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1. Introduction

The best known dependence property is “lack of dependence,” or what is known as
stochastic independence. Inmany applications, independence between two random variables
is assumed; this can be a strong assumption in the undertaken analysis. Taking into
account the dependence structure between the variables leads to appropriate modeling
approaches and correct conclusions. To study stochastic dependence, concordance concept
and positive dependence are well used tools. This is because many dependence properties
can be described by means of the joint distribution of the variables and these measures
and properties are often margins free. In this paper we study two concordance measures,
Kendall’s tau Kruskal [1] and Spearman’s rho Lehmann [2]. These measures have several
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properties known as Rényi’s axioms; for more details see Rényi [3]. Among these axioms, we
focus on the range of the association measure.

Many researches have been concerned with the study of tau and rho in the case
of continuous variables. Schweizer and Wolff [4], in one seminal paper, show that the
study of concordance measures for continuous random variables can be characterized
as the study of copulas [5]. However, for noncontinuous variables, this interrelationship
generally does not hold. There are few papers concerning the discrete version of Kendall’s
tau and Spearman’s rho. Conti [6] gives definitions of two approaches of indifference and
links them to concordance and discordance properties of the data. Tajar et al. [7] propose
a copula-type representation for random couples with binary margins. They show that
appropriate measures of association for binary random variables do not depend on the
marginal distribution of the variables under study. Mesfioui and Tajar [8] and Denuit and
Lambert [9] have shown independently that the range of tau and rho in the discrete case
is not the unit interval as in the continuous case. Nešlehovà [10] considers an alternative
transformation of an arbitrary random variable to a uniform distribution variable in order to
study the rank measures for noncontinuous random variables.

In this paper, we focus on the range of the concordance measures. Aside from
identifying the best bounds of tau and rho in the case of discrete random variables, we present
some dependence properties of the bivariate Poisson model and discuss their relationship
with the concordance measures tau and rho. The paper is organized as follows. The next
section provides a method of constructing the ranges of tau and rho for discrete data.
Section 3 develops explicit expressions for the best bounds of tau and rho in the discrete
Fréchet space with the same marginal. Section 4 provides a new estimator of the copulas
based on the so-called empirical copulas. Section 5 discusses some dependence properties of
the bivariate Poisson model.

2. Defintions and Properties

Following Hoeffding [11], Kruskal [1], and Lehmann [2], Schweizer and Wolff [4] express
Kendall’s tau and Spearman’s rho for continuous random vector (X,Y ) in terms of the
joint distribution H(x, y) of (X,Y ) and the margins F(x) for X and G(y) for Y . A general
representation for each of τ and ρ has been first proposed by Kowalczyk and Niewiadomska-
Bugaj [12]; namely

τ = EH[H(X,Y )] + EH
[
H
(
X−, Y−)] + EH

[
H
(
X−, Y

)]
+ EH

[
H
(
X,Y−)] − 1, (2.1)

ρ = 3
{
EΠ

[
H
(
X−, Y

)]
+ EΠ

[
H
(
X,Y−)] + EΠ

[
H
(
X−, Y−)] + EΠ[H(X,Y )] − 1

}
, (2.2)

whereH(x−, y−) = P[X < x, Y < y],H(x, y−) = P[X ≤ x, Y < y],H(x−, y) = P[X < x, Y ≤ y],
and Π(x, y) = F(x)G(y).

Several results in this paper are based on the monotonicity property of Kendall’s τ and
Spearman’s ρ. This property has first been proposed for continuous variables by Yanagimoto
and Okamoto [13] (see also [14]). Tchen [15] obtained similar monotonicity property for
τ and ρ when the supports of the joint distributions consist in a finite number of atoms.
Mesfioui and Tajar [8] extend various dependence relationships between Kendall’s τ and
Sperman’s ρ in Capéraà and Genest [16] and Nelsen [5], to the discrete case. One key result
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of their paper is the generalization to any kind of random variables for continuous and/or
discrete variables.

For the remainder of the paper, we recall the property of concordance orderings,
defined as follows.

