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It is proven, under a set of assumptions differing from the usual ones in the unboundedness of
the time interval, that, in an economy in equilibrium consisting of a risk-free cash account and an
equity whose price process is a geometric Brownian motion on [0,∞), the drift rate must be close
to the risk-free rate; if the drift rate μ and the risk-free rate r are constants, then r = μ and the
price process is the same under both empirical and risk neutral measures. Contributing in some
degree perhaps to interest in this mathematical curiosity is the fact, based on empirical data taken
at various times over an assortment of equities and relatively short durations, that no tests of the
hypothesis of equality are rejected.

1. Introduction

In the Black-Scholes model of a market with a single equity, its price St is a geometric
Brownian motion (GBM) satisfying for time t ≥ 0 the stochastic differential equation

dSt = μStdt + σStdBt, (1.1)

where the volatility σ, the drift rate μ, and the rate r for the risk-free security are all constants.
The stochastic process Bt, 0 ≤ t is a standard Brownian motion. In the formulation of Harrison
and Kreps [1] the process is on t ∈ [0, T], T < ∞, and is defined on the probability space
(Ω,FT , PT ), where the filtration Ft = σ(Bs, 0 ≤ s ≤ t), t ≥ 0, is that generated by Bt. They show
in this case that under equilibrium pricing for their securities market model, allowing only
simple trading strategies, there is a measure P ∗

T equivalent to PT and prices can be expressed
as expectations with respect to P ∗

T . Furthermore, under P ∗
T , e

−rtSt is a martingale on [0, T]with
respect to Ft. There are three free parameters in the model, μ, σ, and r. It is shown here that,
if the equity’s prices are given by (1.1) on [0,∞) and again only simple trading strategies
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are allowed on finite but arbitrary sets of nonrandom times, then there is an equivalent
martingale measure and pricing with respect to it in the same manner represents a viable
pricing system in the sense of Kreps [2] if and only if r = μ. In this case, there are really only
two free parameters.

Besides the results found in Lemma 4.5 relating to the Black-Scholes model, results of
a somewhat more general nature in which r, μ, and σ depend upon time deterministically,
can be found in Lemma 4.1.

The arguments given here are for an economy consisting of a single equity and a cash
account. To the extent, therefore, that such models are pertinent to actual equities prices, an
empirical investigation of μ = r for real market data is of interest. Assuming that the model is
true for our empirical data consisting of daily closes of some selected equities, the hypothesis
that r = μ is tested and in no case is the hypothesis of equality rejected by these optimal tests.

The organization of the paper is as follows. First the terms, definitions, and basic
results of Harrison and Kreps [1] are recalled in the context of our model on [0,∞). Then
connections are made between a presumed empirical GBM process with drift μ and the
martingale arising from viability. It is not assumed but shown that the price process must
also be a GBM under the equivalent measure; its drift is r and its volatility agrees with that
of the empirical GBM. It is shown also that the arguments used in [1] to obtain this result
on [0, T] cannot generally be used here. Next, the main result on μ = r is presented; namely,
that under equilibrium the drift of the empirical GBM must be the risk-free rate. If the price
process is a GBM under the empirical measure, then a consequence of viability is that it is
also a GBM under an equivalent (risk-neutral)measure. Finally, the development and results
of our hypothesis tests appear in Tables 1 and 2.

Proofs of technical details most pertinent to the main ideas appear in the body of the
paper; proofs of more tangential ones have been placed in the appendix.

2. Viability, the Extension Property, and
Equivalent Martingale Measures

The notation and assumptions are those of [1] except that here there is an infinite rather than
a finite horizon. Thus, there is a linear space X of functions x : Ω → R which are random
variables defined on a probability space (Ω,F, P). The points ω ∈ Ω represent states of the
world; the points x ∈ X represent bundles of goods in some abstract economy. A subspace
M ⊂ X represents the space of bundles that can be constructed out of marketed bundles
of goods. There is a bounded linear functional π defined on M, with π(m) representing the
market price ofm ∈M and a collectionA of agents represented by complete transitive binary
relations 	 on the space X. The pair (M,π) is viable (as a model of economic equilibrium) if
there is an order 	∈ A of the above specifications and an m∗ ∈ M such that π(m∗) ≤ 0 and
m∗ 	 m for allm ∈M such that π(m) ≤ 0. LettingΨ denote the collection of positive bounded
linear functionals on X, Kreps [2] proves the following lemma.

Lemma 2.1. The price system (M,π) is viable with respect to X if and only if there is a ψ ∈ Ψ such
that ψ |M = π .

Here the securities market model of Harrison and Kreps [1] is extended to [0,∞) and
involves, as there, a risk-free security with rate 0 and a security whose price at time t under the
state of the worldω ∈ Ω is Zt(ω), where the second-order stochastic process Zt is measurable
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Table 1: P values for testing r = μ. None are significant at 0.05.

