 1, . . . , 1). In such a

model, only one new gene per generationmay come to life, at the expense of the simultaneous
disappearance of some other genes.

2.2. Forward in Time Branching Process

Take a subsample of size m from [n] := {0, 1, . . . , n} at generation 0. Let

Nr(m) = # offspring at generation r ∈ N+, forward in time. (2.5)

This sibship process is a discrete-time homogeneous Markov chain, with transition
probability

P
(
Nr+1(m) = k′ | Nr(m) = k

)
= P
(
ν1,n + · · · + νk,n = k′). (2.6)

It is a martingale, with state space {0, . . . , n}, initial state m, absorbing states {0, n}, and
transient states {1, . . . , n − 1}. The first hitting time of boundaries {0, n}, which is τ(m) =
τ{0}(m) ∧ τ{n}(m), is finite with probability 1 and has finite mean. Omitting reference to
any specific initial condition m, the process (Nr ; r ∈ N) has the transition matrix Πn with
entries Πn(k, k′) = P(ν1,n + · · · + νk,n = k′) given by (2.6). We have Πn(0, k′) = δ0,k′ and
Πn(n, k′) = δn,k′ , and Πn is not irreducible. However, Πn is aperiodic and (apart from
absorbing states) cannot be broken down into noncommunicating subsets; as a result it is
diagonalizable, with eigenvalues |λ0| ≥ |λ1| ≥ · · · ≥ |λn| and 1 = λ0 = λ1 > |λ2|.

Example 2.3 (Dirichlet binomial). With U a (0, 1)-valued random variable with density
beta(kθ, (n − k)θ)

P
(
ν1,n + · · · + νk,n = k′) =

(
n
k′

) [kθ]k′
[
(n − k)θ

]
n−k′

[nθ]n

= E

[(
n
k′

)
Uk′

(1 −U)n−k
′
]
,

(2.7)

which is a beta mixture of the binomial distribution Bin(n, u).

Example 2.4. The Wright-Fisher model has a Bin(n, k/n) transition matrix

P
(
Nr+1(m) = k′ | Nr(m) = k

)
=
(
n
k′

)(
k

n

)k′(
1 − k

n

)n−k′

. (2.8)
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Remark 2.5 (statistical symmetry). Due to exchangeability of the reproduction law, neutral
models are symmetric in the following sense. The transition probabilities of Nr(m) := n −
Nr(m) are equal to the transition probabilities of Nr(m).

2.3. Backward in Time Process (Neutral Coalescent)

The coalescent backward process can be defined as follows. Take a subsample of size m from
[n] at generation 0. Identify two individuals from [m] at each step if they share a common
ancestor one generation backward in time. This defines an equivalence relation between 2
genes from the set [m]. Define the induced ancestral backward process

Ar(m) ∈ Em = {equivalence classes (partitions) of [m]}, r ∈ N, backward in time. (2.9)

The ancestral process is a discrete-time Markov chain with transition probability:

P
(Ar+1(m) = α | Ar(m) = β

)
= Pβ;α; with (α, β) ∈ Em, α ⊆ β, (2.10)

where, with a = |α| = number of equivalence classes of α, b = |β| = number of equivalence
classes of β, ba := (b1, . . . , ba) clusters sizes of β, and (m)a := m(m − 1) · · · (m − a + 1) a falling
factorial

Pβ;α = P
(n)
b;a

(
ba

)
=

(n)a
(n)b

E

(
a∏

l=1

(
νl,n
)
bl

)
(2.11)

is the probability of a ba-merger. This is the probability that b randomly chosen individuals
out of n have a ≤ b distinct parents, c merging classes and cluster sizes b1 ≥ · · · ≥ bc ≥ 2,
bc+1 = · · · = ba = 1.

If c = 1 a unique multiple collision occurs of order b1 ≥ 2.

If b1 = 2 a simple binary collision occurs involving only two clusters.

If c > 1, simultaneous multiple collisions of orders b1 ≥ · · · ≥ bc ≥ 2 occur.

Thus, the jump’s height of a transition b → a is b − a =
∑c

i=1(bi − 1), corresponding to a
partition of integer b − a into c summands, each ≥1.

The chain’s state-space is {equivalence relations on (partitions of) {1, . . . , m}}; it has
dimension Bm :=

∑m
l=0Sm,l (a Bell number), where Sm,l are the second-kind Stirling numbers.

The chain has initial state A0 = {(1), . . . , (m)}, and terminal absorbing state
{(1, . . . , m)}.

Examples

From the Dirichlet Example 2.3, we get, P (n)
b;a (ba) = ((n)a/[nθ]b)

∏a
m=1 [θ]bm .

From the WF Example 2.4: In this case, P (n)
b;a (ba) = (n)a/n

b is the uniform distribution
on {ba : b1 + · · · + ba = b}.
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The ancestral count process

Let

Ar(m) = # ancestors at generation r ∈ N, backward-in-time.

Then:Ar(m) = # blocks of Ar(m).
(2.12)

The backward ancestral count process is a discrete-time Markov chain with transition
probabilities [17, 19]

P
(
Ar+1(m) = a | Ar(m) = b

)
= P

(n)
b,a

:=
b!
a!

∑

b1,...,ba∈N+
b1+···+ba=b

P
(n)
b;a

(
ba

)

b1! · · · ba! .

=

(
n
a

)
( n
b

)
∑

b1,...,ba∈N+
b1+···+ba=b

E

(
a∏

l=1

(
νl,n
bl

))
.

(2.13)

This Markov chain has state-space {0, . . . , m}, initial state m, absorbing states {0, 1}. The
process (Ar ; r ∈ N) has the transition matrix Pn with entries Pn(b, a) = P

(n)
b,a given by (2.13).

