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For nonstationary time series consisting ofmultiple time-varying frequency (TVF) componentswhere the frequency of components
overlaps in time, classical linear filters fail to extract components. The G-filter based on time deformation has been developed to
extract components of multicomponent G-stationary processes. In this paper, we explore the wide application of the G-filter for
filtering different types of nonstationary processes with multiple time-frequency structure. Simulation examples illustrate that the
G-filter can be applied to filter a broad range of multicomponent nonstationary process where TVF components may in fact overlap
in time.

1. Introduction and Background

The traditional linear filter is defined as 𝑦(𝑡) = 𝑥 ∗ 𝑎(𝑡) =

∫
+∞

−∞
𝑥(𝑡 − 𝑢)𝑎(𝑢)𝑑𝑢, where 𝑡 ∈ (−∞,∞) and ∫

∞

−∞
|𝑎(𝑡)|𝑑𝑡

< ∞ and where 𝑥(𝑡) and 𝑦(𝑡) are the input and output
processes. Papoulis [1] has shown that𝑃

𝑌
(𝑓) = |𝐴(𝑓)|

2
𝑃
𝑋
(𝑓),

where 𝑃
𝑋
(𝑓) and 𝑃

𝑌
(𝑓) denote the power spectra of the

stationary input and output processes, 𝑥(𝑡) and 𝑦(𝑡), and
𝐴(𝑓) = ∫

∞

−∞
𝑎(𝑡)𝑒
−2𝜋𝑖𝑓𝑡

𝑑𝑡 is the frequency response function.
Based on this, certain filters (e.g., the Butterworth filter [2])
have been designed to filter or pass low frequency or high
frequency components of the input process to the output
process. Given a cutoff frequency, a low-pass (high-pass)
Butterworth filter can extract components whose frequency
content is below (above) this cutoff frequency.

In general, traditional linear filters, such as the Butter-
worth filter, are time invariant. They are designed to extract
components from stationary processes where the frequency
behavior of the signal does not change with time. However,
for time series data with time-varying frequency behavior
(TVF), these filters can produce very poor results because the
time-invariant nature of the filters does not properly account
for the time-varying frequency behavior of the data. That is,
these filters do not properly adjust the cutoff frequency with

time according to the frequency behavior of the data. See
discussion and examples in Xu et al. [3].

In order to address the filtering problem for nonsta-
tionary data with TVF, Xu et al. [3] developed the 𝐺-filter
utilizing the time-deformation method by deforming the
index set (time axis) of the time series data. The use of
time-deformation or time-warping methods to define or
analyze nonstationary data has been investigated by several
researchers. For example, self-similar processes are obtained
by applying the Lamperti operator on the time scale of
a stationary process [4]. Gray and Zhang [5] base time
deformation on a log transformation of the time axis. They
refer to processes that are stationary on the log scale as
𝑀-stationary processes and show that the resulting spectral
representation is based on the Mellin transform. Flandrin
et al. [4] point out that the log transformation of Gray and
Zhang [5] is a special case of the Lamperti transform. Gray
et al. [6] extend the 𝑀-stationary model to analyze data
collected at discrete time points. Jiang et al. [7] define a more
general family of nonstationary processes called𝐺-stationary
processes whose frequencies monotonically change with
time. See also Woodward et al. [8, Chapter 13].

In Section 2, we give a brief review of 𝐺-stationary
processes and the 𝐺-filter along with an illustrative example.
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In Section 3 we extend the applicability of the𝐺-filter to filter
nonstationary time varying signals with varieties of time-
frequency structures. We give two examples illustrating the
techniques.

2. 𝐺-Stationary Processes and the 𝐺-Filter

In this section, we define and discuss 𝐺-stationary processes,
we define the𝐺-filtering procedure given by Xu et al. [3], and,
provide an example.

Definition 1 (Dual Process). A process {𝑌(𝑢), 𝑢 ∈ (−∞,∞)}

is called a dual process of the process {𝑋(𝑡), 𝑡 ∈ (𝑎, 𝑏)} if there
exists a mapping 𝑢 = 𝑔(𝑡), 𝑡 ∈ (𝑎, 𝑏) of which a well-defined
inverse function, 𝑡 = 𝑔

−1
(𝑢), 𝑢 ∈ (𝑔(𝑎), 𝑔(𝑏)), exists, so that

𝑋(𝑡) = 𝑌(𝑔(𝑡)) for 𝑡 ∈ (𝑎, 𝑏).Themapping 𝑢 = 𝑔(𝑡), 𝑡 ∈ (𝑎, 𝑏)
is called the time-deformation function.