Let (X1, Y1) and (X2, Y2) be random vectors with identical marginals and respective
cdf’s H1 and H2. The random couple (X2, Y2) is said to be more concordant than (X1, Y1),
denoted by (X1, Y1)≺c(X2, Y2), ifH1(x1, x2) ≤ H2(x1, x2) holds for all x1, x2 ∈ R.

In the following proposition, we propose a flexible method to establish the
monotonicity property given in Mesfioui and Tajar [8] for purely discrets random vectors.
The proof is direct and easy to understand and extends the result to the general random
vectors.

Proposition 2.1. Let (X1, Y1) and (X2, Y2) be two random couples with respective distribution
functionH1 andH2 in Γ(F,G), the Fréchet space of all distribution functions with fixed marginals F
and G. Then,

(X1, Y1)�c(X2, Y2) =⇒ τH1 ≤ τH2 , (2.3)

(X1, Y1)�c(X2, Y2) =⇒ ρH1 ≤ ρH2 . (2.4)

Proof. Using Fubini’s theorem, we note that

EH1[H2(X,Y )] = EH2

[
H1

(
X−, Y−)

]
,

EH1

[
H2

(
X−, Y

)]
= EH2

[
H1

(
X,Y−)

]
,

EH1

[
H2

(
X,Y−)] = EH2

[
H1

(
X−, Y

)]
,

EH1

[
H2

(
X−, Y−)] = EH2

[
H1(X,Y )

]
,

(2.5)

whereHi denotes the survival functions associated toHi, i = 1, 2.
Now without loss of generality if we assume that H1 ≤ H2, which is equivalent to

H1 ≤ H2, we then get

EH1[H1(X,Y )] ≤ EH1[H2(X,Y )]

= EH2

[
H1

(
X−, Y−)

]

≤ EH2

[
H2

(
X−, Y−)

]

= EH2[H2(X,Y )].

(2.6)
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Similarly, we obtain

EH1

[
H1

(
X−, Y

)] ≤ EH2

[
H2

(
X−, Y

)]
,

EH1

[
H1

(
X,Y−)] ≤ EH2

[
H2

(
X,Y−)],

EH1

[
H1

(
X−, Y−)] ≤ EH2

[
H2

(
X−, Y−)].

(2.7)

Combining the later inequalities with (2.1), we then obtain (2.3). It is easy seen that (2.4) is
immediate from (2.2).

For any bivariate distribution functionH with univariate marginals F and G, one has

max
[
0, F(x) +G

(
y
) − 1

] ≤ H(
x, y

) ≤ min
[
F(x), G

(
y
)]
. (2.8)

The extreme distributions Hmin(x, y) = max[0, F(x) + G(y) − 1] and Hmax(x, y) =
min[F(x), G(y)] are often refereed as Fréchet bounds (see [17]). These bounds play a central
role to construct optimal ranges of τ and ρ as stated in the following corollary.

Corollary 2.2. Let (X,Y ) be a random couple with distribution functionH in Γ(F,G). Then,

τmin ≤ τH ≤ τmax,

ρmin ≤ τH ≤ ρmax,
(2.9)

where τmin, ρmin and τmax, ρmax denote the values of Kendall’s τ and Spearman’s ρ corresponding to
the Fréchet lower and upper bounds in Γ(F,G), respectively.

As stated earlier, the main objective in this paper is to examine the bounds of τ and ρ in
the Fréchet space Γ(F,G)when F andG are discrete. To do that, let (X,Y ) be a discrete random
couple with cdf H ∈ Γ(F,G). Since Kendall’s τ and Spearman’s ρ are scale invariants, they
remain unchanged under strictly increasing transformations of the marginal distributions.
We can then suppose, without any loss of generality, that X and Y are valued in Z, the set of
all integers. Therefore, we can see from (2.1) and (2.2) that τ and ρ can be written as

τ =
∞∑

i=−∞

∞∑

j=−∞
TijSij − 1, (2.10)