Note, by inclusion-exclusion principle, the alternative alternating expression of P (n)
b,a :

P
(n)
b,a :=

(
n
a

)
( n
b

)
a∑

m=0

(−1)a−m
(
a
m

)
E

((
ν1,n + · · · + νm,n

b

))
. (2.14)

2.4. Duality (Neutral Case)

We start with a definition of the duality concept which is relevant to our purposes.

Definition 2.6 (see [11]). Two Markov processes (X1
t , X

2
t ; t ≥ 0), with state-spaces (E1,E2), are

said to be dual with respect to some real-valued function Φ on the product space E1 × E2 if
∀x1 ∈ E1, ∀x2 ∈ E2, ∀t ≥ 0:

Ex1Φ
(
X1

t , x2
)
= Ex2Φ

(
x1, X

2
t

)
. (2.15)

We then recall basic examples of dual processes from the neutral and exchangeable
population models (Möhle [10]). The neutral forward and backward processes (Nr,Ar ; r ∈
N) introduced in the two preceding subsections are dual with respect to the hypergeometric
sampling without replacement kernels

(i) Φ1
n(m, k) =

(m
k

)
( n
k

) ,

(ii) Φ2
n(m, k) =

(
n−m
k

)
( n
k

) on {0, . . . , n}2.
(2.16)
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Namely, (i) reads

Em

⎡

⎣
(Nr

k

)

( n
k

)

⎤

⎦ = Ek

[( m
Ar

)

( n
Ar

)

]

= Ek

[( n−Ar

n−m
)

( n
n−m
)
]
.

(2.17)

Call type A individuals the descendants of the m first chosen individuals (allele A) in the
study of the forward process; type a individuals are the remaining ones (allele a). The left-
hand-side of the above equality is an expression of the probability that k-samples (without
replacement) from population of size Nr at time r are all of type A, given N0 = m. If these
k-samples are all descendants ofAr ancestors at time −r, this probability must be equal to the
probability that a (n −m)-sample from population of size Ar at time −r are all of type a. This
is the meaning of the right-hand-side.

Moreover, (ii) reads

Em

⎡

⎣
( n−Nr

k

)

( n
k

)

⎤

⎦ = Ek

[( n−m
Ar

)

( n
Ar

)

]

= Ek

[( n−Ar

m

)
( n
m

)
]
.

(2.18)

The left-hand-side is the probability that a k-sample (without replacement) from population
of size Nr at time r are all of type a, given N0 = m. If these k-samples are all descendants of
Ar ancestors at time −r, this probability must be equal to the probability thatm-samples from
population of size Ar at time −r are themselves all of type a.

With P ′
n the transpose of Pn, a one-step (r = 1) version of these formulae is

(i) ΠnΦ1
n = Φ1

nP
′
n,

(ii) ΠnΦ2
n = Φ2

nP
′
n,

(2.19)

where (Φ1
n,Φ

2
n) are n × n matrices with entries Φ1

n(m, k) and Φ2
n(m, k), respectively, and

(Πn, Pn) the transition matrices of forward and backward processes. Note that the matrix
Φ2

n is symmetric and left-upper triangular. The matrices Φ1
n and Φ2

n are both invertible, with
respective entries

[
Φ1

n

]−1
(i, j) = (−1)i−j

(
i

j

)(
n

i

)
,

[
Φ2

n

]−1
(i, j) = (−1)i+j−n

(
i

n − j

)(
n

i

)

= (−1)i+j−n
(

j

n − i

)(
n

j

)
.

(2.20)
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The matrix [Φ1
n]

−1 is left-lower triangular, while [Φ2
n]

−1 is symmetric right-lower triangular.
Thus,

(i)
[
Φ1

n

]−1
ΠnΦ1

n = P ′
n,

(ii)
[
Φ2

n

]−1
ΠnΦ2

n = P ′
n.

(2.21)

In any case, being similar matrices, Πn and P ′
n (or Pn) both share the same eigenvalues. If Rn

diagonalizing Πn is known so that R−1
n ΠnRn = Λn := diag (λ0, . . . , λn), the diagonal matrix of

the eigenvalues ofΠn, then, withΦn = Φ1
n orΦ

2
n, R̃n := Φ−1

n Rn diagonalizes P ′
n and is obtained

for free (and conversely). Rn is the matrix whose columns are the right-eigenvectors of Πn

and R̃n is the matrix whose columns (rows) are the right eigenvectors (left-eigenvectors) of
P ′
n (of Pn). Similarly, if Ln is the matrix whose rows are the left eigenvectors ofΠn, L̃n := LnΦn

is the matrix whose rows (columns) are the left eigenvectors (right eigenvectors) of P ′
n (of

Pn). With l′k the kth row of Ln and rk the kth column of Rn, the spectral decomposition of Πn

is

Πr
n =

n∑

k=0

λrk
rkl

′
k

l′krk
, r ∈ N, (2.22)

whereas, with l̃k the kth column of L̃n and r̃ ′k the kth row of R̃n, the one of Pn reads

Pr
n =

n∑

k=0

λrk
l̃kr̃

′
k

r̃ ′kl̃k

=
n∑

k=0

λrk
Φ′

nlk
(
Φ−1

n rk
)′

(
Φ−1

n rk
)′
Φ′

nlk
, r ∈ N.

(2.23)

In Möhle [10], a direct combinatorial proof of the duality result can be found (in the general
exchangeable or neutral case); it was obtained by directly checking the consistency of (2.6),
(2.13), and (2.16).

The duality formulae allow one to deduce the probabilistic structure of one process
from the one of the other. The question we address now is does duality still make sense in
nonneutral situations? We will see that it does in discrete nonneutral Wright-Fisher models,
but only for some class of state-dependent transition frequencies.