Symbol Dates UMPU LRT Effect size

AAPL 1-5-2001 to 12-6-2001 0.416 0.413 5.2 × 10−2

APD 1-5-2001 to 12-6-2001 0.520 0.517 3.8 × 10−2

C 1-1-1983 to 1-1-2000 0.059 0.059 3.1 × 10−2

CVS 8-30-2001 to 11-30-2001 0.420 0.397 9.9 × 10−2

DAL 11-03-1994 to 02-02-1995 0.914 0.913 −8.3 × 10−3

F 11-03-1994 to 02-02-1995 0.258 0.226 −1.5 × 10−1

IBM 3-29-1984 to 07-31-1984 0.618 0.611 4.8 × 10−2

K 11-12-1999 to 02-10-2000 0.996 0.995 1.5 × 10−1

LMT 1-5-2001 to 12-6-2001 0.237 0.277 5.1 × 10−2

PG 11-12-1999 to 02-10-2000 0.457 0.445 9.2 × 10−2

Table 2: P values for testing r = μ, March 1, 2007, to August 30, 2007.

Symbol UMPU LRT Effect size

AAPL 0.086 0.068 1.6 × 10−1

APD 0.272 0.261 1.0 × 10−1

C 0.596 0.593 −4.7 × 10−2

CVS 0.257 0.244 1.0 × 10−1

F 0.953 0.953 −5.3 × 10−3

GE 0.528 0.525 5.6 × 10−2

GM 0.939 0.939 −6.8 × 10−3

IBM 0.121 0.103 1.5 × 10−1

K 0.389 0.382 7.8 × 10−2

LMT 0.974 0.974 2.9 × 10−3

PG 0.911 0.911 1.0 × 10−2

with respect to a filtration Ft ⊂ F∞ = σ(∪s≥0Fs) = F. Only simple trades are allowed.
Simple trading strategies are denoted by θ and implicit in θ’s description is a finite set of
nonrandom trading times 0 ≤ t1 < t2 < · · · < tk. The 2-vector of functions θ(t) = (θR(t), θE(t))
has elements which indicate the units held in the risk-free asset and the equity so that the
value of the portfolio at time t is θ(t) · V (t), the ordinary inner product of the vector θ
with V (t, ω) = (1, Zt(ω)). The function θ is Ft-adapted, and, for each ω, θ(t) is constant on
ti−1 ≤ t < ti. As in [1] simple trades involve finite arbitrary collections of nonrandom points
of time at which trades occur but, in contrast, here there is no fixed “consumption time.”
Instead, if the trading strategy has its last trading time at tk as above, then at the last time
all is placed in the risk-free cash account so that, at times t ≥ tk, θ(t) = (θ(tk) · V (tk), 0). The
subspace M is the linear span of the random variables θ · V , where θ is a simple trading
strategy. It is implicit that EP [‖θ(tj)‖2] < ∞ for each j = 1, 2, . . . , k, an assumption made
throughout. A simple trading strategy θ is self-financing if θ(tj−1) · V (tj) = θ(tj) · V (tj) for
each j = 1, 2, . . . , k. If a security market model (M,π) is viable and if θ is self-financing, then
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θ(0) · V (0) = π(m) for m = limt→∞θ(t) · V (t) = θ(tk) · V (tk). The existence of an equivalent
martingale measure is asserted in Lemma 2.2 and its proof can be carried out as by Harrison
and Kreps.

Lemma 2.2. If (M,π) is viable with respect to X = L2(Ω,F, P), then there is an equivalent measure
P ∗ with dP ∗/dP ∈ X and under this measure Zt is a martingale with respect to Ft.

The risk-free security of concern here has instantaneous rate r(t) at time t, the price
process St solves (3.1), and the corresponding trades relative to the process of real interest
here, ˜Vt = (e

∫ t
0 r(s)ds, St), can be obtained by taking Zt = e−

∫ t
0 r(s)dsSt and Vt = e−

∫ t
0 r(s)ds ˜Vt (see

[1, Section 7]). Under a viable pricing system, it follows that e−
∫ t
0 r(s)dsSt is a martingale with

respect to Ft. Thus, pricing for a final transaction time T is given by π(m) = EP ∗[e−
∫T
0 r(s)dsm].

3. Price Process under P and P ∗

It is assumed that under P the price process St(ω), t ≥ 0 solves the SDE

dSt = μ(t)Stdt + σ(t)StdBt (3.1)

analogous to (1.1) but with deterministically varying r(·), μ(·), and σ(·) subject to the
following assumptions:

(A1) the functions μ(·) and r(·) are continuous on [0,∞) and σ(·) is absolutely
continuous with a derivative bounded on compact intervals,

(A2) for some 0 < σL < σU <∞ and all s ≥ 0, σL ≤ σ(s) ≤ σU holds,

(A3) the risk premium ρ(s) = σ−1(s)(μ(s)−r(s)) is uniformly bounded: for some ρU <∞
and all s > 0, |ρ(s)| ≤ ρU,

(A4) the risk free rate is uniformly bounded: for some 0 < rU < ∞ and all s ≥ 0, |r(s)| ≤
rU.

