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We propose a simple close-to-normal approximation to a Weibull random variable (r.v.) and
consider the problem of estimation of upper prediction limit (UPL) that includes at least l
out of m future observations from a Weibull distribution at each of r locations, based on the
proposed approximation and the well-known Box-Cox normal approximation. A comparative
study based on Monte Carlo simulations revealed that the normal approximation-based UPLs for
Weibull distribution outperform those based on the existing generalized variable (GV) approach.
The normal approximation-based UPLs have markedly larger coverage probabilities than GV
approach, particularly for small unknown shape parameter where the distribution is highly
skewed, and for small sample sizes which are commonly encountered in industrial applications.
Results are illustrated with a real dataset for practitioners.

1. Introduction

Weibull distribution is widely used in reliability and survival analysis due to its flexible
shape and ability to model a wide range of failure rates. It can be derived theoretically as
a form of extreme value distribution, governing the time to occurrence of the “weakest link”
of many competing failure processes. Its special case with shape parameter b = 2 is the
Rayleigh distribution which is commonly used for modeling the magnitude of radial error
when x and y coordinate errors are independent normal variables with zero mean and the
same standard deviation while the case b = 1 corresponds to the widely used exponential
distribution.

LetX follow aWeibull distribution with scale parameter a and shape parameter b. The
pdf of X is given by
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(1.1)

If a random sample of size n is given, an important statistical problem is to construct a
(1−α)100%UPL such that l ofm future sample values are below the UPL at each of r locations
(or time periods). This problem for Weibull-distributed data is less attended in the literature.
Such prediction limits are very much useful in monitoring and control problems during
the operation of a production process in industries, particularly when the characteristic of
interest is smaller the better type. UPLs are also useful in groundwater quality monitoring
in the vicinity of hazardous waste management facilities (HWMF). For example, to monitor
ground water quality, a series of m samples, that is, measurements of a pollutant like vinyl
chloride from each of r monitoring wells in the vicinity of an HWMF are often compared with
UPL based on a sample of n measurements obtained from one or more upgradient sampling
locations of the facility. If at least l samples out of thesem samples from each of r locations are
less than theUPL, then the facility is considered to bewithin compliance. If this requirement is
not met, then monitoring of contaminants like vinyl chloride is much more needful. Bhaumik
and Gibbons [1] have discussed applications of UPLs in the fields like molecular genetics
and industrial quality control. Davis and McNichols [2] obtained UPL assuming normality
for the parent distribution. Bhaumik and Gibbons [1] and Krishnamoorthy et al. [3] proposed
approximate methods for constructing UPL for Gamma distribution. Krishnamoorthy et al.
[4] used the GV approach for constructing UPL for Weibull distribution.

In this paper, we propose a simple close to normal transformation for Weibull
distribution when the shape parameter b is known. The transformation is based on two
key features of the normal distribution, namely, symmetry and the tail behaviour. This
transformation and the well-known Box-Cox transformation are used to obtain approximate
UPLs for Weibull distribution when the shape parameter b is known. For unknown shape
parameter b, replacing it by its maximum likelihood estimator (mle) gave equally good
results. A simulation-based comparison of the proposed UPLs with existing ones revealed
that the proposed UPLs outperform their competitors even for small sample sizes, and more
prominently for small shape parameters which are frequently encountered in many real
applications.

The article is organized as follows. Section 2 provides a brief review of the GV
approach-based UPL developed by Krishnamoorthy et al. [4]. Section 3 describes the
proposed normal approximation method and develops UPL for Weibull distribution based
on the proposed and the Box-Cox transformations. Section 4 reports the comparison of the
proposed UPLs with the GV approach-based UPL with respect to the simulated expected
coverages and expected lengths. Section 5 illustrates the methods using a real dataset.
Section 6 provides overall conclusions and recommendations.