ρ = 3
∞∑

i=−∞

∞∑

j=−∞
Tij[F(i) − F(i − 1)]

[
G
(
j
) −G(j − 1

)] − 3, (2.11)

where

Tij = H
(
i, j

)
+H

(
i − 1, j − 1

)
+H

(
i, j − 1

)
+H

(
i − 1, j

)
, (2.12)

Sij = H
(
i, j

) −H(
i, j − 1

) −H(
i − 1, j

)
+H

(
i − 1, j − 1

)
. (2.13)
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In order to obtain the best bounds τmin, ρmin and τmax, ρmax, the minimum and
maximum values corresponding to lower and upper bound of τ and ρ, respectively, we
replace H in (2.10) and (2.11) by the Fréchet bounds Hmin(i, j) = max[F(i) + G(j) − 1, 0]
andHmax(i, j) = min[F(i), G(j)], respectively.

For discrete data, the ranges of τ and ρ are different from the usual unit interval [−1, 1].
This is a violation of the monotone dependence properties of concordance measures, as stated
in Nelsen [5]. To correct this problem, we propose the following corrections:

τc =

⎧
⎪⎪⎨

⎪⎪⎩

τ

τmax
if τ ≥ 0,

− τ

τmin
if τ < 0,

ρc =

⎧
⎪⎪⎨

⎪⎪⎩

ρ

ρmax
if ρ ≥ 0,

− ρ

ρmin
if ρ < 0.

(2.14)

The main importance of these corrections is that they allow to interpret the levels of the new
measures, τc and ρc, as percentages. Illustrations of these transformations are proposed in
Section 5 with the bivariate Poisson distribution.

3. Explicit Bounds of Discrete τ and ρ in Γ(F, F)

The aim of this section is to study the effect of the marginal distributions on the range of τ
and ρ for discrete data. Note that it is difficult to obtain explicit expressions of the extreme
values of τ and ρ in Γ(F,G) for noncontinuous distribution F and G. This problem is very
complicated and requires several assumptions on F and G. In order to analyze the behavior
of these bounds, we consider the particular space Γ(F, F), where F is a discrete distribution
function. To this end, consider the integer function defined by

φ(i) = min
{
j ∈ Z : F(i) + F

(
j
)
> 1

}
, i ∈ Z. (3.1)

This function plays an important role to explicit lower bounds of τ and ρ in the space Γ(F, F).
The next proposition presents explicit optimal bounds of Spearman’s ρ.

Proposition 3.1. The best bounds for ρ in the space Γ(F, F) are given by

ρmax = 3E
[
1 − F2(X) − F2(X − 1)

]
, (3.2)

ρmin = 3E
[
ψ(X) + ψ(X − 1) − 1

]
, (3.3)

where

ψ(i) =
∞∑

j=φ(i)

[
F(i) + F

(
j
) − 1

][
F
(
j + 1

) − F(j − 1
)]
. (3.4)
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Proof. LetH(i, j) = min[F(i), F(j)]. From (2.12), we observe that

Tij = [F(i) + 3F(i − 1)]I[i=j] + 2[F(i) + F(i − 1)]I[i<j] + 2
[
F
(
j
)
+ F

(
j − 1

)]
I[i>j], (3.5)

and writing F(i) − F(i − 1) = pi, we get from (2.11) that

ρmax = 3
∞∑

i=−∞
[F(i) + 3F(i − 1)][F(i) − F(i − 1)]pi

+ 6
∞∑

i=−∞
[F(i) + F(i − 1)]pi

∞∑

j=i+1

[
F
(
j
) − F(j − 1

)]

+ 6
∞∑

i=−∞
pi

i−1∑

j=−∞

[
F
(
j
) − F(j − 1

)][
F
(
j
)
+ F

(
j − 1

)] − 3,

(3.6)

which may be simplified as

ρmax = 3E{[F(X) + 3F(X − 1)][F(X) − F(X − 1)]}
+ 6E{[F(X) + F(X − 1)][1 − F(X)]}

+ 6E
[
F2(X − 1)

]
− 3.