Definition 2 (𝐺-stationary Process). A process {𝑋(𝑡), 𝑡 ∈

(𝑎, 𝑏)} is a 𝐺-stationary process if and only if a stationary
dual process {𝑌(𝑢), 𝑢 ∈ (−∞,∞)} exists under some time-
deformation function 𝑢 = 𝑔(𝑡), 𝑡 ∈ (𝑎, 𝑏).

Some special cases of 𝐺-stationary processes are given in
the following:

(1) when 𝑔(𝑡) = 𝑎𝑡 + 𝑏, 𝑡 ∈ (−∞,∞), the 𝐺-stationary
process is simply the traditional weakly stationary
process;

(2) when 𝑔(𝑡) = ln(𝑡), 𝑡 ∈ (0,∞), 𝑋(𝑡) is called an 𝑀-
stationary process ((Gray et al. (1988)), [6]);

(3) when 𝑔(𝑡) = (𝑡
𝜆
− 1)/𝜆, 𝑡 ∈ (0,∞) (a Box-

Cox transformation),𝑋(𝑡) is called a 𝐺(𝜆)-stationary
process [7];

(4) when𝑔(𝑡) = 𝑎𝑡2+ 𝑏𝑡, 𝑡 ∈ (0,∞)with 𝑎 > 0 and 𝑏 ≥ 0,
𝑋(𝑡) is called the generalized linear chirp process [9].

Jiang et al. [7] define the generalized instantaneous
period (GIP) for the 𝐺-stationary process to be 𝑃(𝑡; 𝑔, 𝜏) =
𝑔
−1
(𝑔(𝑡)+𝜏)−𝑡, where 𝜏 is the period of the dual process, and

the generalized instantaneous frequency (GIF) is 1/𝑃(𝑡; 𝑔, 𝜏).
They showed that the GIF is approximately proportional to
𝑔
󸀠
(𝑡). So, for the𝑀-stationary process where 𝑔(𝑡) = ln(𝑡), it

follows that GIF∝ 1/𝑡, and GIP∝ 𝑡; that is, the generalized
instantaneous period is changing linearly with time. For the
𝐺(𝜆)-stationary process where 𝑔(𝑡) = (𝑡

𝜆
− 1)/𝜆, the GIF

changes like a polynomial function, that is, like 𝑡𝜆−1. For the
linear chirp stationary process where 𝑔(𝑡) = 𝑎𝑡2 + 𝑏𝑡, the GIF
changes linearly with time, that is, like 2𝑎𝑡 + 𝑏.

Given a realization, the frequency change measured by
the GIF can be visually represented using time-frequency
plots. In this paper we will use the nonparametric Wigner-
Ville plots for this purpose. These plots display the time-
frequency behavior in the data by computing inverse Fourier
transforms of windowed versions of the sample autocovari-
ance function (see [8, 10, 11]).

Xu et al. [3] define the 𝐺-filter mathematically and give a
straightforward procedure for𝐺-filtering a set of𝐺-stationary
data with one or more time-varying frequency components.

2.1. 𝐺−Filtering Procedure

Step 1. Fit a𝐺-stationarymodel to the data and transform the
time axis to obtain a stationary dual process.

Step 2. Apply traditional time-invariant filtering methods to
the dual data to extract components.

Step 3. Convert filtered dual components back into the
original scale.

See Xu et al. [3] who also point out that the 𝐺-filtering
procedure described previously is an application of the
principle of unitary equivalence systems [12].

In Example 3 we will show how to apply the 𝐺-filter to
filter linear chirp data.𝐺-stationary processes have an origin,
and a given realization will begin at some offsets from the
process origin. For a realization of length 𝑛, our procedure
is to obtain a dual realization (of length 𝑛) associated with
a transformation 𝑢 = 𝑔(𝑡). The 𝑛 values, 𝑡

𝑘
, needed for

obtaining the stationary dual based on the discrete Box-Cox
time transformation, 𝑘 = (𝑡

𝜆

𝑘
− 1)/Δ

𝑛
𝜆 − 𝜉, are 𝑡

𝑘
= ((𝑘 +

𝜉)Δ
𝑛
𝜆 + 1)

1/𝜆 where (𝜉Δ
𝑛
𝜆 + 1)

1/𝜆 is called the realization
offset andΔ

𝑛
is the sampling increment. Jiang et al. [7] employ

a search routine to determine the values of 𝜆 and offset that
produce the “most stationary” dual. For each set of 𝜆 and
offset values considered in the search, the data, 𝑋(𝑡