2. GV Method for Obtaining UPL for Weibull (a, b) Distribution

Krishnamoorthy et al. [4] proposed (1 − α)100% UPL that includes at least l out of m future
observations from a Weibull (a, b) distribution at each of r locations as

exp
(
η̂ + un,r,l,mβ̂

)
, (2.1)
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where η̂ = log(â) and β̂ = 1/b̂. They computed value for un,r,l,m using the following simulation
study.

For the given values of n,r,l,m, and 1 − α, the following procedure is repeated N (say
100000) times.

(I) n independent and identically distributed (i.i.d.) random variables y∗
1, y

∗
2, . . . , y

∗
n are

generated from the extreme-value (0,1) distribution and mles η̂∗, β̂∗ are computed.

(II) For the given η̂∗, β̂∗ following procedure is repeated r times.

(i) m i.i.d. random variables y∗
i1, y

∗
i2, . . . , y

∗
im; i = 1, 2, . . . , r are generated from the

extreme-value (0,1) distribution.

(ii) lth order statistic based on these samples y∗
i(l); i = 1, 2, . . . , r are computed.

(III) The quantities y∗
r,m,l = max{y∗

i(l); i = 1, 2, . . . , r} and u = (y∗
r,m,l − η̂∗)/β̂∗ are com-

puted.

Then 100(1 − α)th percentile of the generated N values of u is the estimate of un,r,m,l.
Note that the distribution of the pivotal quantity based on which UPL is developed does not
depend on any unknown parameters, thus it is an exact method.

3. The Proposed Close-To-Normal Power Transformation-Based UPL

3.1. The Proposed Close-To-Normal Power Transformation

The proposed transformation is based on the two key features governing normality, namely,
the symmetry and tail behaviour of the normal distribution.

Let X follow a two parameter Weibull (a, b) distribution and the shape parameter b is
known.We consider a transformation Y = Xp for the r.v.Xwhere the power p is chosen so that
the distribution of the transformed variable Y has very small deviation from symmetry and
simultaneously has tail behaviour very close to that of the normal distribution with the same
mean and variance. Straightforward calculations show that the skewness of the distribution
of Y is given by

γ
(
p, b

)
= γ(θ) =

Γ(1 + (3θ)) − 3Γ(1 + (θ))Γ(1 + (2θ)) + 2(Γ(1 + (θ)))3
(
Γ(1 + (2θ)) − (Γ(1 + (θ)))2

)3/2
, (3.1)

which is a function of the ratio θ = p/b, and does not depend on the scale parameter a.
Treating γ(p, b) as a function of θ, a solution for γ(θ) = 0 is θ1 = 0.2776, for which the
distribution of the variable Y = Xp where p = bθ, is exactly symmetric. To achieve control
over the tail behaviour, it is noted that the kth central moment of the transformed r.v. Y is
E(Yk) = E(Xkp) = akpΓ(1 + kθ) leading to the mean and standard deviation of Y given by

μy = apΓ(1 + θ), σy = ap
(
Γ(1 + 2θ) − (Γ(1 + θ))2

)0.5
. (3.2)
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Table 1

α 0.010 0.025 0.050 0.095 0.975 0.990
c(α) −0.0283 −0.0063 0.0044 0.0009 0.0072 0.0170

Furthermore, the αth quantile of a normal distribution with mean μy and standard deviation
σy is given by

ξα = μy + σyZα = ap

(

Γ(1 + θ) +
(
Γ(1 + 2θ) − (Γ(1 + θ))2

)0.5
Zα

)

. (3.3)

Similarly, if xα is the αth quantile of the Weibull (a, b) distribution that is, xα = a(− log(1−
α))1/b, it easily follows that the αth quantile yα of the distribution of Y is given by

yα = x
p
α = ap(− log(1 − α)

)θ
. (3.4)

To make the tail behavior of the distribution of Y very close to that of the normal distribution
with same mean and standard deviation as that of Y , we solve the equation ξα − yα = 0 for
the commonly used choice of α = 0.025 and α = 0.975 for a two-sided interval leading to the
solutions respectively θ2 = 0.2698 and θ3 = 0.2994. To control the symmetry and tail behaviour
of the distribution of transformed r.v. Y simultaneously close to the normal distribution, we
suggest taking p = θbwhere θ = (θ1+θ2+θ3)/3 = 0.2823 as the power of aWeibull r.v.X. From
(3.3) and (3.4) it follows that for this choice of θ, the difference between the two quantiles ξα
and yα is given by (ab)0.2823c(α) where c(α) = (Γ(1 + θ) + (Γ(1 + 2θ) − (Γ(1 + θ))2)

0.5
Zα) −

(− log(1 − α))θ is a constant depending on α. The values of c(α) for various commonly used
choices of α are given in Table 1.