(3.7)

The result then follows from the fact that E[F(X) + F(X − 1)] = 1. Now, choose H(i, j) =
sup[F(i) + F(j) − 1, 0] and putH+(i, j) = F(i) + F(j) − 1. From (2.11), we see that

ρmin = 3
∞∑

i=−∞

∞∑

j=φ(i)

H+(i, j
)
pipj + 3

∞∑

i=−∞

∞∑

j=φ(i)

H+(i, j
)
pi+1pj+1

+ 3
∞∑

i=−∞

∞∑

j=φ(i)

H+(i, j
)
pipj+1 + 3

∞∑

i=−∞

∞∑

j=φ(i)

H+(i, j
)
pi+1pj − 3.

(3.8)

It follows that

ρmin = 3
∞∑

i=−∞

(
pi + pi+1

) ∞∑

j=φ(i)

[
F(i) + F

(
j
) − 1

](
pj + pj+1

) − 3, (3.9)

which may be rewritten as

ρmin = 3
∞∑

i=−∞

[
ψ(i) + ψ(i − 1) − 1

]
pi, (3.10)
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where

ψ(i) =
∞∑

j=φ(i)

[
F(i) + F

(
j
) − 1

][
F
(
j + 1

) − F(j − 1
)]
. (3.11)

The result is therefore obtained from (3.11) and (3.10).

Using (2.10) with H(i, j) = min[F(i), F(j)], we notice that the upper bound of
Kendall’s τ in the space Γ(F, F) can be expressed as

τmax = 2E[F(X − 1)]. (3.12)

Note that the sharp upper bound given in Denuit and Lambert [9] coincides with (3.12) in
Γ(F, F). However, the behavior of Kendall’s tau lower bound in terms of the distribution F is
not evident. The following proposition gives an explicit form of this bound in Γ(F, F).

Proposition 3.2. The best lower bounds of τ in Γ(F, F) is

τmin = 2E
[
F
[
φ(X − 1)

]] − 2
∞∑

k=−∞
ξ(k) − 2, (3.13)

where

ξ(k) =
[
F(k − 1) + F

[
φ(k − 1)

] − 1
][
F(k) + F

[
φ(k − 1) − 1

] − 1
]
I[φ(k)<φ(k−1)]. (3.14)

Proof. From (2.12) and (2.13), we observe that

SijTij = H2(i, j
)
+H2(i − 1, j − 1

) −H2(i − 1, j
) −H2(i, j − 1

)

+ 2H
(
i, j

)
H
(
i − 1, j − 1

) − 2H
(
i − 1, j

)
H
(
i, j − 1

)

∞∑

i=−∞

∞∑

j=−∞

[
H2(i, j

)
+H2(i − 1, j − 1

) −H2(i − 1, j
) −H2(i, j − 1

)]
= 1.

(3.15)

Consider nowH(i, j) = sup[F(i)+F(j)−1, 0] and writeH+(i, j) = F(i)+F(j)−1. From (2.10),
we get

τmin = 2
∞∑

i=−∞

∞∑

j=φ(i−1)+1
H+(i, j

)
H+(i − 1, j − 1

)

− 2
∞∑

i=−∞

∞∑

j=max[φ(i−1),φ(i)+1]
H+(i − 1, j

)
H+(i, j − 1

)
.

(3.16)

Using the fact that

H+(i, j
)
H+(i − 1, j − 1

) −H+(i − 1, j
)
H+(i, j − 1

)
= −pipj , (3.17)
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we have

τmin = −2
∞∑

i=−∞
pi

⎡

⎣
∞∑

j=φ(i−1)+1
pj

⎤

⎦I[φ(i)=φ(i−1)] − 2
∞∑

i=−∞
pi

⎡

⎣
∞∑

j=φ(i−1)+1
pj

⎤

⎦I[φ(i)<φ(i−1)]

− 2
∞∑

i=−∞

[
F(i − 1) + F

(
φ(i − 1)

) − 1
][
F(i) + F

(
φ(i − 1) − 1

) − 1
]
I[φ(i)<φ(i−1)],

(3.18)

which is equivalent to

τmin = −2
∞∑

i=−∞
pi
[
1 − F[φ(i − 1)

]] − 2
∞∑

i=−∞
r(i) (3.19)

with

r(i) =
[
F(i − 1) + F

(
φ(i − 1)

) − 1
][
F(i) + F

(
φ(i − 1) − 1

) − 1
]
I[φ(i)<φ(i−1)], (3.20)

which completes the proof.

