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�e �rst review existing sequential methods for estimating a binomial proportion. A�erward, we propose a new family of group
sequential sampling schemes for estimating a binomial proportion with prescribed margin of error and con�dence level. In
particular, we establish the uniform controllability of coverage probability and the asymptotic optimality for such a family of
sampling schemes. Our theoretical results establish the possibility that the parameters of this family of sampling schemes can be
determined so that the prescribed level of con�dence is guaranteed with little waste of samples. Analytic bounds for the cumulative
distribution functions and expectations of sample numbers are derived. Moreover, we discuss the inherent connection of various
sampling schemes. Numerical issues are addressed for improving the accuracy and efficiency of computation. Computational
experiments are conducted for comparing sampling schemes. Illustrative examples are given for applications in clinical trials.

1. Introduction

Estimating a binomial proportion is a problem of ubiquitous
signi�cance in many areas of engineering and sciences. �or
economical reasons and other concerns, it is important to use
as fewer as possible samples to guarantee the required relia-
bility of estimation. To achieve this goal, sequential sampling
schemes can be very useful. In a sequential sampling scheme,
the total number of observations is not �xed in advance.
e sampling process is continued stage by stage until a
prespeci�ed stopping rule is satis�ed. e stopping rule is
evaluated with accumulated observations. In many applica-
tions, for administrative feasibility, the sampling experiment
is performed in a group fashion. Similar to group sequential
tests [1, Section 8], [2], an estimation method based on
taking samples by groups and evaluating them sequentially
is referred to as a group sequential estimation method. It
should be noted that group sequential estimation methods
are general enough to include �xed-sample-size and fully
sequential procedures as special cases. Particularly, a �xed-
sample-size method can be viewed as a group sequential

procedure of only one stage. If the increment between the
sample sizes of consecutive stages is equal to 1, then the group
sequential method is actually a fully sequential method.

It is a common contention that statistical inference, as
a unique science to quantify the uncertainties of inferential
statements, should avoid errors in the quanti�cation of
uncertainties, while minimizing the sampling cost. at is,
a statistical inferential method is expected to be exact and
efficient. e conventional notion of exactness is that no
approximation is involved, except the round-off error due to
�nite word length of computers. Existing sequential methods
for estimating a binomial proportion are dominantly of
asymptotic nature (see, e.g., [3–7] and the references therein).
Undoubtedly, asymptotic techniques provide approximate
solutions and important insights for the relevant prob-
lems. However, any asymptotic method inevitably introduces
unknown error in the resultant approximate solution due
to the necessary use of a �nite number of samples. In
the direction of nonasymptotic sequential estimation, the
primary goal is to ensure that the true coverage probability
is above the prespeci�ed con�dence level for any value of



2 Journal of Probability and Statistics

the associated parameter, while the required sample size is
as low as possible. In this direction, Mendo and Hernando
[8] developed an inverse binomial sampling scheme for
estimating a binomial proportion with relative precision.
Tanaka [9] developed a rigorous method for constructing
�xed-width sequential con�dence intervals for a binomial
proportion. Although no approximation is involved, Tanaka’s
method is very conservative due to the bounding techniques
employed in the derivation of sequential con�dence intervals.
Franzén [10] studied the construction of �xed-width sequen-
tial con�dence intervals for a binomial proportion. However,
no e�ective method for de�ning stopping rules is proposed
in [10]. In his later paper [11], Franzén proposed to con-
struct �xed-width con�dence intervals based on sequential
probability ratio tests (SPRTs) invented by Wald [12]. His
method can generate �xed-sample-size con�dence intervals
based on SPRTs. Unfortunately, he made a fundamental
�aw by mistaking that if the width of the �xed-sample-
size con�dence interval decreases to be smaller than the
prespeci�ed length as the number of samples is increas-
ing, then the �xed-sample-size con�dence interval at the
termination of sampling process is the desired �xed-width
sequential con�dence interval guaranteeing the prescribed
con�dence level. More recently, Frey published a paper
[13] in e American Statistician (TAS) on the classical
problem of sequentially estimating a binomial proportion
with prescribed margin of error and con�dence level. Before
Frey submitted his original manuscript to TAS in July 2009, a
general framework of multistage parameter estimation had
been established by Chen [14–18], which provides exact
methods for estimating parameters of common distributions
with various error criterion.is framework is also proposed
in [19]. e approach of Frey [13] is similar to that of Chen
[14–18] for the speci�c problem of estimating a binomial
proportion with prescribed margin of error and con�dence
level.