3. Beyond Neutrality (Symmetry Breaking)

Discrete forward nonneutral models (with nonnull drifts) can be obtained by substituting

k −→ np

(
k

n

)
in P

(
ν1,n + · · · + νk,n = k′), (3.1)
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where

p(x) : x ∈ (0, 1) −→ (0, 1) is continuous, increasing, with p(0) = 0, p(1) = 1. (3.2)

p(x) is the state-dependent Bernoulli bias probability different from identity x (as in neutral
case).

When particularized to the WF model, this leads to the biased transition probabilities

P
(
Nr+1(m) = k′ | Nr(m) = k

)
=
(
n
k′

)
p

(
k

n

)k′(
1 − p

(
k

n

))n−k′

. (3.3)

In this binomial n-sampling with replacement model, a type A individual is drawn with
probability p(k/n)which is different from the uniform distribution k/n due to bias effects.

From this, we conclude (a symmetry breaking property) the following: the transition
probabilities of Nr(m) := n −Nr(m), r ∈ N are

Bin
(
n, 1 − p

(
1 − k

n

))
/=Bin

(
n, p

(
k

n

))
, (3.4)

and so, no longer coincide with the ones of (Nr(m); r ∈ N). The process Nr(m), r ∈ N

no longer is a martingale. Rather, if x → p(x) is concave (convex), Nr(m), r ∈ N is a
submartingale (supermartingale) because E(Nr+1(m) | Nr(m)) = np(Nr(m)/n) ≥ Nr(m)
(resp., ≤ Nr(m)).

In the binomial neutral Wright-Fisher transition probabilities, we replaced the success
probability k/n by a more general function p(k/n). However, this replacement leaves open
the question what model is in the background and what quantity the process (Nr, r ∈ N)
really counts? A concrete model in terms of offspring variables must be provided instead. To
address this question, we emphasize that the reproduction law corresponding to the biased

binomial model is multinomial and asymmetric, namely, νn
d∼ Multin(n;πn), where πn :=

(π1,n, . . . , πn,n) and πm,n = p(m/n) − p((m − 1)/n), m = 1, . . . , n. We note that under our
hypothesis,

n∑

m=1

πm,n = p(1) − p(0) = 1. (3.5)

Due to its asymmetry, the law of the biased νn no longer is exchangeable.
We now recall some well-known bias examples arising in population genetics.

Example 3.1 (homographic model, selection). Assume

p(x) =
(1 + s)x
1 + sx

, (3.6)

where s > −1 is a selection parameter. This model arises when gene A (resp., a), with
frequency x (resp., 1 − x), has fitness 1 + s (resp., 1). The case s > 0 arises when gene of
type A is selectively advantageous, whereas it is disadvantageous when s ∈ (−1, 0).
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Example 3.2 (selection with dominance). Assume

p(x) =
(1 + s)x2 + (1 + sh)x(1 − x)

1 + sx2 + 2shx(1 − x)
. (3.7)

In this model, genotype AA (resp., Aa and aa), with frequency x2 (resp., 2x(1 − x) and
(1 − x)2) has fitness 1 + s (resp., 1 + sh and 1). h is a measure of the degree of dominance
of heterozygote Aa. We impose s > −1 and sh > −1. Note that the latter quantity can be put
into the canonical form of deviation to neutrality:

p(x) = x + sx(1 − x)
h − x(2h − 1)

1 + sx2 + 2shx(1 − x)
, (3.8)

where the ratio appearing in the right-hand-side is the ratio of the difference of marginal
fitnesses ofA and a to their mean fitness. The case h = 1/2 corresponds to balancing selection
with p(x) = x + (s/2)(x(1 − x)/(1 + sx)).

Example 3.3 (quadratic model). With c ∈ [−1, 1], a curvature parameter, one may choose

p(x) = x(1 + c − cx). (3.9)

If c = 1, p(x) = x(2 − x) = 1 − (1 − x)2, this bias appears in a discrete 2-sex population model
[9, 10]. We will give below an interpretation of this quadratic model when c ∈ (0, 1] in terms
of a joint one-way mutations and neutrality effects model.

We can relax the assumption p(0) = 0, p(1) = 1 by assuming 0 ≤ p(0) ≤ p(1) ≤ 1,
p(1) − p(0) ∈ [0, 1).

Example 3.4 (affine model). Take, for example,

p(x) = (1 − μ2)x + μ1(1 − x), (3.10)

where (μ1, μ2) are mutation probabilities, satisfying μ1 ≤ 1−μ2. It corresponds to the mutation

scheme a
μ1

�
μ2

A. To avoid discussions of intermediate cases, we will assume that p(0) = μ1 > 0

and p(1) < 1 (μ2 > 0). In this case, the matrix Πn is irreducible and even primitive and all
states of thisMarkov chain are now recurrent.We have P(Nr+1 > 0 | Nr = 0) = 1−(1 − p(0))n >
0 and P(Nr+1 < n | Nr = n) = 1 − p(1)n > 0 and the boundaries {0} and {n} no longer are
strictly absorbing as there is a positive reflection probability inside the domain {0, 1, . . . , n}.

For reasons to appear now, we will be only interested in functions q such that q(x) :=
1 − p(x) is a completely monotone function (CM) on (0, 1), that is, satisfying

(−1)lq(l)(x) ≥ 0, ∀x ∈ (0, 1), (3.11)
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for all order-l derivatives q(l) of q, l ≥ 0. If p(x) is such that q is CM,wewill call it an admissible
bias mechanism.