Remark 3.3. Let Fn,p be a binomial distribution with parameters n and p, and denote the
extreme values of τ and ρ in Γ(Fn,p, Fn,p) by τmax(n, p) and ρmax(n, p). One can show the
following symmetry properties, namely:

τmax
(
n, p

)
= τmax

(
n, 1 − p), ρmax

(
n, p

)
= ρmax

(
n, 1 − p). (3.21)

Indeed, since Fn,p(k) = Fn,1−p(n − k), then from (3.7), we have

τmax
(
n, p

)
= 2

n∑

k=0

Fn,p(k − 1)
[
Fn,p(k) − Fn,p(k − 1)

]

= 2
n∑

k=0

Fn,1−p(k − 1)
[
Fn,1−p(k) − Fn,1−p(k − 1)

]

= τmax
(
n, 1 − p).

(3.22)

Similar arguments provide ρmax(n, p) = ρmax(n, 1 − p).

In this section, we examine the symmetry of the ranges of τ and ρ associated to
discretef data. In continuous case, it is well known that the ranges of these parameters are
symmetric, that is, τmax = −τmin and ρmax = −ρmin. This conclusion is of course invalid for
noncontinuous data. In order to clarify this question, we consider again the space Γ(F, F)
with discrete distribution F. We present below a situation which ensures that ρmax = −ρmin

and τmax = −τmin. As consequence of Propositions 3.1 and 3.2 and (3.12), one can establish the
following results.
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Corollary 3.4. In space, Γ(F, F), if E[F2(X)] = E[ψ(X)] and E[F2(X − 1)] = E[ψ(X − 1)], then
ρmax = −ρmin.

Corollary 3.5. In space, Γ(F, F), if φ(i) = φ(i − 1), i ∈ Z, and E[F(X)] = E[F(φ(X))], then
τmax = −τmin.

4. Empirical Copulas Viewed as a Discrete Distribution

It is well recognized that copula provides a flexible approach to model the joint behavior of
random variables. In fact, this method allows to represent a bivariate distribution as function
of its univariate marginals through a linking function called a copula. Specifically, if H is a
distribution function of a bivariate random vector (X,Y ) with continuous marginals, then
Sklar [18] ensures that there exists a unique copula C : [0, 1]2 → [0, 1] such that for all
(x, y) ∈ R

2,

H
(
x, y

)
= C

[
F(x), G

(
y
)]
. (4.1)

Hence,C is a bivariate distribution function with uniformmarginals on [0, 1] that captures all
the information about the dependence among the components of (X,Y ). For a comprehensive
introduction to a copula, the reader is referred to monographs by Nelsen [5].

Suppose that the random sample (X1, Y1), . . . , (Xn, Yn) is given from some pair (X,Y )
of continuous variable with copula C(u, v). To estimate the copula C, Deheuvels [19]
proposes the so-called empirical copula defined by

Cn(u, v) =
1
n

n∑

i=1

I(Fn(Xi) ≤ u,Gn(Yi) ≤ v), (4.2)

where Fn and Gn are the empirical distribution functions of X and Y based on the sample
X1, . . . , Xn and Y1, . . . , Yn given by

Fn(t) =
1
n

n∑

i=1

I(Xi ≤ t), Gn(t) =
1
n

n∑

i=1

I(Yi ≤ t). (4.3)

Let Ri be the rank of Xi among the sample X1, . . . , Xn and Ti stands the rank of Yi among
the sample Y1, . . . , Yn. Observe that Cn is a function of ranks (R1, T1), . . . , (Rn, Tn), because
Fn(Xi) = Ri/n and Gn(Yi) = Ti/n, i = 1, . . . , n, namely,