We note that the constant c(α) is considerably small for commonly used level of
significance α = 0.05, and further numerical study revealed that the accuracy of the proposed
transformation is very good for small values of b (say b < 4) and for small to moderate values
of a (say a < 100), which covers a reasonable subset of the parameter space and commonly
encountered real situations. We recall that the choice of p is uniform for all a > 0 since γ is
free from a. When b is unknown, we take p = θb̂, replacing b by its mle b̂. In the sequel we
refer to this transformation as the close to normal power transformation (CNPT).

3.2. UPL Based on the CNPT

Let Y1, Y2, . . . , Yn be a random sample of size n from a normal distribution with mean μ and
standard deviation σ. Let Y and Sy be the sample mean and sample standard deviation. Then
Davis and McNichols [2] suggested UPL that includes at least l out of m future observations
from the same normal distribution at each of r locations as

Y + kuSy, (3.5)
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where the value of ku for selected values of (n, r, l,m) and level α is the solution to the
following equation

∫1

0

Nt

(√
nku;n − 1,

√
nΦ−1(x)

)
r(I(x; l,m + 1 − l))r−1xl−1(1 − x)m−l

β(l,m + 1 − l)
dx = α, (3.6)

where Nt(x;v, δ) is the cumulative distribution function (Cdf) of noncentral t r.v. with v df
and noncentrality parameter δ, Φ−1(x) is inverse Cdf of the standard normal distribution
at x, β(m,n) is the usual beta function and I(x;m,n) is the Cdf of a beta distribution with
parameters m and n.

Let X1, X2, . . . , Xn be a random sample of size n from a Weibull (a, b) distribution. Let
U be the normal based UPL obtained using (3.5), based on Yi = X

p

i ; where p = 0.2823b; i =
1, 2, . . . , n. Then (U)1/p is the proposed UPL that is expected to include at least l out of m
future observations from theWeibull (a, b) distribution at each of r locations for known shape
parameter b, with probability 1 − α. When the shape parameter b is unknown, we suggest to
replace it by its mle b̂ and the proposed UPL is (U)1/p̂ where p̂ = 0.2823b̂. It is noted that p̂ is
a consistent estimator for p. Hence for large samples (U)1/p̂ is expected to be close to (U)1/p.
Small sample behavior of (U)1/p̂ is studied through simulation.

3.3. Box-Cox Transformation and
Kullback-Leibler Information-(BCKL-) Based UPL

Hernández and Johnson [5] proposed the transformation

Y =

⎧
⎪⎨

⎪⎩

Xλ − 1
λ

if λ/= 0,

log(X) if λ = 0,
(3.7)

to Weibull r.v. X for approximating distribution of Y to normal and used a solution λ =
0.2654b for known shape parameter b that minimizes the Kullback-Leibler information
between the distribution of Y and the normal distribution with the same mean and variance
as that of Y . This transformation was used by Yang et al. [6] for obtaining prediction interval
for a single future observation from Weibull (a, b) distribution. Using this transformation
for the UPL problem under consideration, a (1 − α)100% UPL for Weibull distribution is
(1 + λU)1/λ where U is the normal based UPL obtained using (3.5). As before an unknown
value of bwill be replaced by its mle b̂. This also enjoys the large sample properties mentioned
above and its small sample behavior is studied through simulation.

4. Comparison

In this section we compare the performance of above two proposed UPLs with the UPL based
on GV method-based on a simulation study with respect to expected lengths and expected
coverages of the UPLs.