The solution S to (3.1) at time T given its value at time 0 ≤ t < T can be written
explicitly as

ST = St exp

{

∫T

t

μ(s)ds − 1
2

∫T

t

σ2(s)ds +
∫T

t

σ(s)dBs

}

. (3.2)

Under the measure P ∗ the continuous discounted value process

Xt = St exp

{

−
∫ t

0
r(s)ds

}

(3.3)

is a martingale, so by Theorems 4.2 (Chapter 3) of Karatzas and Shreve [3] and IX.5.3 of
Doob [4], for example, provided the quadratic variation process 〈X〉t(ω) is an absolutely
continuous function of t for P ∗-almost every ω with a nonzero derivative, there exists
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Wt a Wiener process under P ∗ and a measurable Ft-adapted process Φ(t, ω) such that
d(e−

∫ t
0 r(s)dsSt(ω)) = Φ(t, ω)dWt(ω). Moreover 〈X〉t(ω) =

∫ t

0 Φ
2(s,ω)ds. It also follows by

Lemma 3.1 that under the equivalence of P and P ∗ one has Φ2(s,ω) = X2
s(ω)σ

2(s).

Lemma 3.1. Let conditions (A) be satisfied, and let St satisfy (3.1), where Bt is a standard Brownian
motion under P . Suppose that Xt = e−

∫ t
0 r(s)dsSt is a martingale under the equivalent measure P ∗.

Then, under the measure P ∗, 〈X〉t(ω) =
∫ t

0X
2
s(ω)σ

2(s)ds. See proof in the Appendix.

By Ito’s formula, d(e−
∫ t
0 r(s)dsSt) = −r(t)e−

∫ t
0 r(s)dsStdt + e−

∫ t
0 r(s)dsdSt, so

dSt = r(t)Stdt + e
∫ t
0 r(s)dsΦ(t, St)dWt. (3.4)

It follows from Lemma 3.1 that, under the equivalence of P and P ∗, one has

Φ(t, ω) = e−
∫ t
0 r(s)dsSt(ω)σ(t) (3.5)

and hence that

dSt = r(t)Stdt + σ(t)StdWt. (3.6)

Thus, if T > t, then under P ∗

ST = St exp

{

∫T

t

r(s)ds − 1
2

∫T

t

σ2(s)ds +
∫T

t

σ(s)dWs

}

. (3.7)

It has been shown that under the equivalent martingale measure P ∗ the price process
satisfies on [0,∞) an SDE with a standard Brownian motionWt, t ≥ 0, the same volatility as
the empirical one, and a drift coincident with the risk-free rate. How does this result on [0,∞)
relate to the results of [1] on [0, T], 0 < T <∞?

Harrison and Kreps show that there is a probability measure P ∗
T equivalent to PT under

which e−
∫ t
0 r(s)dsSt, t ≤ T is a martingale, where PT is P restricted to FT . Karatzas and Shreve

[3, Section 3.5A] (see also [5, Section 1.7, Proposition 7.4]), show that there is a probability
measure ˜P ∗ on (Ω,F∞) with the property that for every T > 0 the measure restricted to
FT is P ∗

T . They point out, however, that generally ˜P ∗ need not be equivalent to P . That is,
in fact the case if

∫∞
0 ρ2(s)ds = ∞ as can be seen from Proposition 3.2 (see also the remark

preceding Example 7.6, Chapter 1, of [5]). In that case, not only is our measure P ∗ not
obtained from the arguments of Harrison and Kreps, it is singular with respect to one that
is. The scope of our main result below would be more limited if the finiteness of the integral
were assumed.

Proposition 3.2. If the measure ˜P ∗ satisfies ζ = d ˜P ∗/dP ∈ L2(Ω,F, P) and, for each t > 0, ˜P ∗|Ft =
P ∗
t then ˜P ∗ ⊥ P ∗ if

∫∞
0 ρ2(s)ds = ∞. See proof in the Appendix.
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4. Relationship between μ and r

Let α > 0 be arbitrary. Suppose that there is an essentially disjoint collection Cα = {Ij}j≥1 of
subintervals of the real line satisfying

⋃

j≥1
Ij ⊂
{

s ≥ 0 :
∣

∣μ(s) − r(s)∣∣ ≥ α}. (4.1)

Under the assumption that the functions μ and r are continuous observe that, unless μ(s) =
r(s) for all s > 0, for α > 0 sufficiently small, the collections Cα are nonempty. Denote the
Lebesgue measure of an interval I by m(I) and fix α > 0 for which Cα is nonempty. The
equities price process under the actual probability measure P is given in (3.2) and if the
pricing system is viable then under P ∗ the same process is given by (3.7). Lemmas 4.2, 4.3,
and 4.4 are used in the proof of Lemma 4.1, the key to our main result.

Lemma 4.1. Under the assumptions (A) and P[S0 = s0] = 1 for some s0 > 0, if (M,π) is a viable
pricing system for M, the class of marketable claims under simple trading strategies, then for every
γ > 0, the set of indices j for whichm(Ij) ≥ γ is at most finite.