𝑘
), 𝑘 =

1, 2, . . ., are approximated at the 𝑡
𝑘
’s using interpolation. By

then indexing on 𝑘, the dual realization associated with the
given 𝜆 and offset is obtained, and for each combination
of 𝜆 and offset, the resulting dual realization is checked for
stationarity. Jiang et al. [7] suggest measuring stationarity by
examining characteristics (e.g., sample autocorrelations) of
the first and second halves of the transformed data. They
employ a 𝑄-statistic for measuring the difference between
the sample autocorrelations of the two halves. This measure
is based on the fact that the correlation structure under sta-
tionarity stays constant across the realization. The software,
GWS, written in S+, can be used to perform this search
procedure, and it is available from the authors at the website
http://www.texasoft.com/atsa/.This software program can be
used to fit a 𝐺(𝜆) model to a set of data, and it provides
methods for spectral analysis, forecasting, and so forth. In
the examples here involving analysis of TVF data, we use the
GWS software package.

Example 3. We consider the linear chirp process

𝑌 (𝑡) = cos(0.0002𝜋𝑡
2

2
) + cos(0.0008𝜋𝑡

2

2
) , (1)

where 𝑡 ∈ [0, 400]. This is a linear chirp stationary process
consisting of two chirp components. A realization of the
process is shown in Figure 1(a) where it can be seen that
frequency behavior is increasing (periods are shortening) in
time. It also can be seen that there appear to bemore than one
TVF component. TheWigner-Ville plot in Figure 1(b) clearly
shows two monotonically increasing frequency components
in the data, and these frequency components visually appear
to be increasing linearly with time. In Figures 1(c) and 1(e),
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0 100 200 300 400
Time

1

0.5

0

−0.5

−1

(e) High frequency component

0 100 200 300 400
Time

0.5

0.4

0.3

0.2

0.1

0

Fr
eq

ue
nc

y

(f) Wigner-Ville plot for (e)

Figure 1: (a) A realization from the linear chirp model in Example 3; (b) the Wigner-Ville time-frequency plot for the data in (a); (c) lower
frequency TVF component, 𝑌

1
(𝑡); (d) Wigner-Ville plot for the signal in (c); (e) higher frequency TVF component, 𝑌

2
(𝑡); (f) Wigner-Ville

plot for the signal in (e).



4 Journal of Probability and Statistics

2

1

0

−1

−2

0 100 200 300 400
Transformed time

(a) Data after time transformation

0 100 200 300 400
Time

0.5

0.4

0.3

0.2

0.1

0

Fr
eq

ue
nc

y

(b) Wigner-Ville plot for (a)
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(c) Low-pass filtered data

0 100 200 300 400
Transformed time

1

0.5

0

−0.5

−1

(d) Recovered high frequency TVF signal

Figure 2: (a) The dual data obtained from Figure 1(a) using GWS software; (b) Wigner-Ville time-frequency plot for (a); (c) recovered low
frequency component from (a); (d) recovered high frequency component from (a).

we show the components 𝑌
1
(𝑡) and 𝑌

2
(𝑡) where 𝑌

1
(𝑡) =

cos(0.0002𝜋𝑡2/2) and𝑌
2
(𝑡) = cos(0.0008𝜋𝑡2/2).TheWigner-

Ville plots associated with these two component signals are
shown in Figures 1(d) and 1(f) where it can be seen that 𝑌

1
(𝑡)

and 𝑌
2
(𝑡) display the lower frequency and higher frequency

TVF behavior (resp.) shown in Figure 1(b).

To perform Step 1 of the 𝐺-filtering procedure, we use
the method of Jiang et al. [7] (using GWS software) and find
that a 𝐺(𝜆) model with 𝜆 = 2.1 and offset 19 is chosen
as the transformation which most nearly transform the data
in Figure 1(a) into a stationary dual. The resulting dual data
are shown in Figure 2(a). Visual inspection suggests that the
dual data have stable (nonchanging) frequency behavior with
more than one frequency component. The Wigner-Ville plot
for the dual data is shown in Figure 2(b) where it is seen that
the data contain two stable frequency components at about
𝑓 = 0.025 and 𝑓 = 0.075. Step 2 involves filtering the dual

data, which we accomplish by using low-pass and high-pass
Butterworth filters with a cutoff frequency 𝑓

𝑐
= 0.05. (The

𝑅-function butterworthT is available at the website listed
above.)