Cn(u, v) =
1
n

n∑

i=1

I

(
Ri

n
≤ u, Ti

n
≤ v

)
. (4.4)

From this representation, one can consider Cn(u, v) as a discrete bivariate distribution with
uniform marginals taking values in the set {1/n, 2/n, . . . , 1}. Observe that

Cn(u, v) = Cn

(
i

n
,
j

n

)
for (u, v) ∈

[
i

n
,
i + 1
n

]
×
[
j

n
,
j + 1
n

]
. (4.5)
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Now, one can observe that the Cn is not copula. Indeed, Cn(u, 1) = 
nu�/n/=u, where 
nu�
denotes the integer part of nu.

Our goal in this section is to transform the empirical copula in order to obtain a
new estimator C∗

n which is a copula. To this end, let (Zn,Wn) be a discrete random vector
with distribution function Cn which is defined in (4.2). The idea is to transform the uniform
discrete random variables Zn andWn into a continuous variables Z∗

n andW
∗
n by defining

Z∗
n = Zn −Un, W∗

n =Wn − Vn, (4.6)

where Un and Vn are independents and uniformly distributed in [0, 1/n]. We also suppose
that the random vectors Zn and Un (resp, Wn and Vn) are independents. The next result
shows that the distribution function of the continuous version (Z∗

n,W
∗
n) is a copula.

Proposition 4.1. The distribution function C∗
n of the random vector (Z∗

n,W
∗
n) is a copula which may

be expressed in terms of the empirical copula as follows:

C∗
n(u, v) = [1 − nu + 
nu�][1 − nv + 
nv�]Cn

(
nu�
n

,

nv�
n

)

+ [nu − 
nu�][1 − nv + 
nv�]Cn

(
nu� + 1
n

,

nv�
n

)

+ [1 − nu + 
nu�][nv − 
nv�]Cn

(
nu�
n

,

nv� + 1

n

)

+ [nu − 
nu�][nv − 
nv�]Cn

( 
nu� + 1
n

,

nv� + 1

n

)
, u, v ∈ [0, 1],

(4.7)

where 
x� is the integer part of x.

Proof. For any u ∈ [i/n, (i + 1)/n], i = 0, . . . , n − 1, one sees from the definition of Z∗
n that

P(Z∗
n ≤ u) = 1

n

n∑

k=1

P

(
Un ≥ k

n
− u

)
, (4.8)

and by using the fact that

P

(
Un ≥ k

n
− u

)
= I(k≤i) + (nu − i)I(k=i+1), (4.9)

it follows that P(Z∗
n ≤ u) = u, which ensures that Z∗

n is uniformly distributed in [0, 1]. Similar
arguments imply thatW∗

n is also uniformly distributed in [0, 1], so that C∗
n is a copula.
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Now, we show the expression of C∗
n given in (4.7). Let (u, v) be in the set [i/n, (i +

1)/n] × [j/n, (j + 1)/n], i, j = 0, . . . , n − 1. In view of relations (4.6), one has

C∗
n(u, v) = P(Z

∗
n ≤ u,W∗

n ≤ v)

=
n∑

k=1

n∑

p=1

P

(
Un ≥ k

n
− u

)
P

(
Vn ≥ p

n
− v

)
P
(
Zn = k,Wn = p

)

=
n∑

k=1

n∑

p=1

[
I(k≤i) + (nu − i)I(k=i+1)

][
I(p≤j) +

(
nv − j)I(p=j+1)

]
P
(
Zn = k,Wn = p

)
.

(4.10)

After simplifications, one observes

C∗
n(u, v) = Cn

(
i

n
,
j

n

)

+ (nu − i)
[
Cn

(
i + 1
n

,
j

n

)
− Cn

(
i

n
,
j

n

)]

+
(
nv − j)

[
Cn

(
i

n
,
j + 1
n

)
− Cn

(
i

n
,
j

n

)]

+(nu − i)(nv − j)
[
Cn

(
i + 1
n

,
j + 1
n

)
− Cn

(
i + 1
n

,
j

n

)
− Cn

(
i

n
,
j + 1
n

)
+ Cn

(
i

n
,
j

n

)]
.