Proof. Suppose that (M,π) is viable and the claim is not true. Then, for some γ > 0, there is
an infinite collection of such intervals [aj , bj] ⊂ Iij , j = 1, 2, . . . with bj − aj ≥ γ . Writing

∣

∣μ(s) − r(s)∣∣ = (μ(s) − r(s))+ −
(

μ(s) − r(s))−, (4.2)

assume without loss of generality that thereon |μ(s) − r(s)| = (μ(s) − r(s))+ ≥ α. Then, also
without loss of generality, one can assume that there are points dj < uj , where aij ≤ dj < uj ≤
bij , and

∫uj
dj
(μ(s) − r(s))ds = β/2 = c, j = 1, 2, . . ., where β = γα.

Consider a sequence of trading strategies θn. Under the simple strategy θn, buy
(nSd1)

−1e
∫u1
0 r(s)ds shares of the equity at time d1 to spend n−1e

∫u1
0 r(s)ds units. At this time also

sell n−1e
∫u1
0 r(s)ds of the risk free security to spend −n−1e

∫u1
0 r(s)ds at time d1. Cash flow at time d1

is then 0. At time t = u1, sell the equity to spend −e
∫u1
0 r(s)dsSu1/nSd1 and redeem the bond to

spend n−1e
∫u1
0 r(s)dse

∫u1
d1
r(s)ds. “Cash” on hand at this stage is

e
∫u1
0 r(s)ds

n

(

Su1
Sd1

− e
∫u1
d1
r(s)ds
)

. (4.3)

Invest it in the risk-free security. At times d2, d3, . . . , dn, repeat this, buying at time dj ,

(nSdj )
−1e
∫uj

0 r(s)ds shares of the equity and selling n−1e
∫uj

0 r(s)ds of the risk-free security to spend

a total of 0. At time uj , sell the shares to obtain −e
∫uj

0 r(s)dsSuj/nSdj and redeem the bond to

spend n−1e
∫uj

0 r(s)dse
∫u1
dj
r(s)ds

and invest the “cash” in the risk-free security. At time un, there
will be an amount

Cn = n−1
n
∑

j=1

e
∫un
uj
r(s)ds × e

∫uj

0 r(s)ds

(

Suj
Sdj

− e
∫uj

dj
r(s)ds
)

. (4.4)
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The price of this will be

π(Cn) = EP ∗
[

e−
∫un
0 r(s)dsCn

]

= EP ∗

⎡

⎣

1
n

n
∑

j=1

(

Suj
Sdj

− e
∫uj

dj
r(s)ds
)

⎤

⎦. (4.5)

Under the geometric Brownian motion model (3.1), the term inside the expectation is
n−1
∑n

j=1 Yj , where

Yj = e
∫uj

dj
(μ(s)−σ2(s)/2)ds+

∫uj

dj
σ(s)dBs − e

∫uj

dj
r(s)ds

, (4.6)

an average of independent, but not identically distributed, random variables. By Lemma 4.2,
there is a subsequence nk and an L > 0 such that

1
nk

nk
∑

j=1

e
∫uj

dj
r(s)ds −→ L (4.7)

and, under P ,

Jk = Vnk =
1
nk

nk
∑

i=1

Yi
p−→ L(ec − 1). (4.8)

Since a sequence converging in probability has a subsequence which converges almost

surely, there is a subsequence k′ such that Jk′
a.s. P→ L(ec − 1). By equivalence of P and

P ∗, that convergence is also almost surely P ∗. By Lemma 4.4, the sequence Jk is uniformly
integrable under P ∗, so expectations converge (see [6, Theorem 5.4]) and one concludes that
EP ∗[Jk′] → L(ec − 1). On the other hand, by Lemma 4.3, EP ∗[(nk)

−1∑nk
i=1 Yi] = 0 for every k. It

follows that c = 0, a contradiction.

Lemma 4.2. Under conditions (A), there is a subsequence nk and L > 0 such that

1
nk

nk
∑

j=1

e
∫uj

dj
r(s)ds −→ L,

1
nk

nk
∑

j=1

Yj
p−→ L(ec − 1)

(4.9)

(see proof in the Appendix).

Lemma 4.3. EP ∗[Yj] = 0 (see proof in the Appendix).

Lemma 4.4. Under conditions (A) the sequence n−1
∑n

j=1 Yj is uniformly integrable under P ∗ (see
proof in the Appendix).
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Lemma 4.5. If μ(·) and r(·) are constant and if the model is viable, then r = μ.

Proof. Suppose that |r − μ| = d > 0. Then, for 0 < α < d, and any γ > 0, essentially disjoint
intervals I in Cα can be chosen in such a way that there is an infinite collection satisfying
m(I) ≥ γ . By Lemma 4.1 this violates the viability of the model.

The next most interesting case is when

μ(s) − r(s) = ρσ(s), (4.10)

where ρ, the possibly varying risk premium, is assumed constant.

Lemma 4.6. Under conditions (A), if the pricing system (M,π) is viable and if (4.10) holds for all
s ≥ 0, then ρ = 0.

Proof. Assume that ρ /= 0, and let 0 < α < |ρ|σL. Then, for any γ > 0 essentially disjoint intervals
in Cα can be chosen in such a way that there is an infinite collection, contradicting Lemma 4.1
unless ρ = 0.