The low and high frequency dual components are shown
in Figures 2(c) and 2(d), respectively. The Wigner-Ville plot
(not shown) for the data in Figure 2(c) would have the
appearance of a single horizontal line at about 𝑓 = 0.025,
while the Wigner-Ville plot for Figure 2(d) would show a
single horizontal line at about 𝑓 = 0.075. Step 3 in the
𝐺-filtering procedure is accomplished by transforming the
dual components in Figures 2(c) and 2(d) back to the orig-
inal time scale. (This is accomplished using the 𝑅-function
reinterpolwhich is available at the website.)The recovered
low and high frequency TVF components of the original data
are shown in Figures 3(a) and 3(b).These closely resemble the
actual components in Figures 1(c) and 1(e), respectively. The
Wigner-Ville plots of the two filtered components are shown
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(c) Wigner-Ville plot for (a)
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(d) Wigner-Ville plot for (b)

Figure 3: (a) Recovered low frequency TVF component; (b) recovered high frequency TVF component; (c) Wigner-Ville plot for (a); (d)
Wigner-Ville plot for (b).

in Figures 3(c) and 3(d) where it can be seen that these plots
indicate linearly decreasing frequency behavior very similar
to that shown in Figures 1(d) and 1(f), respectively, for the true
TVF components.

It is important to note that we could not have recovered
the TVF components by application of the Butterworth filter
directly to the data in Figure 1(a). To see this we notice from
Figure 1(b) that there is no single cutoff frequency that can be
used to separate the signals across the entire time span (𝑡 = 0
to 𝑡 = 400). For example, 𝑓

𝑐
= 0.1 could be used to separate

the signals from 𝑡 = 0 to about 𝑡 = 150, but beyond 𝑡 = 300

both TVF components are associated with frequencies below
𝑓
𝑐
= 0.1.
For more details concerning the filtering method used in

Example 3, see Xu et al. [3]. In the next section we illustrate
the use of the time-transformation method to filter more
general types of nonstationary processes with multiple time-
varying frequency structures.

3. Filtering More General Nonstationary
Processes Using the 𝐺-Filter

In Example 3, we showed how to use the 𝐺-filter to filter
a nonstationary processes, called a 𝐺-stationary process,
by first transforming the realization from a 𝐺-stationary
process into a realization from a stationary process using time
deformation (i.e., transforming the time scale). Specifically,
in Example 3 we used the 𝐺(𝜆) time transformation 𝑔(𝑡) =
(𝑡
2.1

− 1)/2.1 = 𝑢. In Figures 2(a) and 2(b), it is clear that
this transformation approximately stabilized the frequency
structure essentially eliminating frequency change across the
realization. In many cases, however, a single stationarizing
time transformation does not exist. In this section, we will
illustrate the extension of the techniques used in Example 3
to such cases.

First, we discuss how the time-deformation technique
will affect the spectrumof the data. Suppose that a component
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Figure 4: (a) A realization of the process in Example 4; (b) the Wigner-Ville time-frequency distribution of the data; (c), (d) the two
components.

has a phase function 2𝜋𝜑(𝑡); that is, the instantaneous
frequency is 𝜑󸀠(𝑡) [11]. Let 𝑢 = 𝑔(𝑡) be a monotonic time-
deformation function.Then in the dual space, the phase func-
tion becomes 2𝜋𝜑(𝑔−1(𝑢)), and the instantaneous frequency
is 𝑑𝜑(𝑔−1(𝑢))/𝑑𝑢 = 𝜑

󸀠
(𝑔
−1
(𝑢))(𝑑𝑔

−1
(𝑢)/𝑑𝑢) = 𝜑

󸀠
(𝑔
−1
(𝑢))

(1/𝑔
󸀠
(𝑡)) = 𝜑

󸀠
(𝑡)/𝑔
󸀠
(𝑡) = 𝜑

󸀠
(𝑔
−1
(𝑢))/𝑔

󸀠
(𝑔
−1
(𝑢)). In order

to stationarize a signal with one TVF, the procedure is to
find a time transformation, 𝑔(𝑡), such that the instantaneous
frequency, 𝜑󸀠(𝑡)/𝑔󸀠(𝑡), is constant.

For a process consisting of two components, one with a
phase function 2𝜋𝜑

1
(𝑡) and the other 2𝜋𝜑

2
(𝑡), the instan-

taneous frequencies of these two components are 𝜑󸀠
1
(𝑡) and

𝜑
󸀠

2
(𝑡). In the dual space, they are 𝜑󸀠

1
(𝑡)/𝑔
󸀠
(𝑡) = 𝜑

󸀠

1
(𝑔
−1
(𝑢))/

𝑔
󸀠
(𝑔
−1
(𝑢)) and 𝜑

󸀠

2
(𝑡)/𝑔
󸀠
(𝑡) = 𝜑

󸀠

2
(𝑔
−1
(𝑢))/𝑔

󸀠
(𝑔
−1
(𝑢)). In

Example 3, we obtained a single time transformation, 𝑔(𝑡) =
(𝑡
2.1

− 1)/2.1 = 𝑢, for which 𝜑
󸀠

1
(𝑡)/𝑔
󸀠
(𝑡) and 𝜑

󸀠

2
(𝑡)/𝑔
󸀠
(𝑡)

were both approximately constant. Visually, from Figure 2(b)
we see that 𝜑󸀠

1
(𝑡)/𝑔
󸀠
(𝑡) ≈ 0.09 and 𝜑

󸀠

2
(𝑡)/𝑔
󸀠
(𝑡) ≈ 0.02

are represented by the upper and lower horizontal lines,
respectively, in theWigner-Ville plot.This allowed us to select
a cutoff frequency between 0.02 and 0.09 for purposes of
separating the two components in the dual process.