For fixed values of the parameters a, b, and sample size n, we generate n random
numbers Xi; i = 1, 2, . . . , n from the Weibull (a, b) distribution, and set Y1i = X

p

i ,
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Table 2: Simulated expected lengths of 95% UPL that contain at least l of m future observations at each
of r locations from Weibull (a, b) distribution for sample sizes n = 6, 10, 20 using GV, CNPT, and BCKL
methods∗.

a
b

n = 6 n = 10 n = 20

GV CNPT BCKL GV CNPT BCKL GV CNPT BCKL

r = 4,
l = 2,
m = 6

0.1
0.5 0.38 0.37 0.37 0.25 0.25 0.25 0.19 0.18 0.18
1 0.18 0.18 0.18 0.15 0.15 0.15 0.13 0.13 0.13
3 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11

1
0.5 3.80 3.76 3.77 2.50 2.47 2.46 1.85 1.79 1.78
1 1.79 1.78 1.78 1.51 1.50 1.49 1.33 1.31 1.30
3 1.19 1.19 1.19 1.13 1.13 1.13 1.09 1.09 1.09

5
0.5 19.10 18.63 18.71 12.53 12.31 12.28 9.25 9.00 8.93
1 9.00 8.90 8.91 7.55 7.48 7.46 6.64 6.54 6.51
3 5.96 5.94 5.94 5.67 5.65 5.65 5.46 5.44 5.43

50
0.5 190.16 186.02 186.79 124.82 123.47 123.08 92.75 89.95 89.25
1 90.03 88.84 89.00 75.45 74.85 74.73 66.36 65.44 65.18
3 59.64 59.40 59.44 56.70 56.54 56.51 54.62 54.39 54.32

100
0.5 383.79 374.67 376.24 251.24 247.09 246.32 184.91 180.11 178.70
1 179.98 178.41 178.72 151.07 149.92 149.66 132.80 130.95 130.43
3 119.27 118.77 118.83 113.40 113.11 113.04 109.24 108.74 108.59

r = 8,
l = 1,
m = 5

0.1
0.5 0.27 0.27 0.26 0.18 0.18 0.18 0.14 0.13 0.13
1 0.15 0.15 0.15 0.13 0.13 0.13 0.11 0.11 0.11
3 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.10

1
0.5 2.66 2.64 2.63 1.82 1.79 1.78 1.38 1.34 1.32
1 1.51 1.50 1.50 1.29 1.27 1.27 1.14 1.13 1.12
3 1.13 1.12 1.12 1.08 1.07 1.07 1.04 1.03 1.03

5
0.5 13.34 13.20 13.16 9.11 8.96 8.88 6.91 6.68 6.60
1 7.55 7.50 7.49 6.43 6.39 6.36 5.74 5.63 5.60
3 5.63 5.61 5.61 5.38 5.36 5.36 5.20 5.17 5.16

50
0.5 133.95 132.56 130.91 91.13 89.64 88.90 69.09 66.84 66.04
1 75.44 75.21 74.90 64.36 63.77 63.47 57.36 56.35 56.00
3 56.31 56.16 56.11 53.78 53.59 53.56 51.98 51.72 51.63

100
0.5 266.35 263.65 264.21 182.16 178.70 177.11 138.26 133.44 132.09
1 151.03 149.96 149.92 128.62 127.63 127.06 114.74 112.72 112.11
3 112.63 112.38 112.23 107.49 107.24 107.02 104.02 103.40 103.22

r = 16,
l = 2,
m = 5

0.1
0.5 1.65 1.41 1.46 0.75 0.71 0.73 0.49 0.47 0.47
1 0.36 0.33 0.33 0.26 0.25 0.25 0.22 0.21 0.21
3 0.15 0.14 0.15 0.14 0.13 0.13 0.13 0.13 0.13

1
0.5 16.54 14.00 14.60 7.55 7.13 7.26 4.87 4.64 4.67
1 3.56 3.28 3.34 2.59 2.51 2.54 2.15 2.10 2.11
3 1.48 1.44 1.45 1.35 1.34 1.34 1.28 1.27 1.27