4. Nonneutral Wright-Fisher Models and Duality

Preliminaries 4.1. Let vn := (v(0), v(1), . . . , v(n)) be a (n + 1)-vector of [0, 1]-valued numbers.
Define the backward difference operator ∇ acting on vn by: ∇v(m) = v(m) − v(m − 1), m =
1, . . . , n. We have ∇0v(m) = v(m), ∇2v(m) = v(m) − 2v(m − 1) + v(m − 2), and so forth, and,
starting from the endpoint v(n)

∇jv(m)
∣∣
m=n =

j∑

l=0

(−1)j−l
(
j
l

)
v(n − l), j = 0, . . . , n. (4.1)

Let u be some continuous function [0, 1] → [0, 1]. Consider the (n + 1)-vector un :=
(u(0/n), . . . , u(m/n), . . . , u(n/n)), sampling u at points m/n. The function u is said to be
∇-completely monotonic if (−1)j∇ju(m/n)|m=n ≥ 0, for all j = 0, . . . , n and all n ≥ 0. Let
(u1, u2) be two continuous functions on [0, 1]. Let u = u1 ·u2. With un the pointwise product
of u1

n and u2
n, assuming both functions (u1, u2) to be∇-completely monotonic, so will be u, by

the Leibniz rule. In particular, if u is ∇-completely monotonic, so will be its integral powers
ui, i ∈ N. Our main result is as follows.

Theorem 4.2. Consider a nonneutralWF forward model (Nr ; r ∈ N) on {0, . . . , n}, with continuous,
nondecreasing bias p(x), satisfying

0 ≤ p(0) ≤ p(1) ≤ 1, p(1) − p(0) ∈ [0, 1]. (4.2)

This process has forward transition matrix

Πn

(
k, k′) = P

(
ν1,n + · · · + νk,n = k′)

=
(
n
k′

)
p

(
k

n

)k′(
1 − p

(
k

n

))n−k′

.
(4.3)

There exists a Markov chain (Ar ; r ∈ N) on {0, . . . , n} such that (Nr,Ar ; r ∈ N) are dual with
respect to Φ2

n(m, k) =
(
n−m
k

)
/
( n
k

)
if and only if x → q(x) = 1 − p(x) is completely monotone on

(0, 1). In this case, the transition probability matrix of (Ar ; r ∈ N) is

Pn(i, j) =
(
n
j

) j∑

l=0

(−1)j−l
(
j
l

)
q

(
1 − l

n

)i

≥ 0, (4.4)

where Pn is a stochastic matrix if and only if p(0) = 0; else, if p(0) > 0, the matrix Pn is substochastic.
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Proof. Developing [Φ2
n]

−1ΠnΦ2
n = P ′

n,we easily obtain

P ′
n(j, i) = Pn(i, j)

=
(
n
j

) j∑

l=0

(−1)j−l
(
j
l

)[
1 − p

(
n − l

n

)]i

=
(
n
j

)
(−1)j∇j

(
q

(
m

n

)i
)∣∣∣∣∣

m=n.

(4.5)

This entry is nonnegative if and only if (−1)j∇j(q(m/n)i)|m=n ≥ 0, for all i, j = 0, . . . , n. But due
to the above argument on ∇-complete monotonicity of integral powers, this will be the case
if and only if (−1)j∇j(q(m/n))|m=n ≥ 0, for all j = 0, . . . , n. As this must be true for arbitrary
value of population size n, function q has to be ∇-completely monotonic. Adapting now the
arguments of Theorem 2 developed in [20, page 223], for absolutely monotone functions on
(0, 1), this will be the case if and only if x → q(x) := 1 − p(x) is a completely monotone
function on (0, 1) in the sense that

(−1)lq(l)(x) ≥ 0, ∀x ∈ (0, 1), l ∈ N. (4.6)

Next, since (I − ∇)u(m) = u(m − 1) is a simple back-shift,

n∑

j=0

P ′
n(j, i) =

n∑

j=0

Pn(i, j)

= (I − ∇)n
(
q

(
m

n

)i
)∣∣∣∣∣

m=n

= q(0)i,

(4.7)

and if q is CM, Pn is a stochastic matrix if and only if q(0) = 1; else, if q(0) < 1, the matrix Pn

is substochastic.
We note that the first column of the matrix Pn is Pn(i, 0) = q(1)i whereas its first line is

Pn(0, j) = δ0,j , expressing, as required, that the state 0 of (Ar ; r ∈ N) is absorbing.

5. Examples

We show here that most of the simplest nonneutrality mechanisms used in the literature fall
within the class which we would like to draw the attention on, or are amenable to it via some
“reciprocal transformation” which we define. Elementary algebraic manipulations on CM
functions allow to exhibit a vast class of unsuspected mechanisms. Note that in some cases,
their biological relevance remains to be elucidated. The results presented in this section seem
to be new. They serve as an illustration of our theorem.
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5.1. Elementary Mechanisms

Assume first that p(x) = x corresponding to the simple neutral case. Then q(x) = 1 − x is
completely monotone on (0, 1). With Si,j the second kind Stirling numbers, we get a lower
left triangular stochastic transition matrix

Pn(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

(
n

j

)
j∑

l=0

(−1)j−l
(
j

l

)(
l

n

)i

= (n)j ·n−i ·Si,j , j ≤ i,

0, else.

(5.1)

The diagonal terms (eigenvalues) are all distinct with Pn(i, i) = (n)i ·n−i. The matrix Pn is
stochastic. Due to triangularity, ancestral process is a pure death Markov process which may
be viewed as a discrete coalescence tree.

From Example 3.4 (mutation). Assume that (3.10) holds p(x) = (1 − μ2)x + μ1(1 − x)
where (μ1, μ2) are mutation probabilities. Then, with κ := 1 − (μ1 + μ2), q(x) = 1 − μ1 − κx is
completely monotone on (0, 1) if and only μ1 ≤ 1 − μ2 (κ ≥ 0). In this case, Pn is again lower
left triangular (a pure death process). We have

Pn(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

(
n

j

)
j∑

l=0

(−1)j−l
(
j

l

)(
μ2 + κ

l

n

)i

=: (n)j ·n−i ·Sμ2

i,j

(
κ

n

)
, j ≤ i,

0, else,

(5.2)

in terms of generalized Stirling numbers S
μ2

i,j (κ/n). We have Pn(i, i) = (n)i(κ/n)
i and the

spectrum of Pn is real. When μ1 > 0, this matrix is substochastic with
∑n

j=0Pn(i, j) = (1 − μ1)
i.