More generally, it is important to note that regardless of
whether 𝜑󸀠

1
(𝑡)/𝑔
󸀠
(𝑡) and 𝜑󸀠

2
(𝑡)/𝑔
󸀠
(𝑡) are constants, it follows

that if 𝜑󸀠
1
(𝑡) ≥ 𝜑

󸀠

2
(𝑡) and 𝑔󸀠(𝑡) > 0 for all 𝑡 ∈ (𝑎, 𝑏), then

𝜑
󸀠

1
(𝑔
−1

(𝑢))

𝑔󸀠 (𝑔−1 (𝑢))
≥
𝜑
󸀠

2
(𝑔
−1

(𝑢))

𝑔󸀠 (𝑔−1 (𝑢))
. (2)

In other words, the component with a higher instantaneous
frequency in the original time space still has a higher
instantaneous frequency in the dual space. Suppose there
exists a constant frequency, 𝑓

𝑐
, such that

𝜑
󸀠

1
(𝑡)

𝑔󸀠 (𝑡)
≤ 𝑓
𝑐
≤
𝜑
󸀠

2
(𝑡)

𝑔󸀠 (𝑡)
(3)
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Figure 5: (a) Data on transformed time axis; (b) the Wigner-Ville time-frequency distribution of (a); (c) data in (a) after low-pass filter; (d)
data in (a) after high-pass filter.

or

𝜑
󸀠

1
(𝑡) ≤ 𝑓

𝑐
𝑔
󸀠

(𝑡) ≤ 𝜑
󸀠

2
(𝑡) (4)

for all 𝑡 ∈ (𝑎, 𝑏) (assuming 𝑔󸀠(𝑡) > 0). Note that (4) says that
𝑓
𝑐
𝑔
󸀠
(𝑡) stays between the upper and lower curves shown in

the Wigner-Ville plot. From (3) we see that 𝜑󸀠
1
(𝑡)/𝑔
󸀠
(𝑡) and

𝜑
󸀠

2
(𝑡)/𝑔
󸀠
(𝑡) are depicted by the upper and lower Wigner-Ville

curves in the dual space, and in this case a Butterworth filter
with cutoff frequency 𝑓

𝑐
should be able to separate these two

components in the dual space. The important point is that
this separation is possible even if the time transformation did
not produce a stationary dual. Thus, if we can find a well-
defined time-deformation function 𝑢 = 𝑔(𝑡) and a constant
𝑓
𝑐
, such that 𝜑󸀠

1
(𝑡) ≤ 𝑓

𝑐
𝑔
󸀠
(𝑡) ≤ 𝜑

󸀠

2
(𝑡), for 𝑡 ∈ (𝑎, 𝑏), then

these two components can be extracted from the original
data. Example 4 illustrates these comments.

Example 4. Here, we consider a simulated data set which is
the signal consisting of the sum of two quadratic chirps,

𝑋 (𝑡) = cos(2𝜋(−(𝑡 + 50
100

− 3)

3

+ 0.15𝑡))

+ cos(2𝜋((𝑡 + 50
100

− 1)

3

+ 0.14𝑡))

= 𝑋
𝐿
(𝑡) + 𝑋

𝐻
(𝑡)

(5)

for 0 < 𝑡 < 250. The data and the Wigner-Ville time-
frequency distribution are displayed in Figures 4(a) and 4(b).
The lower frequency TVF component, 𝑋

𝐿
(𝑡), is shown in

Figure 4(c), while the higher frequency component, 𝑋
𝐻
(𝑡),

is shown in Figure 4(d). By examining the Wigner-Ville plot
in Figure 4(b) and the component plots in Figures 4(c) and
4(d), it can be seen that the frequency behavior in 𝑋

𝐿
(𝑡) for
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Figure 6: (a) Figure 5(c) plotted on original time scale; (b) Figure 5(d) plotted on original time scale; (c) Wigner-Ville plot for data in (a); (d)
Wigner-Ville plot for data in (b).