5
0.5 82.85 70.44 73.11 37.77 35.69 36.25 24.36 23.18 23.40
1 17.79 16.52 16.75 12.93 12.54 12.67 10.73 10.47 10.53
3 7.40 7.22 7.26 6.77 6.70 6.73 6.41 6.36 6.37

50
0.5 830.35 710.92 733.32 376.12 355.27 362.96 242.46 232.30 234.39
1 177.94 164.84 166.79 129.32 125.54 127.11 107.39 104.72 105.50
3 74.12 72.18 72.67 67.71 67.05 67.21 64.11 63.63 63.68
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Table 2: Continued.

a b
n = 6 n = 10 n = 20

GV CNPT BCKL GV CNPT BCKL GV CNPT BCKL

100
0.5 1650.20 1408.03 1456.67 754.87 713.90 725.43 485.52 464.88 467.82
1 356.26 328.69 334.60 258.73 251.05 252.98 214.54 209.88 210.49
3 148.20 144.36 145.19 135.32 134.11 134.56 128.23 127.21 127.43

∗
Results are obtained assuming unknown scale and shape parameters a, b.

Y2i = Xλ
i − 1/λ; i = 1, 2, . . . , n where p = 0.2823b and λ = 0.2654b. Normal based UPLs, U1

and U2 are obtained using (3.5) based on the transformed samples Y1i and Y2i, i = 1, 2, . . . , n
respectively. Then (U1)

1/p and (U2)
1/λ are the UPLs based on the proposed CNPT and the

BCKL transformation for Weibull (a, b) distribution with known shape parameter b. When
the shape parameter b is unknown, we suggest to replace it by its mle b̂. For the same sample
X1, X2, . . . , Xn, the GVmethod based UPL is obtained using (2.1) and the procedure described
in Section 2. Next we generate r sets of m random numbers say Xij ; i = 1, 2, . . . , r; j =
1, 2, . . . , m from Weibull (a, b) distribution, and set X∗ = max{X1(l), X2(l), . . . , Xr(l)} where
Xi(l) is the lth order statistic from Xij for i = 1, 2, . . . , r. This procedure is repeated 100000

times. Then the proportions of events X∗ < U
1/p
1 , X∗ < U1/λ

2 and X∗ < exp(η̂ + un,r,l,mβ̂), in
these 100000 repetitions are the simulated coverage probabilities of the UPLs based on normal
approximation, BCKL transformation, and GVmethod, respectively. Average of 100000 UPLs
based on each of the three approaches discussed above are the simulated expected lengths
of the corresponding UPLs. The simulated expected lengths and expected coverages for
n = 6, 10, 20, a = 0.1, 1, 5, 50, 100, and b = 0.5, 1, 3 are reported in Tables 2 and 3 respectively.
The combinations (r = 4, l = 2, m = 6), (r = 8, l = 1, m = 5), and (r = 16, l = 2, m = 5) are
chosen. The values of ku for these combinations are computed using (3.6) for α = 0.05.

4.1. Results of the Simulation Study

Following prominent facts are clearly visible from Table 2.

(1) CNPT-based UPLs have uniformly excellent coverage probabilities even for small
sample sizes as small as n = 6, for all a > 0, b > 0 and for all examined combinations
of r, l, and m. The coverages are uniformly a little larger than those based on GV
method, and the expected lengths are a little shorter than the same.

(2) As mentioned in Section 2, GV method is exact and this fact is reflected in sim-
ulation study since its coverages are very close to the nominal coverage probability.

(3) BCKL transformation-based UPLs have close to nominal coverage probabilities.

Based on these observations we recommend the proposed CNPT- and BCKL
transformation-based UPLs that include at least l out ofm future observations from aWeibull
(a, b) distribution at each of r locations.