A particular case deals with one-way mutations (μ1 + μ2 > 0, μ1 ·μ2 = 0).

If μ2 = 0, Pn(i, j) = (1 − μ1)
i · (n)j ·n−i ·Si,j , j ≤ i, = 0, else. Further,

∑n
j=0Pn(i, j) =

(1 − μ1)
i < 1.

If μ1 = 0, Pn(i, j) = (n)j ·n−i ·Sμ2

i,j ((1 − μ2)/n), j ≤ i, = 0, else. The corresponding
matrix Pn is stochastic.

From Example 3.3 (quadratic). Assume that p(x) = x(1 + c − cx), as in (3.9). Then
q(x) = (1 − x)(1 − cx) which is completely monotone if and only if c ∈ [0, 1]. The case c = 0
is the neutral case, whereas c = 1 appears in a 2-sex model of Möhle. In this quadratic case,
since ∇j(q(m/n)i) = 0 if j > 2i, then Pn(i, j) = 0 if j > 2i and so Pn is a Hessenberg-like matrix.
Note that

∑n
j=0Pn(i, j) = q(0)i = 1.

From the selection Example 3.1, when (3.6) holds

p(x) =
(1 + s)x
1 + sx

, (5.3)

where q(x) = 1 − p(x) = (1 − x)/(1 + sx) is CM whenever selection parameter s > 0. The
induced matrix Pn is stochastic. It is no longer lower left triangular so that the ancestral
no longer is a pure death process, being rather a birth and death process. The induced
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coalescence pattern no longer is a discrete tree, but rather a graph (a discrete version of the
ancestral selection graph of Neuhauser-Krone [12]).

From Example 3.2 (selection with dominance). The corresponding mechanism (3.7)
with parameters (s, h) satisfying s > −1 and sh > −1 is CM if and only if s ≥ sh := (1−2h)/h2 >
0 and h ∈ (0, 1/2). The case h ∈ (0, 1) corresponds to directional selection, where genotype
AA has highest fitness compared to aa’s and the heterozygote class Aa has intermediate
fitness compared to both homozygote classes. In this situation, marginal fitness of A exceeds
the one of a and selective sweep is expected. When h ∈ (0, 1/2), allele A is dominant to a,
whereas when h ∈ (1/2, 1), allele A is recessive to a (a stabilizing effect slowing down the
sweep). Critical value h = 1/2 is a case of pure genic balancing selection.

Example 5.1. Consider the mechanism p(x) = xγ for some γ > 0. The function q(x) = 1 − p(x)
is CM if and only if γ ∈ (0, 1). Although this model seems quite appealing, we could find no
reference to it in the specialized mathematical genetics literature.

Example 5.2 (reciprocal mechanism). If p(x) is not admissible in that q is not CM, it can be that
p(x) := 1−p(1−x) is itself admissible. As observed before, ifNr(m) has transition probabilities
given by Bin(n, p(k/n)), p(x) arises in the transition probabilities of Nr(m) := n − Nr(m).
Indeed, such transitions are Bin(n, p(k/n)) distributed.

If p(x) is the selection mechanism of Example 3.1, (3.6), with s ∈ (−1, 0) (not
admissible), p(x) = (1 + s)x/(1 + sx) is itself an admissible selection mechanism because
it has reciprocal selection parameter s = −s/(1 + s) > 0. If p(x) is the mechanism
of Example 3.2, namely, (3.7), with parameters (s, h), then p(x) is itself a selection with
dominance mechanism with reciprocal parameters s = −s/(1 + s) and h = 1 − h. Assuming
that (s ≤ sh < 0, h ∈ (1/2, 1)), p(x) is not admissible whereas p(x) is because s ≥ sh > 0 and
h ∈ (0, 1/2). Similarly, when γ ∈ (0, 1), the mechanism p(x) = 1 − (1 − x)γ is not admissible
but, from Example 5.1, p(x) := 1 − p(1 − x) = xγ is as follows.

5.2. Bias Mechanisms with Mutational Effects

Let pM(x) = (1−μ2)x+μ1(1−x) be the mutational bias mechanism (with κ = 1−(μ1+μ2) ≥ 0).
Let p(x) be a bias mechanism such that q(x) is CM with p(1) − p(0) = 1. Then,

p̃M(x) = pM
(
p(x)

)
(5.4)

is such that q̃M(x) := 1 − p̃M(x) is CM. It is, therefore, admissible and adds mutational effects
to the primary mechanism p(x). For example,

p̃M(x) =
μ1 + x

(
(1 + s)

(
1 − μ2

) − μ1
)

1 + sx
(5.5)

is a mechanism of selection combined with mutational effects. We have p̃M(0) = μ1, p̃M(1) =
1 − μ2. The mechanisms p̃M(x) obtained in this way all share the specificity p̃M(1) − p̃M(0) =:
κ < 1.

Note that, except for the mutational affine mechanism, it is not true in general that
whenever p1(x) and p2(x) are two admissible bias mechanisms, then p1(p2(x)) is admissible.
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5.3. Joint Bias Effects and Compound Bias

Let p1(x) and p2(x) be two admissible bias in that q1(x) := 1− p1(x) and q2(x) := 1− p2(x) are
both completely monotone. Then

q(x) = q1(x)q2(x) is CM. (5.6)

Thus, with x1 ◦ x2 := x1 + x2 − x1x2, the probabilistic product in [0, 1]

(
p1(x), p2(x)

) −→ p(x) = p1(x) ◦ p2(x). (5.7)

Whenever aWFmodel is considered with bias p(x) = p1(x)◦p2(x) obtained from two distinct
bias p1(x) and p2(x), we call it a WF model with joint bias effect.