Returning to the market expressed in terms of V (t), define the functional ψ on X =
L2(Ω,F, P), where P = Pμ is the empirical measure under which St satisfies (3.1), by ψ(x) =
∫

x(ω)dP(ω). Our interest in the following theorem centers on the pricing system defined
onM by π(m) =

∫

m(ω)dPr(ω), and Pr is the measure corresponding to the process solving
(3.6).

Theorem 4.7. For the Black-Scholes model on [0,∞) (r = 0,μ, and σ are constants), the pricing
system (M,π) is viable with respect to X if and only if μ = 0.

Proof. By Lemma 4.5 it is known that, if the system (M,π) is viable then r = μ. It suffices to
show that, if r = μ, then the pricing system given by π is viable. According to Lemma 2.1, it
suffices to show, as it plainly does here, that ψ extends π .

5. Empirical Considerations

For these considerations to have relevance to real data, equities prices should be adequately
modeled as solutions to SDE (3.1). For roughly a century, models in agreement with (3.1)
[7–10] have appeared in the literature, and we will assume this model here. Statistical tests of
r = μ, assuming the Black-Scholes model over a suitably brief time span, are then employed
on a small set of data. The results found in Tables 1 and 2 are consistent with the truth of the
hypothesis of equality.

5.1. UMPU Test

Assuming themodel (3.1)with μ and r constant, some tests of μ = r are developed here based
on readily available daily log return data, Rt = ln(St+1/St), where Rt are i.i.d.N(μ − ξ2/2, ξ2),
and applied to different underlying equities at various historical times.
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Let Xi = Ri − r. Setting η = E[Xi] and ξ2 = Var(Xi), the hypothesis pair H ′
0 : μ = r

versus H ′
a : μ/= r becomes H0 : η + ξ2/2 = 0 versus Ha : η + ξ2/2/= 0, which will be tested

based on observing X1, . . . , Xn i.i.d.N(η, ξ2). Writing

f
(

x | η, ξ2
)

=
1

(2πξ2)n/2
exp

{

− 1
2ξ2

n
∑

i=1

(

xi − η
)2

}

, (5.1)

one has that (
∑

X2
i ,
∑

Xi) are joint sufficient statistics for (−1/2ξ2, η/ξ2) = (θ1, θ2). It can be
seen, based upon the theory of tests of a single parameter from an exponential family (see
[11]), that a uniformly most powerful unbiased (UMPU) test φα of size α exists for testing the
hypothesis of interest here,

H0 : θ2 = −1
2
versus Ha : θ2 /= − 1

2
. (5.2)

Furthermore, denoting by Pα(θ) the power function of the test φα, one has the following
result.

Lemma 5.1. The test which rejectsH0 if |τn| > zα/2, where

τn =

√
n
(

Xn/S
2
n + 1/2

)

√

1/S2
n + 3/2 + S2

n/4
, (5.3)

satisfies for all θ inH0

lim
n→∞

P[|τn| > zα/2 | θ] = Pα(θ). (5.4)

See proof in the Appendix.

The results of testing hypothesis (5.2) for various equities at varying times are found
in Table 1 and for a fixed set of times in Table 2. The risk-free rates were determined from
the US treasury for the corresponding time spans at each initial time and, in the latter case,
reveal that none of the drift rates differ significantly (at α = 0.05) from r = 2.0113 × 10−4, the
daily rate for 26-week treasury bills during that stretch. In the tables, the entry Effect Size is
η̂/σ̂ + σ̂/2, a rough estimate of μ − r in terms of the volatility.

It is perhaps surprising that there were no significances especially in the case of C in
Table 1 and AAPL in Table 2, the former because of the long time span and the approximation
assuming a fixed risk-free rate in a world in which it is constantly changing, and the latter
because on June 29, 2007 Apple introduced its first iPhone amajor milestone in the company’s
rising fortunes. The former is in line with the sample size and observed effect size while the
latter is consistent with a fundamental change.
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5.2. Likelihood Ratio Tests

Likelihood ratio tests present an alternative possibility. They are known to be optimal (see,
e.g., [12]) in large samples. According to Wilks’ theorem, the null hypothesis should be
rejected when −2 lnλ(x) is too large. Setting

w∗ = 2

⎡

⎣

√

1 +

∑n
j=1 x

2
j

n
− 1

⎤

⎦, (5.5)

one has the following.

Lemma 5.2. The likelihood ratio test of (5.2) of size α rejectsH0 if the test statistic

τ = n(lnw∗ − 1) +
1
w∗

n
∑

j=1

(

xj +
w∗

2

)2

− n ln
⎛

⎝

∑n
j=1
(

xj − x
)2

n

⎞

⎠ (5.6)

exceeds χ2
α. See proof in the Appendix.

P values are found in Tables 1 and 2 both for the UMPU test and for the LRT and one
observes that they are quite close and, again, there are no significances at α = 0.05.