200 < 𝑡 < 250 is similar to the frequency behavior in 𝑋
𝐻
(𝑡)

for 0 < 𝑡 < 50. Consequently, a simple Butterworth filter will
not be able to separate the two components.

We apply the 𝐺-filtering procedure in an attempt to
recover the two TVF components. Step 1 involves using the
procedure of Jiang et al. [7] in an attempt to stationarize
the signal in Figure 4(a). However, the nature of the two
quadratic chirp components is such that there is not a single
time transformation, 𝑔(𝑡), that will stationarize the signal
𝑋(𝑡). Using the GWS software, a 𝐺(𝜆) time transformation
with 𝜆 = 1.7 and offset = 3 is selected as the transformation
that most nearly stationarizes the data. Figures 5(a) and 5(b)
show the “dual” data and the associated Wigner-Ville plot
where it can be seen that the dual does not appear to be
stationary. The key point, however, is that even though the
transformation has not stationarized the data (the frequency
lines in the Wigner-Ville plot are not straight horizontal

lines), the upper and lower frequency components can be
separated with a simple Butterworth filter at, for example, a
cutoff frequency 𝑓 = 0.13. Step 2 in the𝐺-filtering procedure
can thus be performed, and the resulting low and high
frequency components after filtering the dual data with a
Butterworth filter (e.g., using𝑅-functionbutterworthT) are
shown in Figures 5(c) and 5(d), respectively. We complete
the example by applying Step 3 to plot the filtered dual
components back on the original time scale. In Figures
6(a) and 6(b), we show the filtered data plotted on the
original time scale (using 𝑅-function reinterpol), and
in Figures 6(c) and 6(d) we show the Wigner-Ville plots
for these components. The Wigner-Ville plots in Figures
6(c) and 6(d) are good approximations to the lower and
upper curves, respectively, in Figure 4(b) associated with
the lower and upper components of the original signal. We
comment that the poor behavior at the endpoints is a well-
known property of filters such as the Butterworth, and no
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Figure 7: (a) Sketch of upper and lower Wigner-Ville curves for Example 4 showing 𝑓
𝑐
𝑔(𝑡) for 𝑓

𝑐
= 0.13 and 𝑔(𝑡) given in (6); (b) sketch of

Wigner-Ville curves in dual space; (c) sketch of upper and lower Wigner-Ville curves for Example 4 showing 𝑓
𝑐
𝑔(𝑡) for 𝑓

𝑐
= 0.13 and 𝑔(𝑡)

given in (7); (d) sketch of Wigner-Ville curves in dual space.

endpoint adjustments have been made here. Also, the loss
of amplitude in the recovered higher frequency regions (see,
e.g., Figure 6(d) compared to Figure 4(b)) is at least partially
due to the linear interpolation that is used. Haney [13] has
shown that the use of Fourier-based interpolationmay be able
to adjust for some of the signal loss.

Note that Example 4 illustrates the fact that if we can
find a time transformation, 𝑔(𝑡), and frequency, 𝑓

𝑐
, such

that (4) holds, then the two time-varying frequencies can be
separated. This is illustrated in Figure 7(a) where the dotted
curve represents 𝑓

𝑐
𝑔
󸀠
(𝑡) for 𝑓

𝑐
= 0.13 and where 𝑔(𝑡) is the

𝐺(𝜆) transformation used in Example 4 with 𝜆 = 1.7 and
offset 3; that is,

𝑔 (𝑡) =
(𝑡 + 3)

1.7

− 1

1.7
. (6)

The solid curves are the upper and lowerWigner-Ville curves
shown in Figure 4(b) which represent 𝜑󸀠

1
(𝑡) and 𝜑

󸀠

2
(𝑡). It

can be seen that for the time transformation in (6), the
curve 𝑓

𝑐
𝑔
󸀠
(𝑡) stays between the upper and lower Wigner-

Ville curves. Figure 7(b) shows upper and lowerWigner-Ville
curves in the associated dual space; that is, from (3) these are
𝜑
󸀠

1
(𝑡)/𝑔
󸀠
(𝑡) and 𝜑󸀠

2
(𝑡)/𝑔
󸀠
(𝑡), respectively. The straight dashed

line corresponds to 𝑓
𝑐
= 0.13.

In Figures 7(c) and 7(d) we show the corresponding plots
associated with making a time transformation

𝑔 (𝑡) =
(𝑡 + 68)

2

− 1

2
. (7)

It can be seen that either of the time transformation in (6)
or (7) provides separation in the dual space sufficient for
application of a filter such as the Butterworth.
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Figure 8: (a) A realization of the process in Example 5; (b) theWigner-Ville time-frequency distribution of the data; (c), (d), and (e) the three
components.
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Figure 9: (a) The dual data (1 : 300) after the first time deformation; (b) the Wigner-Ville time-frequency distribution of the dual; (c) the
extracted stationary dual component; (d) the recovered first linear chirp component.