Example 5.3 (joint selection and mutational effects). Let p1(x) = pM(x) and p2(x) = (1 +
s)x/(1 + sx). We get

q(x) =

(
1 − μ1 − κx

)
(1 − x)

1 + sx
,

p(x) =
μ1 + x

(
s + 1 − μ1 + κ

) − κx2

1 + sx
,

(5.8)

with p(0) = μ1, p(1) = 1. This mechanism differs from the traditional mechanism of selection
combined with mutational effects.

Example 5.4 (joint mutation and neutral effects). Let p1(x) = (1−μ2)x+μ1(1−x) and p2(x) = x.
We get

q(x) = (1 − x)(1 − μ1 − κx),

p(x) = μ1 + x
(
1 − μ1 + κ(1 − x)

)
,

(5.9)

with p(0) = μ1, p(1) = 1. When μ1 = 0 (one-way mutations), we recover the quadratic
mechanism with curvature parameter c = 1 − μ2. This finding justifies some interest into
the quadratic mechanisms with c /= 1.

With j = 1, 2, the reproduction law of each elementary effect is νj
n

d∼ Multin(n;π j
n),

where π
j
m,n = pj(m/n) − pj((m − 1)/n), m = 1, . . . , n. Then, νn

d∼ Multin(n;πn), πm,n =
p(m/n) − p(m − 1)/n), m = 1, . . . , n, where πn := π1

n � π2
n is easily obtained componentwise

by

πm,n = π1
m,n

m∑

l=1

π2
l,n + π2

m,n

m∑

l=1

π1
l,n, m = 1, . . . , n. (5.10)

We let νn := ν1
n � ν2

n
d∼ Multin(n;π1

n �π2
n). It is the reproduction law of a WF model obtained

jointly from the two bias p1(x) and p2(x).
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Let φ(x) : (0, 1) → (0, 1) be an absolutely monotone function satisfying φ(l)(x) ≥ 0 for
all lth derivatives φ(l) of φ, for all x ∈ (0, 1). Such functions are well known to be probability
generating functions (pgfs) ofN-valued random variables, sayN, that is to say, φ(x) = E[xN].
Clearly, if q is CM on (0, 1), then so is qφ(x) := φ(q(x)). Thus, pφ(x) := 1 − φ(1 − p(x)) is an
admissible bias mechanism in that qφ(x) := 1 − pφ(x) is CM. We call it a compound bias.

Example 5.5. The general mechanism with mutational effects is in this class. Indeed,

q̃M(x) = 1 − p̃M(x)

= 1 − pM(p(x))

= 1 − pM(1 − q(x)),

(5.11)

and so φ(x) = 1−pM(1−x) = 1− (1−μ2)(1−x)−μ1x = μ2 +κxwhich is absolutely monotone
as soon as κ = 1 − (μ1 + μ2) ≥ 0.

Example 5.6. With θ > 0, taking φ(x) = e−θ(1−x) or (eθx − 1)/(eθ − 1), the pgf of a Poisson
(or shifted-Poisson) random variable, pφ(x) = 1 − φ(1 − p(x)) is admissible if p(x) is. Note
that if q is of the form qφ, where φ is the pgf of the Poisson random variable, then qφ(x)

α

is admissible, for all α > 0, a property reminiscent of infinite divisibility for pgfs. Taking
φ(x) = (1 − π)/(1 − πx) or x(1 − π)/(1 − πx), π ∈ (0, 1), the pgf of a geometric (or shifted-
geometric) random variable, pφ(x) = sp(x)/(1+sp(x)) or (s+1)p(x)/(1+sp(x)) is admissible
if p(x) is (with s = π/(1 − π) > 0). In the external latter mechanism, one recognizes the one
in (3.6) occurring in the model with selection of Example 3.1.

Example 5.7. Let p(x) = xγ with γ ∈ (0, 1) as in Example 5.1. Then, pφ(x) = 1 − qφ(x), where
qφ(x) = e−θ(1−q(x)) = e−θx

γ
, θ > 0, is admissible. Note that pφ(x) ∼

x↓0
θxγ . The reciprocal function

pφ(x) = qφ(1−x) = e−θ(1−x)
γ

also interprets as an absolutely monotone discrete-stable pgf (see
Steutel and van Harn [21]). It is not admissible.

Proceeding in this way, one can produce a wealth of admissible bias probabilities pφ,
the signification of which in population genetics remaining though to be pinpointed, in each
specific case study.

6. Limit Laws

Consider a WF model (Nr ; r ∈ N) on {0, . . . , n}with forward transition matrix

Πn

(
k, k′) =

(
n
k′

)
p

(
k

n

)k′(
1 − p

(
k

n

))n−k′

, (6.1)

with admissible bias p(x). Define (Ar ; r ∈ N) as the dual Markov chain on {0, . . . , n} with
transition probability

Pn(i, j) =
(
n
j

) j∑

l=0

(−1)j−l
(
j
l

)
q

(
1 − l

n

)i

. (6.2)
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Then, (Nr,Ar ; r ∈ N) are dual with respect to Φn(m, k) := Φ2
n(m, k) =

(
n−m
k

)
/
( n
k

)
, to wit

Em

[(
n−Nr

k

)
( n
k

)
]
= Ek

[( n−m
Ar

)
( n
Ar

)
]

= Ek

[(
n−Ar
m

)
(

n
m

)
]
.

(6.3)

We will distinguish two cases.