Appendix

Proof of Lemma 3.1. Fix t > 0 and 0 < t1 < · · · < tn = t an equidistant partition of the interval
[0, t]. To ease notation let us denote Xj := Xtj , At :=

∫ t

0(μ(s) − r(s) − (1/2)σ2(s))ds, Mt :=
∫ t

0 σ(s)dBs, and correspondinglyAj := Atj ,Mj :=Mtj . Also, denote ΔAj := Aj −Aj−1, ΔMj :=
Mj −Mj−1.

Notice that, under P ,Mt is a normal variable with mean zero and variance
∫ t

0 σ
2(s)ds.

Let us evaluate
∣

∣

∣

∣
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∣

∣
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∣

∣

∣
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∣

∣

∣

∣

∣

n
∑

j=1

(
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∣
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+
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:= T1,n + T2,n + T3,n + T4,n.

(A.1)

Since limx→ 0x
−3[(ex − 1)2 − x2] = 1, for x sufficiently close to zero |(ex − 1)2 − x2| ≤ 2|x3|.

Moreover, maxj≤n|ΔAj | ≤ (t/n)(|μU| + |rU| + (1/2)σ2
U) := (t/n)C(μ, r, σ) → 0, and since

maxj≤nEP (ΔMj)
2 = maxj≤n

∫ tj
tj−1 σ

2(s)ds ≤ (t/n)σ2
U → 0, there exists a subsequence nk on

which convergence holds almost surely. In order to simplify notation, we assume that nk = n.
Then, for n large enough and for almost all ω we have
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(A.2)

We have

EP
∣

∣ΔMj

∣

∣ =

√

2
π

√

√

√

√

∫ tj

tj−1
σ2(s)ds ≤

√

2
π
σU

t1/2

n1/2
, (A.3)

EP (|ΔMj |2) ≤ (t/n)σ2
U, and EP (|ΔMj |3) = (2

√
2/

√
π)(
∫ tj
tj−1 σ

2(s)ds)
3/2 ≤ (t3/2/n3/2)σ2

U. From
conditions (A) it follows that there exists K > 0 such that

EPX
2
j−1 = S

2
0e

2Aj−1e2
∫ tj−1
0 σ2(s)ds ≤ K. (A.4)
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Moreover, using that Xj−1 is independent of ΔMj , we have

EP (T1,n) ≤ 2K

(

C
(

μ, r, σ
)3 t3

n2
+ C1
(

μ, r, σ
) t5/2

n3/2
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(

μ, r, σ
) t2

n
+ C3
(

μ, r, σ
) t3/2

n1/2

)

−→ 0,

(A.5)

and it follows that T1,n has a subsequence which converges P -almost surely to zero.
Let us now evaluate

EPT2,n ≤
n
∑

j=1

KC2(μ, r, σ
) t2

n2
= KC2(μ, r, σ

) t2

n
−→ 0, (A.6)

therefore T2,n has a subsequence that converges P -almost surely to zero.
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−→ 0, (A.7)

and therefore T3,n has a subsequence convergent to zero P -almost surely
For the last term T4, we write
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(A.8)

Since
∫ t

0XsdMs is a continuous P square integrable martingale, by Theorem 5.8 of [3, Chapter

1] it follows that
∑n

j=1 (
∫ tj
tj−1 XsdMs)

2 → 〈∫ t0XsdMs〉 in probability P . By [13, Proposition 2.3,

Chapter 2], 〈∫ t0XsdMs〉 =
∫ t

0X
2
sσ

2(s)ds; therefore, T6,n converges to zero P -almost surely on a
subsequence.

As for T5,n, from Hölder’s inequality we have
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⎡
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(
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By Itô’s isometry,

E
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(A.10)

For n large enough

[

e
As−Aj−1+(1/2)
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tj−1 σ

2(u)du − 1
]2
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As −Aj−1 +
1
2

∫s
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)(

s − tj−1
)2
.

(A.11)

By a similar argument, [E(
∫ tj
tj−1(Xj−1 +Xs)dMs)

2]1/2 ≤ C for some constant depending on μ, r,
σ, and t. Then,

E|T5,n| ≤ C
n
∑

j=1

(

tj − tj−1
)3/2 −→ 0, (A.12)

and therefore T5,n has a subsequence converging to zero P -almost surely It has been shown
that

∣
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2 −
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∣

−→ 0 (A.13)

almost surely P on a subsequence, and, since P ∼ P ∗, convergence holds almost surely in
P ∗ as well. Thus, |∑n

j=1 |Xj −Xj−1|2 − 〈X〉(t)| → 0 in P ∗, and it follows that 〈X〉t(ω) =
∫ t

0X
2
s(ω)σ

2(s)ds.
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Proof of Lemma 4.1. The random variables ζt = E[ζ | Ft] constitute a martingale and ζt is
the Radon-Nikodym (RN) derivative of the probability measure ˜P ∗|Ft with respect to P |Ft .
By Theorem 4.1 of [4, page 319] since ζt are nonnegative and E[ζt] = 1 for all t, one has
that limt→∞ζt = ζ with P -probability 1. One has from [1, Theorem 3], that for each t > 0,

ζt = e
∫ t
0 ρ(s)dBs−(1/2)

∫ t
0 ρ

2
sds. Then since

∫ t

0 ρ(s)dBs ∼ N(0,
∫ t

0 ρ
2
sds), one has for any a such that ea

is a continuity point of the distribution of the random variable ζ that

P[ζt ≥ ea] = P
[

∫ t

0
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2
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0
ρ2sds + a

]

= P
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⎢

⎣
Z ≥ 1

2

√

∫ t

0
ρ2sds +

a
√

∫ t

0 ρ
2
sds

⎤

⎥

⎦
.