4. Extracting TVF Components Entering the
Signal at Different Times

In this sectionwe discussmethods for extracting components
in more complicated TVF settings in which components may
enter and/or exit the overall signal at different times. The
procedure will be illustrated in Example 5. Suppose the high
(low) frequency component in a TVF signal is 𝐺-stationary
over a certain time span, and we apply the appropriate time
transformation to stationarize this 𝐺-stationary component
over that time span. Then by (2), on the transformed version
of the time span being considered, this component will
become stationary with a constant frequency that is still
higher (lower) than the instantaneous frequency of the other
component in the dual space. The key idea addressed in
Example 5 is that in order to extract signals, it may be useful
to segment the overall realization length into sections over
which straightforward signal separations can be obtained

using the techniques illustrated in Examples 3 and 4. We use
these ideas in the following example.

Example 5. In this example, we simulate a situation similar
to that studied by Papandreou-Suppappola and Suppappola
[14]. The synthetic signal is shown in Figure 8(a), and the
Wigner-Ville plot of this realization is shown in Figure 8(b).
From Figure 8(b) we observe the following.

(1) The overall signal consists of three TVF component
signals.We will refer to these as Components 1, 2, and
3. Based on the Wigner-Ville plot we conclude that

(a) component 1 exists for approximately 1 ≤ 𝑡 ≤

250;
(b) component 2 exists for approximately 𝑡 ≥ 100;
(c) component 3 exists for approximately 𝑡 ≥ 200.
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Figure 10: (a) The data (101 : 400) with the first filtered component subtracted; (b) the Wigner-Ville time-frequency distribution of the data;
(c) the dual data; (d) theWigner-Ville time-frequency distribution of the dual; (e) the extracted stationary dual component; (f) the recovered
𝑀-stationary component.
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(2) Components 1 and 3 have Wigner-Ville curves that
appear to be straight lines, suggesting that each of
these is a linear chirp signal.

(3) Component 1 exists in the signal by itself for about
𝑡 ≤ 100.

(4) The frequencies associated with the components
intersect at two places:

(a) frequencies associated with components 1 and 2
intersect at about 𝑡 = 150;

(b) frequencies associated with components 2 and 3
intersect at about 𝑡 = 275.

Figures 8(b)-8(c) show the component signals actually used
to create the actual signal, 𝑋

𝑡
, which is the sum of the

components; that is, 𝑋
𝑡
= 𝑋
(1)

𝑡
+ 𝑋
(2)

𝑡
+ 𝑋
(3)

𝑡
, 𝑡 = 1, . . . , 400.

We see that our observations in conclusion 1 mentioned
above are correct. Also, it should be noted that components
1 and 3 were generated as linear chirps (as was speculated
in conclusion 2 mentioned above) and component 2 is 𝑀-
stationary, but this information will not be assumed to be
known in the following analysis.

Step 1 (Extract Component 1). Since component 1 exists by
itself for 𝑡 ≤ 100, we use the method of Jiang et al. [7] (using
the GWS software) to find a 𝐺(𝜆) model for stationarizing
the signal composed of the first 100 points. A 𝐺(2) model
is selected with offset 0. We apply this time transformation
to the first 300 data values, and the resulting dual process
is shown in Figure 9(a). The associated Wigner-Ville plot is
shown in Figure 9(b) where it is seen that component 1 has
now been stationarized (the associated frequency behavior
has been stabilized, and it appears as a horizontal line at about
𝑓 = 0.15 in the Wigner-Ville plot). Note that although the
segment of the original data to which we applied the time
deformation (1 ≤ 𝑡 ≤ 300) and the resulting dual data set
both have 300 time values, the original time axis has been
deformed. Consequently, the first 100 data values (involving
only component 1) in the original time scale correspond to
about the first 50 values in transformed time. By examining
Figure 9(b) we see that the dual data are now split into three
segments in the deformed time axis as follows:

(i) the first segment (1–50) which contains only the
transformed component 1 signal;

(ii) the middle segment (51–100) where the frequencies
intersect;

(iii) the last segment (101–300) where the frequencies
are well separated. In this segment the transformed
component 1 signal is consistently higher frequency
than the transformed component 2 and component 3
signals. In this range, a constant cutoff frequency (e.g.,
0.12) can be used to separate component 1 from the
other two components.