Case 1. Assume first that

Nr
d−→ N∞ as r ↑ ∞, independently of N0 = m ≥ 1. (6.4)

Let π∞(i) = P(N∞ = i) and π∞ = (π∞(0), . . . , π∞(n))
′. The line vector π ′

∞ is the left
eigenvector of Πn associated to the eigenvalue 1 : π ′

∞ = π ′
∞Πn. It is the (unique) invariant

probability measure (stationary distribution) of (Nr ; r ∈ N).
If this stationary distribution exists, then, using duality formula, necessarily, Ar → 0

as r ↑ ∞ with probability Pk(A∞ = 0) =: ρ∞(k) < 1. The numbers ρ∞(k) are the extinction
probabilities of the dual process started at k. As is well known, ρ∞ = (ρ∞(0), . . . , ρ∞(n))

′ is
the unique solution to (I − Pn)ρ∞ = 0 with ρ∞(0) = 1.

Remark 6.1. Typical situations where (Nr ; r ∈ N) has an invariant measure is when
mutational effects are present, andmore generally when the bias mechanism satisfies p(0) > 0
and p(1) < 1. In this situation, the forward stochastic transitionmatrixΠn has an algebraically
simple dominant eigenvalue 1. By Perron-Frobenius theorem

lim
r↑∞

Πr
n = 1π ′

∞, (6.5)

where 1′ = (1, . . . , 1). The invariant probability measure can be approximated by subsequent
iterates of Πn, the convergence being exponentially fast, with rate governed by the second
largest eigenvalue. Of course, detailed balance (stating that πkΠn(k, k′) = πk′Πn(k′, k)) does
not hold here and the forward chain in equilibrium is not time-reversible.

In these recurrent cases, the dual ancestral process Ar started at k gets extinct with
probability ρ∞(k). The numbers 1−ρ∞(k) are the probabilities that it gets killed before getting
extinct; in other words, 1 − ρ∞(k) are the probabilities that Ar first hits an extra coffin state,
say {∂}, before hitting {0}.

In terms of moments, by the duality formula, we conclude that

(
n
k

)−1
E

[(
n −N∞

k

)]
= ρ∞(k) = Pk(A∞ = 0), (6.6)



18 Journal of Probability and Statistics

relating k-factorial moments of n −N∞ to the extinction probabilities of Ar given A0 = k. We
also have

n∑

k=0

vk
E

[(
n −N∞

k

)]
= E
[
(1 + v)n−N∞]

=
n∑

k=0

(
n
k

)
ρ∞(k)vk,

(6.7)

and so the probability generating function of N∞ can be expressed as (u ∈ [0, 1]):

E
[
uN∞
]
=

n∑

k=0

(
n
k

)
ρ∞(k)un−k(1 − u)k, (6.8)

in terms of the Bernstein-Bézier polynomial of (ρ∞(n − k); k = 0, . . . , n).
Let ρ∞ = (ρ∞(0), . . . , ρ∞(n))

′. The vector ρ∞ is the right eigenvector of Pn associated to
the eigenvalue 1 : ρ∞ = Pnρ∞. In this case, the matrix Pn is sub-stochastic and the extinction
probability of (Ar ; r ∈ N) given A0 = k is less than one. Thanks to duality, we have

ΠnΦn = ΦnP
′
n, (6.9)

where thematrixΦn is symmetric whereas thematrixΦ−1
n is symmetric right lower triangular,

with

Φn(m, k) =

(
n−m
k

)
( n
k

) =

(
n−k
m

)
(

n
m

) ,

Φ−1
n (i, j) = (−1)i+j−n

(
i

n − j

)(
n
i

)

= (−1)i+j−n
(

j
n − i

)(
n
j

)
.

(6.10)

Thus,

π ′
∞ΠnΦn = π ′

∞Φn = π ′
∞ΦnP

′
n, (6.11)

showing that ρ∞ and π∞ are related through

ρ∞ = Φnπ∞ or π∞ = Φ−1
n ρ∞. (6.12)

The knowledge of the invariant measureπ∞ of the forward process allows one to compute the extinction
probabilities ρ∞ of the dual backward ancestral process (and conversely).
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Example

Consider the discrete WF model with mutations of Example 3.4. In this case, Nr
d−→ N∞ as

r ↑ ∞, regardless of N0 = m and (Nr ; r ∈ N) has an invariant measure which is difficult
to compute. Looking at the backward process, the matrix Pn is substochastic (if μ1 > 0)
and lower left triangular. Due to triangularity, the right eigenvector ρ∞ of Pn can easily be
computed explicitly in terms of (Pn(i, j); j ≤ i), i = 0, . . . , n. We, therefore, get the following
alternating expression for the invariant measure:

π∞(i) =
(
n
i

) i∑

j=0

(−1)i−j
(
i
j

)
ρ∞(n − j). (6.13)

Concerning moments, for instance, we have ρ∞(1) = μ2/(μ1 + μ2) so that E[N∞] = nμ1/(μ1 +
μ2); from (5.2)we also have

ρ∞(2) =
μ2
[
nμ2(1 + κ) + κ2]

[
(1 − κ)

(
n − (n − 1)κ2

)]

=
1

n(n − 1)

(
n(n − 1) − n

(2n − 1)μ1

μ1 + μ2
+ E
[
N2

∞
])

,

(6.14)

allowing to compute E[N2
∞] and then the variance of N∞. We get

σ2(N∞) =
n2μ1μ2

(
μ1 + μ2

)2(2n
(
μ1 + μ2

)
+ 1
) + o(n) ∼

n↑∞
μ1μ2

2
(
μ1 + μ2

)3n, (6.15)

suggesting (when μ1μ2 > 0) a central limit theorem for N∞ as n grows large:

1√
n

(
N∞ − n

μ1

μ1 + μ2

)
d−→

n↑∞
N
(
0,

μ1μ2

2
(
μ1 + μ2

)3

)
. (6.16)