(A.14)

So, unless
∫∞
0 ρ2sds < ∞, one has P[ζ ≥ ea] = 0. But then P[ζ < ea] = 1 so that choosing a < 0

shows that ζ cannot be the RN derivative of a probability measure absolutely continuous with
respect to P .

Proof of Lemma 4.2. Existence of the subsequence and nonzero limit L is obvious from assump-
tions (A) and the sequential compactness of the real line. Since under P

∫uj

dj

σ(s)dBs ∼N
(

0,
∫uj

dj

σ2(s)ds

)

(A.15)

and EP [e
∫uj

dj
σ(s)dBs] is just the mgfφ(u) of this random variable evaluated at u = 1, it follows

that

Xj = e
∫uj

dj
μ(s)ds
(

e
∫uj

dj
σ(s)dBs−

∫uj

dj
σ2(s)/2ds − 1

)

(A.16)

is zero mean under P and that, defining Xn,j = (1/n)Xj , one has (1/n)
∑n

j=1(Yj − EP [Yj]) =
∑n

j=1Xn,j , where Yj are given in (4.6). Under P , Xn,j are independent across j for each n. Let
Vn = (1/n)

∑n
j=1 Yj , Wn = (1/n)

∑n
j=1 EP [Yj], and W0 = L(ec − 1). Then, Wn are constants

converging to W0 along a subsequence and EP [(Vn −Wn)
2] = b2n, where b2n =

∑n
j=1 σ

2
n,j and

σ2
n,j = Var(Xn,j). Setting ηj =

∫uj
dj
σ2(s)ds,
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[

e
k
∫uj

dj
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∫uj
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]

= e((k
2−k)/2)ηj , (A.17)

so one has

σ2
n,j =

e
2
∫uj

dj
μ(s)ds

(eηj − 1)
n2

. (A.18)
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In case assumptions (A) hold, then since

c =
∫uj

dj

ρ(s)σ(s)ds ≥ α(uj − dj
)

(A.19)

so that ηj ≤ σ2
U(uj − dj) ≤ σ2

Uc/α <∞ for all j, it follows that b2n is O(n−1). Therefore

‖Vn −W0‖2P = b2n + 2 · 0 · (Wn −W0) + (Wn −W0)2 −→ 0 (A.20)

on the subsequence for which Wn → W0. This convergence implies convergence in
probability.

Proof of Lemma 4.3. Under P ∗, e−
∫ t
0 r(s)dsSt is a martingale so that for 0 ≤ t < T one has

e−
∫ t
0 r(s)dsSt = EP ∗

[

e−
∫T
0 r(s)dsST | St

]

= e−
∫T
0 r(s)dsSte

∫T
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t σ
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e
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. (A.21)

Therefore,

EP ∗
[

e
∫T
t σ(s)dBs

]

= e
∫T
t (r(s)−μ(s))dse

∫T
t σ

2(s)/2ds. (A.22)

Thus,

EP ∗
[

Yj
]

= exp

{
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σ2(s)
2
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∫uj
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σ2(s)
2
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}

− exp

{

∫uj

dj

r(s)ds

}

(A.23)

and the claim follows.

Proof of Lemma 4.4. First consider the distribution of the random variable Vσ =
∫T

t σ(s)dBs
under P ∗. Under P ∗,

∫T

t

σ(s)dBs ∼N
(

−
∫T

t

ρ(s)σ(s)ds,
∫T

t

σ2(s)ds

)

. (A.24)

To see this, compute the MGF of Vσ as ϕσ(u) = E[euVσ ]. Since uVσ = Vuσ , by (A.22) one has

ϕσ(u) = ϕuσ(1) = e
∫T
t (ur(s)−uμ(s))dse

∫T
t (uσ(s))2/2ds (A.25)

and the claim has been established. Next the claim is that

EP ∗
[

Y 2
j

]

= e
2
∫uj

dj
r(s)ds

(eηj − 1). (A.26)
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To see this, set Vσ,j =
∫uj
dj
σ(s)dBs and recall that

∫uj
dj
ρ(s)σ(s)ds = c and

∫uj
dj
σ2(s)ds = ηj , so

that

Y 2
j =
(

e
∫uj

dj
μ(s)ds+Vσ,j−ηj/2 − e
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. (A.27)

Therefore, one has

EP ∗
[

Y 2
j

]

= e
2
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e−2c+2ηj − 2e
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2
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2
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∫uj
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+ e
2
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r(s)ds

= e
2
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(A.28)

We do not know that Buj − Bdj are independent under P ∗ but by Jensen’s inequality

⎛

⎝

1
n

n
∑

j=1

wj

⎞

⎠

2

≤ 1
n

n
∑
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w2
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(A.29)

so that

EP ∗

⎡

⎢

⎣

⎛

⎝

1
n

n
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j=1

Yj

⎞

⎠

2
⎤
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⎦
≤ 1
n

n
∑
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(eηj − 1)max
1≤j≤n

e
2
∫uj

dj
r(s)ds

, (A.30)

and under (A) this is uniformly bounded in n. Therefore, the sequence (1/n)
∑n

j=1 Yj is
uniformly integrable under P ∗.