5. Illustrative Example

Nowadays vinyl chloride is one of the fifty most produced chemicals in the world. Its
production almost doubled in the last 20 years and currently estimated to be about 27
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Table 3: Percentage simulated coverage probabilities of 95% UPL that contain at least l of m future
observations at each of r locations from Weibull (a, b) distribution for sample sizes n = 6, 10, 20 using
GV, CNPT, and BCKL methods∗.

a
b

n = 6 n = 10 n = 20

GV CNPT BCKL GV CNPT BCKL GV CNPT BCKL

r = 4,
l = 2,
m = 6

0.1
0.5 94.89 96.10 94.72 95.04 96.39 94.95 94.89 95.91 94.80
1 95.01 96.23 94.87 94.95 96.03 94.53 94.90 95.79 95.14
3 94.92 95.77 96.04 95.12 95.05 94.68 94.95 95.92 94.71

1
0.5 95.00 96.09 94.75 95.07 96.43 94.94 94.95 95.61 94.47
1 94.97 96.01 94.57 95.09 96.33 94.82 94.93 95.55 94.94
3 94.86 96.66 94.44 95.01 95.71 94.41 94.87 95.38 95.37

5
0.5 94.94 96.36 94.88 94.92 95.73 94.53 95.02 95.42 94.60
1 94.94 96.13 94.79 95.00 96.41 94.91 94.86 95.63 94.61
3 95.01 97.01 94.69 94.96 95.58 94.68 94.86 95.23 94.57

50
0.5 94.86 96.76 95.76 94.91 95.61 95.02 95.07 95.84 94.88
1 95.01 96.09 95.24 94.94 95.64 94.49 94.86 95.44 95.43
3 94.93 96.46 95.71 95.08 95.76 94.83 94.77 96.17 96.05

100
0.5 95.04 95.96 95.30 94.95 94.75 94.81 95.06 96.69 95.06
1 94.96 96.32 95.97 95.03 95.06 94.44 95.03 96.45 95.54
3 95.09 96.83 96.46 95.05 95.07 94.99 94.87 97.03 95.38

r = 8,
l = 1,
m = 5

0.1
0.5 95.08 96.14 94.68 94.89 96.39 94.90 95.09 95.76 94.92
1 94.99 95.91 94.48 94.87 97.12 95.60 94.92 94.91 94.58
3 94.92 95.29 94.44 94.90 94.98 94.87 94.89 95.72 95.62

1
0.5 94.92 96.52 95.08 94.98 96.31 94.79 94.97 95.85 94.48
1 95.01 96.02 94.65 95.15 96.92 95.40 95.03 95.91 94.76
3 95.03 95.24 94.47 95.09 94.63 94.52 94.93 96.60 95.99

5
0.5 94.98 96.34 94.88 94.95 96.35 94.88 94.99 95.84 94.57
1 95.14 96.40 95.00 94.96 96.37 94.83 95.10 95.55 94.42
3 95.03 94.47 94.52 95.06 95.37 94.91 94.95 95.58 94.61

50
0.5 95.02 96.13 94.52 94.96 95.19 95.10 94.96 95.97 94.78
1 94.99 95.22 94.61 94.94 95.52 94.70 95.10 95.47 94.61
3 95.10 95.31 94.50 94.95 95.27 94.68 95.16 95.13 94.58

100
0.5 95.09 95.23 94.72 94.86 95.56 94.55 95.13 95.55 94.45
1 94.98 95.17 94.68 94.92 94.90 94.64 95.15 95.84 94.60
3 95.04 95.41 94.73 95.04 95.77 95.05 94.93 95.99 94.46

r = 16,
l = 2,
m = 5

0.1
0.5 94.95 95.73 94.51 95.18 96.34 94.97 95.07 95.99 94.73
1 94.92 95.41 94.19 95.01 96.31 95.05 95.18 95.76 94.72
3 95.03 95.51 94.21 95.13 96.46 94.85 95.01 95.66 94.53

1
0.5 94.90 95.36 94.16 95.04 96.00 94.68 95.20 95.89 94.54
1 94.94 95.66 94.49 95.16 96.11 94.64 95.09 95.53 94.61
3 94.93 95.68 94.86 95.07 95.87 94.41 95.08 95.18 94.64