(4.11)

which can be rewritten as

C∗
n(u, v) = [1 − nu + i]

[
1 − nv + j

]
Cn

(
i

n
,
j

n

)

+ [nu − i][1 − nv + j
]
Cn

(
i + 1
n

,
j

n

)

+ [1 − nu + i]
[
nv − j]Cn

(
i

n
,
j + 1
n

)

+ [nu − i][nv − j]Cn

(
i + 1
n

,
j + 1
n

)
,

(4.12)

and hence the result is obtained, since i = 
nu� and j = 
nv�.

Finally, one concludes that it will be convenient to estimate the theoretical copula C
by using the proposal estimator C∗

n instead of the empirical copula. The reason is that C∗
n is a

copula which uses all the points (i/n, j/n), (i/n, (j + 1)/n), (i + 1/n, j/n), and ((i + 1)/n, (1 +
j)/n) in order to estimate C in [i/n, (i + 1)/n] × [j/n, (j + 1)/n].
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5. Understanding Dependence Structure of the Bivariate
Poisson Distribution

Our purpose in this section is to study dependence properties of the bivariate Poisson
distribution H of a random couple (X,Y ) and the relationship between τ and ρ and the
parameters ofH. Several bivariate Poisson distributions have been proposed in the statistical
literature, for example, S. Kocherlakota and K. Kocherlakota [20]. In applied statistics,
however, the focus is on the trivariate reduction method described by Johnson et al. [21]
who construct the Bivariate Poisson distribution using three independent random variables
X1, X2, and Z all distributed as Poisson with parameters λ1, λ2, and α, respectively:

X = X1 + Z, Y = X2 + Z. (5.1)

The cumulative distribution of (X,Y ) is given by

Hα,λ1,λ2

(
i, j

)
=

i∧j∑

k=0

Fλ1(i − k)Fλ2
(
j − k)α

ke−α

k!
, (5.2)

where Fλi denotes the cdf ofXi, i = 1, 2. We notice thatX and Y are Poisson model with means
λ1 + α and λ2 + α, respectively. Note that the covariance and the correlation between X and Y
are expressed by

cov(X,Y ) = α, corr(X,Y ) =
α

√
(λ1 + α)(λ2 + α)

, (5.3)

which are positive and nondecreasing functions of α.
To study further the relationships between α and each of τ and ρ for the bivariate

Poisson model, we propose an alternative parametrization which consists in fixing the
marginal parameters α + λ1 = m1 and α + λ2 = m2. In this context, the cdf (5.2) becomes

Hα

(
i, j

)
=

i∧j∑

k=0

Fm1−α(i − k)Fm2−α
(
j − k)α

ke−α

k!
. (5.4)

As a consequence of the above representation, we can see {Hα} as a family of bivariate
Poisson models with fixed marginals which are univariate Poisson models with parameters
m1 and m2, respectively. This means that the set {Hα}, 0 ≤ α ≤ m1 ∧ m2 is included in the
particular Fréchet space Γ(Fm1 , Fm2), where Fmi denotes the cdf of a Poisson model with mean
mi, i = 1, 2. The advantage of the parametrization (5.4) rather than (5.2) is that the coefficient
αmay be interpreted as a dependence parameter in the family {Hα}.

Now, let τα and ρα be Kendall’s τ and Spearman’s ρ associated with the distribution
Hα. The result below provides the monotonicity of τα and ρα as functions of α.

Proposition 5.1. LetHα1 andHα2 be two cdf of the set {Hα}. Then,

α1 ≤ α2 =⇒ Hα1 ≤ Hα2 , (5.5)



Journal of Probability and Statistics 13

and consequently,

α1 ≤ α2 =⇒ τα1 ≤ τα2 , ρα1 ≤ ρα2 . (5.6)

Proof. From (5.4),

∂Hα

(
i, j

)

∂α
=

i∧j∑

k=0

∂Fm1−α(i − k)
∂α

Fm2−α
(
j − k)α

ke−α

k!