Proof of Lemma 5.1. As it is well known, the test φ = φα will satisfy the derivative condition
for exponential class densities

Eθ2=−1/2
[

S2φ(S2, s) | S1 = s
]

= αEθ2=−1/2[S2 | S1 = s] (A.31)

and the size condition

Eθ2=−1/2
[

φ(S2, s) | S1 = s
]

= α, (A.32)

where the expectations refer to the conditional distribution of S2 =
∑

Xi given S1 =
∑

X2
i . By

the theory of Lehmann [11], the UMPU test can be based upon the statistic

Xn

S2
n

+
1
2

(A.33)
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since it is a monotonic function of
∑

Xi given
∑

X2
i . The latter follows simply from

∂

∂v

v

nt − v2
=

nt + v2

(nt − v2)2
> 0. (A.34)

There is no closed-form expression for the conditional distribution of
∑

Xi given
∑

X2
i under

the condition θ2 = −1/2 but a large sample approximation can be made as follows.
It is shown below that under the hypothesis H0 : η/ξ2 = −1/2, as the sample size

n → ∞,

√
n

(

Xn

S2
n

+
1
2

)

L−→N(0, v), (A.35)

where v = (ξ4+6η2ξ2+4η4)/ξ6. Therefore, by Slutsky’s theorems, a test suggests itself; namely,
rejectH0 if

√
n
(

Xn/S
2
n + 1/2

)

√

1/S2
n + 6X

2
/S4

n + 4X
4
/S6

n

(A.36)

exceeds in absolute value the upper α/2 cutoff of the standard normal. That test, which is
more complicated than the one given in (5.3), would have asymptotically the same power
function as the UMPU test, but it is sufficient here to operate under the null hypothesis.
Under the null hypothesis one has v = 1/ξ2 + 3/2 + ξ2/4 so a suitable test statistic is given
by (5.3). The claimed asymptotic distribution in (A.35) is verified. It is well known that
with

Σ =

(

ξ2 0

0 2ξ4

)

(A.37)

one has

√
n

[

m1,n − η1
m2,n − η2

]

L−→N2(0,Σ). (A.38)

Here mi,n = (1/n)
∑n

j=1X
i
j and ηi = E[Xi]. With f(u, v) = u/(v − u2) + 1/2, f(η1, η2) =

(η/ξ2) + (1/2) and the latter, under the null hypothesis, is 0. Hence, by the δ-method and
under the null hypothesis

√
n
(

f(m1,n,m2,n) − 0
) L−→N

(

0,∇f ′Σ∇f), (A.39)
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where

∇f ′ =
(

fu
(

η1, η2
)

, fv
(

η1, η2
))

=

(

η2 + η21
ξ4

,−η1
ξ4

)

. (A.40)

Upon simplification, the claim has been verified.

Proof of Lemma 5.2. Write the maximum of the density under H0 as N(u, v), denote the
denominator D which is the unrestricted maximum similarly, and find

λ(x) =
supu+w/2=0f(x | u,w)

supu,w>0f(x | u,w)
=
N

D
. (A.41)

Since for b > 0 and v > 0 it is the case that maxt>0 t−be−v/t = (v/b)−be−b attained at t = v/b,
one has

D =

⎡

⎣e2π

∑n
j=1
(

xj − x
)2

n

⎤

⎦

−n/2

. (A.42)

For the numerator maxu+w/2=0 ln f(x | u,w) is sought as is the location of the maximum. The
location (u∗, w∗) is therefore where

max
u+w/2=0

⎡

⎣−n
2
lnw − 1

2w

n
∑

j=1

(

xj − u
)2

⎤

⎦ (A.43)

is attained. More simply, u∗ = −w∗/2, where w∗ maximizes

h(w) = −n
2
lnw − 1

2w

n
∑

j=1

(

xj +
w

2

)2
. (A.44)

Thus,

∂h

∂w
=

−n
2w

+

∑n
j=1 x

2
j

2w2
− n

8
(A.45)

and the derivative is zero at

w∗ =
n ±
√

n2 + n
∑n

j=1 x
2
j

−n/2
(A.46)
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so that taking account of the proper sign and that the derivative is zero at the maximum,
(5.5), the LRT rejectsH0 if

−2
⎡

⎣−n
2
lnw∗ − 1

2w∗

n
∑

j=1

(

xj +
w∗

2

)2

+
n

2

⎛

⎝ln e + ln

⎛

⎝

∑n
j=1
(

xj − x
)2

n

⎞

⎠

⎞

⎠

⎤

⎦ (A.47)

exceeds the upper α cutoff of a chi square with 1 degree of freedom. Simplifying, the test
statistic is that in (5.6).
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