In order to extract the stationarized dual signal associated
with component 1 we note that no extraction is necessary
for the first 50 dual time values (the only signal present is

the one associated with the first linear chirp component).
As suggested in note (iii) above, extraction of component 1
in the range 101–300 can be accomplished using a high-pass
Butterworth filter.

Extraction of the first linear chirp component in the range
51–100 is more difficult. The procedure we have selected is
to fit AR(𝑝) models to the two extracted signals (i.e., 1–
50 and 101–300) and then to use these models to forecast
and backcast on the middle segment (51–100). The resulting
extracted dual signal associatedwith component 1 is shown in
Figure 9(c). Transforming this signal back to the original time
scale gives Figure 9(d) which is similar to the true component
shown in Figure 8(c). Note again that although the first dual
component terminates at about a transformed time value of
210, the first component in the original time scale terminates
at about 𝑡 = 250 as expected.

Step 2 (Extract Component 2). In the second step, we
will extract component 2. We first subtract the recovered
component 1 (shown in Figure 9(d)) from the original signal
leaving only components 2 and 3. The resulting data (101 ≤
𝑡 ≤ 400) and corresponding Wigner-Ville plot are shown in
Figures 10(a) and 10(b). We note the following:

(i) only TVF components 2 and 3 remain;
(ii) component 2 exists by itself for 101 ≤ 𝑡 ≤ 200.

Based on note (ii) above, we apply the method of Jiang et
al. [7] to find a stationarizing transformation for the data in
time segment 101–200 in Figure 10(a). Using this method, a
𝐺(𝜆) model with 𝜆 = 0 is selected with offset 69. Applying
this time transformation to the data for 101 ≤ 𝑡 ≤ 400,
we obtain the dual data shown in Figure 10(c) and associated
Wigner-Ville plot in Figure 10(d). From theWigner-Ville plot
in Figure 10(d) we note the following:

(i) the second component seems to have been station-
arized using this procedure (frequency behavior is
represented by a horizontal line at about 𝑓 = 0.1 in
Wigner-Ville plot);

(ii) the first segment (101–250) contains only the station-
arized component 2;

(iii) transformed component 2 is consistently lower fre-
quency than transformed component 3 for the range
251–280 and the signals could be separated by a
constant cutoff frequency of about 0.075;

(iv) the frequencies intersect in the range 281–340;
(v) the transformed component 2 is consistently lower

frequency than transformed component 3 for the
range 341–400. A constant cutoff frequency of about
0.175 could be used to separate the signals in this
range.

Based on these comments we apply a high-pass Butterworth
filter to extract component 2 in the range 101–280 and a low-
pass Butterworth filter to extract the dual for component 2 for
the range 341–400. Forecasting and backcasting are used as in
Step 1 for recovering the component 2 dual for the range 281–
340. The resulting extracted signal associated with the dual
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Figure 11: (a), (c), and (e): recovered components for Example 5 and (b), (d), and (e): the corresponding Wigner-Ville plots.
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for component 2 is shown in Figure 10(e), and Figure 10(f)
shows this component transformed back to the original time
scale.

Step 3 (Extract Component 3). The third component is
obtained by subtracting the two recovered components from
the original data; that is, 𝑋̂(3)

𝑡
= 𝑋
𝑡
−𝑋̂
(1)

𝑡
−𝑋̂
(2)

𝑡
, for 𝑡 = 1, . . . ,

400 where 𝑋̂(𝑘)
𝑡

represents the recovered 𝑘th component.
Figure 11 summarizes the results showing the three recov-

ered components and associated Wigner-Ville plots which
correspond well with those shown Figure 8.

5. Conclusion

For nonstationary time series with multiple time-varying
frequency structure, especially where the frequencies of com-
ponents overlap over time, traditional linear filters are not
able to successfully extract components. In order to address
this problem, the 𝐺-filter, a time-variant filter based on the
time-deformation method, was studied by Xu et al. [3]. In
that paper the 𝐺-filter was applied to filter components from
certain types of𝐺-stationary processes by transforming them
to stationarity using an appropriate time transformation of
the time scale.

In practical situations, most nonstationary data with
multiple time-varying frequency structure cannot be trans-
formed to stationary by applying any time deformation. In
this paper, we showed that the 𝐺-filtering procedure can be
extended to cases in which the individual component signals
may or may not be able to be fully stationarized using a time
transformation. We first discussed the case (see Example 4)
in which the frequency behaviors of the components of a
process can be separated by a time transformation even
though a stationarizing transformation is not available. This
significantly extends the class of TVF processes that can be
filtered using the 𝐺-filter. Secondly, we show in Example 5
that the 𝐺-filter can be used to filter signals with multiple
𝐺-stationary components having varying points of entry into
and exit from the signal.
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