Case 2. Conversely, assume now that given N0 = m

Nr
d−→ 0 as r ↑ ∞, with probabilityPm(N∞ = 0) =: ρ∞(m), (6.17)

so that boundaries {0, n} are absorbing. Then, the ancestral process (Ar ; r ∈ N) possesses an
invariant distribution, in that

Ar
d−→ A∞ as r ↑ ∞, independently of A0 = k ∈ [n]. (6.18)

In terms of moments, the duality formula means that

(
n
m

)−1
E

[(
n −A∞

m

)]
= ρ∞(m) = Pm

(
N∞ = 0

)
, (6.19)
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relating m-factorial moments of n − A∞ to the extinction probabilities of Nr given N0 = m.
Stated differently, the probability generating function of A∞ is (u ∈ [0, 1])

E
[
uA∞
]
=

n∑

m=0

(
n
m

)
ρ∞(m)un−m(1 − u)m. (6.20)

Let π∞(i) = P(A∞ = i), with π ′
∞ = π ′

∞Pn. Then, using duality, ρ∞ is the right eigenvector of
Πn associated to the eigenvalue 1 : ρ∞ = Πnρ∞. Thus, ρ∞ and π∞ are related through

ρ∞ = Φnπ∞ or π∞ = Φ−1
n ρ∞. (6.21)

The knowledge of the extinction probabilities ρ∞ of the forward process allows one to compute the
invariant measure π∞ of the dual backward ancestral process (and conversely).

Examples

Typical situations where boundaries {0, n} are absorbing to (Nr ; r ∈ N) occur when p(0) = 0
and p(1) = 1. The simplest case is the neutral case, but the nonneutral selection and selection
with dominance mechanisms or the quadratic mechanism (Examples 3.1, 3.2 and 3.3) are also
in this class. For instance,

(i) in the neutral case, ρ∞(m) = 1 −m/n. Thus, π∞(i) =
( n

i

)∑i
j=0(−1)i−j

( i
j

)
(j/n) = δi,1

and Ar
d−→ 1 as r ↑ ∞, the degenerate state reached when the most recent common

ancestor (MRCA) is attained,

(ii) nondegenerate solutions of A∞ are obtained when considering bias mechanisms
with p(0) = 0 and p(1) = 1,

(iii) consider any biased WF model with p(0) = 0 and p(1) = 1 for which p(x) ∼
x↑0

λx,

λ > 1. Then, due to large sample asymptotic independence,

νn
d−→ ξ∞, (6.22)

where ξ∞ is an iid sequence with ξ1
d∼ Poisson (λ) (as it can easily be checked by

the Poisson limit to the binomial distribution). In this case, the limiting extinction
probability of (Nr ; r ∈ N) given N0 = m is limn↑∞ρ∞(m) = ρm, m = 1, 2, . . ., where
0 < ρ < 1 is the smallest solution to the fixed point equation

x = e−λ(1−x), (6.23)

where ρ is the singleton extinction probability of a supercritical Galton-Watson
process with offspring distribution Poisson(λ). More precisely, proceeding as in
Möhle [9, Theorem 4.5], we have

n
(
ρm − ρ∞(m)

)
= ρm

(
1 − ρ

1 + λρ
m2 +

λ(1 − ρ)ρ

1 − (λρ)2
m

)
, (6.24)
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showing that the convergence of ρ∞(m) to ρm is of order n−1. As a result, we get the
asymptotic normality

1√
n

(
A∞ − n(1 − ρ)

) d−→
n↑∞

N
(
0,

ρ(1 − ρ)
1 + λρ

)
. (6.25)

Intuitively, (1/n)E[n −A∞] = ρ∞(1) = P1(N∞ = 0) → ρ, showing that E[A∞] ∼
n↑∞

n(1 − ρ) and

1
n(n − 1)

E
[(
n −A∞

)(
n − 1 −A∞

)]
= ρ∞(2) = P2

(
N∞ = 0) −→ ρ2, (6.26)

showing that σ2(A∞) ∼
n↑∞

nρ(1 − ρ)/(1 + λρ).

For quadratic Example 3.3, p(x) = x(1 + c − cx), with c ∈ [0, 1], λ = 1 + c > 1 as
soon as c > 0. When c ∈ (0, 1], we thus always have asymptotic normality. For Example 3.1,
with selection, p(x) = (1 + s)x/(1 + sx), with s > −1 : p(x) ∼

x↑0
(1 + s)x and so λ = 1 + s.

We have asymptotic normality only when s > 0, that is, when the fitness is advantageous
(corresponding as required to complete monotonicity of corresponding q = 1 − p).

Note that this asymptotic behavior does not hold for the Lipshitz continuous
admissible mechanism p(x) = xγ of Example 5.1 (or more generally for mechanisms
satisfying p(x) ∼

x↓0
θxγ , θ > 0 as in compound bias Example 5.7) with γ ∈ (0, 1) because its

behavior near 0 is not linear. This puzzling class of models seems to deserve a special study
as deviation to normality is expected. We postpone it to a future work.

7. Concluding Remarks

In this note, we focused on discrete nonneutral Wright-Fisher models and on the conditions
on the bias probabilities under which the forward branching dynamics is amenable to a dual
discrete ancestral coalescent. It was shown that it concerns a large class of nonneutral models
involving completely monotone bias probabilities. Several examples were supplied, some
standard, some less classical. The Wright-Fisher model with forward binomial transition
matrix is a particular instance of the Dirichlet model with Dirichlet-binomial transition
matrix. Following the same lines, using the representation of the Dirichlet binomial
distribution as a beta mixture of the binomial distribution, it would be interesting to exhibit
that the corresponding conditions on the bias mechanism were the starting point to be a
forward Dirichlet branching process. Also of particular interest in this respect would be the
discrete nonneutral Moran models whose forward transition matrices are simpler because
of their tridiagonal Jacobi structure. We hope to be able to consider shortly these cases (and
maybe others) in a future work.
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