+
i∧j∑

k=0

Fm1−α(i − k)
∂Fm2−α

(
j − k)

∂α

αke−α

k!

+
i∧j∑

k=0

Fm1−α(i − k)Fm2−α
(
j − k)

[
αk−1e−α

(k − 1)!
− αke−α

k!

]

,

(5.7)

and using the fact that

∂Fm1−α(i − k)
∂α

= Fm1−α(i − k) − Fm1−α(i − k − 1),

∂Fm2−α
(
j − k)

∂α
= Fm2−α

(
j − k) − Fm2−α

(
j − k − 1

)
,

(5.8)

(5.7) becomes, upon simplifications,

∂Hα

(
i, j

)

∂α
=

i∧j∑

k=0

(m1 − α)i−ke−(m1−α)

(i − k)!
(m2 − α)j−ke−(m2−α)

(
j − k)!

αke−α

k!
≥ 0. (5.9)

Therefore (5.9) together with Proposition 2.1 provides (5.5) and (5.6).

Many statistical researches have focused on studying concepts of positive dependence
for bivariate distributions, example right tail increasing, and positive quadrant dependence
which are widely used in actuarial literature [22]. There are natural relationships between
dependence properties and measures of concordance. An interesting property of positive
dependence is the concept of positive quadrant dependence (PQD) defined as follows: let
(X,Y ) be a random couple valued in R × R with joint cdf H, and marginals F and G.
These random variables are said to be positively quadrant dependent if, and only if, for all
(x, y) ∈ R

2

H
(
x, y

) ≥ F(x)G(y). (5.10)

The following corollary is a direct consequence of the previous result.

Corollary 5.2. The family {Hα} is positively quadrant dependent.
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Table 1: τα, ρα, τα,c and ρα,c for the Poisson model.

α τα τα,c ρα ρα,c

0.2 0.059 0.075 0.089 0.094
0.4 0.120 0.152 0.180 0.189
0.6 0.183 0.231 0.272 0.286
0.8 0.248 0.313 0.365 0.383
1.0 0.316 0.398 0.459 0.482
1.2 0.388 0.490 0.554 0.582
1.4 0.467 0.589 0.651 0.684
1.6 0.556 0.701 0.749 0.787
1.8 0.660 0.832 0.849 0.892

Proof. SinceHα is a nondecreasing function of α, thenH0 ≤ Hα for all 0 ≤ α ≤ m1 ∧m2. Now,
from (5.4),H0(i, j) = Fm1(i)Fm2(j) for all i, j. Therefore the family {Hα} is PQD. Consequently,
τα ≥ 0, ρα ≥ 0, and 3τα ≥ ρα for all 0 ≤ α ≤ m1 ∧m2.

Remark 5.3. When m1 = m2 = m, the upper bound of the family {Hα} is given by the cdf Hm,
and using (5.4), we then obtain thatHm(i, j) = Fm(i∧ j) = min[Fm(i), Fm(j)], for all i, j, which
is the upper Fréchet bound.

In order to appreciate the corrections of τ and ρ given by (2.14), we consider the family
of Poisson model {Hα} with marginal parameters m1 = m2 = 2. Using (3.2) and (3.12) with
Fm instead of F, we obtain that ρmax = 0.951 and τmax = 0.792. Table 1 provides τα and ρα with
their corrections τα,c and ρα,c for chosen values of α.

From Table 1, we note that the differences Dτ,α = τα,c − τα and Dρ,α = ρα,c − ρα are
increasing as function of the dependence parameter α. This constatation is true in general
because Dτ,α and Dρ,α can be expressed as

Dτ,α =
(1 − τmax)τα

τmax
, Dρ,α =

(
1 − ρmax

)
ρα

ρmax
, (5.11)

which shows that these parameters are in fact increasing with α.
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