5
0.5 95.02 95.57 94.29 95.18 95.64 94.42 95.02 95.23 94.55
1 94.96 95.01 94.95 95.05 95.99 94.75 95.09 95.46 94.66
3 94.84 94.71 94.06 95.01 95.21 94.14 95.18 95.49 94.59

50
0.5 95.00 95.11 94.30 94.94 95.68 94.82 95.13 95.52 94.68
1 94.97 95.91 94.50 94.85 95.86 94.55 95.13 95.07 94.54
3 94.86 95.86 94.81 95.19 95.78 95.25 95.13 95.62 94.64
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Table 3: Continued.

a b
n = 6 n = 10 n = 20

GV CNPT BCKL GV CNPT BCKL GV CNPT BCKL

100
0.5 94.89 95.53 94.60 94.97 95.41 94.69 95.09 95.27 94.50
1 94.95 95.43 94.37 95.02 95.57 94.52 95.05 95.84 94.47
3 95.06 95.93 94.41 95.09 95.62 94.85 95.12 95.93 94.60

∗
Results are obtained assuming unknown scale and shape parameters a, b

Table 4: 95% Upper prediction limits for the vinyl chloride data.

l m r ku GV CNPT BCKL
1 2 10 1.577 5.483 5.298 5.336
2 2 10 3.022 14.066 13.371 13.801
1 3 10 1.033 3.618 3.469 3.466
2 3 10 1.879 6.797 6.566 6.646
3 3 10 3.177 15.149 14.574 15.084

million tons/year worldwide. A high concentration of vinyl chloride in water can cause
cancer and and liver damage. Therefore being toxic and carcinogenic to humans, more
attention has to be given to vinyl chloride as a groundwater contaminant. In this section
we illustrate the methods discussed in Sections 2 and 3 with a real dataset.

The data used here are vinyl chloride concentrations collected from clean upgradient
monitoring wells. Krishnamoorthy et al. [4] showed an excellent fit of these data to a Weibull
distribution. We computed various Weibull UPLs and compared them with those given in
Krishnamoorthy et al. [4]. The a dataset representing the vinyl chloride concentration in
micrograms per liter of water (μg/L), that is, number of parts per billion (ppb), from clean
upgradient monitoring wells is 5.1, 2.4, 0.4, 0.5, 2.5, 0.1, 6.8, 1.2, 0.5, 0.6, 5.3, 2.3, 1.8, 1.2, 1.3,
1.1, 0.9, 3.2, 1.0, 0.9, 0.4, 0.6, 8.0, 0.4, 2.7, 0.2, 2.0, 0.2, 0.5, 0.8, 2.0, 2.9, 0.1, 4.0.

The Kolmogorov-Smirnov test to above dataset for fittingWeibull distribution resulted
respective P value (2-tail) 0.94 indicating that Weibull is a good model for above dataset.
Here â = 1.89, b̂ = 1.01, sample mean is 1.88 and sample standard deviation is 1.95. The mle
b̂ indicates that the above dataset is moderately skewed. In order to compare the proposed
95% UPLs with those of Krishnamoorthy et al. [4], we chose the various combinations of r, l,
and m and are given in Table 4.

From Table 4, it seems that the proposed UPLs are little less than those of Krishna-
moorthy et al. [4]. We also notice that all the UPLs are well above the nominal range of vinyl
chloride concentration (2.0–2.4) suggested by US Environmental Protection Agency (USEPA)
indicating that future vinyl chloride concentrations are likely to be larger than the nominal
level and hence monitoring of these wells is necessary.

6. Overall Conclusion

The proposed normal approximation exhibits markedly well performance even for small
sample sizes for almost all parameter combinations for estimation of UPL that includes atleast
l out ofm future observations fromWeibull distribution at each of r locations. The superiority
of normal approximation is much more strong for small shape parameters and small sample
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sizes which are commonly observed in real situations. It has an added advantage of being
computationally simple, which is important from practitioners point of view.
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