In this paper, our primary interests are in the exact
sequential methods for the estimation of a binomial propor-
tion with prescribed margin of error and con�dence level.
We �rst introduce the exact approach established in [14–18].
In particular, we introduce the inclusion principle proposed
in [18] and its applications to the construction of concrete
stopping rules. We investigate the connection among various
stopping rules. Aerward, we propose a new family of
stopping rules which are extremely simple and accommodate
some existing stopping rules as special cases. We provide
rigorous �usti�cation for the feasibility and asymptotic opti-
mality of such stopping rules. We prove that the prescribed
con�dence level can be guaranteed uniformly for all values
of a binomial proportion by choosing appropriate parametric
values for the stopping rule. We show that as the margin of
error tends to be zero, the sample size tends to the attainable
minimum as if the binomial proportion were exactly known.
We derive analytic bounds for distributions and expectations
of sample numbers. In addition, we address some critical
computational issues and propose methods to improve the
accuracy and efficiency of numerical calculation.We conduct
extensive numerical experiment to study the performance
of various stopping rules. We determine parametric values

for the proposed stopping rules to achieve unprecedentedly
efficiency while guaranteeing prescribed con�dence levels.
We attempt to make our proposed method as user-friendly
as possible so that it can be immediately applicable even for
layer persons.

e remainder of the paper is organized as follows. In
Section 2, we introduce the exact approach proposed in
[14–18]. In Section 3, we discuss the general principle of
constructing stopping rules. In Section 4, we propose a new
family of sampling schemes and investigate their feasibility,
optimality, and analytic bounds of the distribution and
expectation of sample numbers. In Section 5, we compare
various computational methods. In particular, we illustrate
why the natural method of evaluating coverage probability
based on gridding parameter space is neither rigorous nor
efficient. In Section 6,we present numerical results for various
sampling schemes. In Section 7, we illustrate the applications
of our group sequential method in clinical trials. Section
8 is the conclusion. e proofs of theorems are given in
appendices.roughout this paper, we shall use the following
notations. e empty set is denoted by∅. e set of positive
integers is denoted by ℕ. e ceiling function is denoted by
⌈⋅⌉. e notation Pr{𝐸𝐸 𝐸 𝐸𝐸𝐸 denotes the probability of the
event 𝐸𝐸 associated with parameter 𝐸𝐸. e expectation of a
random variable is denoted by 𝔼𝔼𝔼⋅𝔼. e standard normal
distribution is denoted by Φ(⋅). For 𝛼𝛼 𝛼 (𝛼𝛼 𝛼), the notation
𝒵𝒵𝛼𝛼 denotes the critical value such that Φ(𝒵𝒵𝛼𝛼) = 𝛼 − 𝛼𝛼.
For 𝑛𝑛 𝛼 ℕ, in the case that 𝑋𝑋𝛼𝛼… 𝛼𝑋𝑋𝑛𝑛 are i.i.d. samples
of 𝑋𝑋, we denote the sample mean (∑𝑛𝑛

𝑖𝑖=𝛼 𝑋𝑋𝑖𝑖)/𝑛𝑛 by 𝑋𝑋𝑛𝑛, which
is also called the relative frequency when 𝑋𝑋 is a Bernoulli
random variable.e other notations will bemade clear as we
proceed.

2. How Can It Be Exact?

In many areas of scienti�c investigation, the outcome of an
experiment is of dichotomy nature and can be modeled as
a Bernoulli random variable 𝑋𝑋, de�ned in probability space
(Ω𝛼Pr𝛼ℱ), such that

Pr{𝑋𝑋 = 𝛼𝐸 = 𝛼 − Pr{𝑋𝑋 = 𝛼𝐸 = 𝑝𝑝 𝛼 (𝛼𝛼 𝛼) 𝛼 (1)

where 𝑝𝑝 is referred to as a binomial proportion. In general,
there is no analytic method for evaluating the binomial
proportion 𝑝𝑝. A frequently used approach is to estimate
𝑝𝑝 based on i.i.d. samples 𝑋𝑋𝛼𝛼𝑋𝑋2𝛼… of 𝑋𝑋. To reduce the
sampling cost, it is appropriate to estimate 𝑝𝑝 by a multistage
sampling procedure. More formally, let 𝜖𝜖 𝛼 (𝛼𝛼 𝛼) and 𝛼 − 𝛿𝛿,
with 𝛿𝛿 𝛼 (𝛼𝛼 𝛼), be the prespeci�ed margin of error and
con�dence level, respectively. e ob�ective is to construct a
sequential estimator 󵰁󵰁𝐩𝐩 for 𝑝𝑝 based on a multistage sampling
scheme such that

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 − 𝑝𝑝󶁁󶁁 < 𝜖𝜖 𝐸 𝑝𝑝󶁑󶁑 ≥ 𝛼 − 𝛿𝛿𝛼 (2)
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for any 𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝𝑝. roughout this paper, the probability
Pr{|󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝| 𝐩 𝐩𝐩 𝐩 𝑝𝑝𝐩 is referred to as the coverage
probability. Accordingly, the probability Pr{|󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝| 𝐩 𝐩𝐩 𝐩
𝑝𝑝𝐩 is referred to as the complementary coverage probability.
Clearly, a complete construction of a multistage estimation
scheme needs to determine the number of stages, the sample
sizes for all stages, the stopping rule, and the estimator for
𝑝𝑝. roughout this paper, we let 𝑠𝑠 denote the number of
stages and let 𝑛𝑛ℓ denote the number of samples at the ℓth
stages. at is, the sampling process consists of 𝑠𝑠 stages with
sample sizes 𝑛𝑛𝑝 𝐩 𝑛𝑛2 𝐩 ⋯ 𝐩 𝑛𝑛𝑠𝑠. For ℓ = 𝑝𝑝 2𝑝… 𝑝 𝑠𝑠,
de�ne 𝐾𝐾ℓ = ∑𝑛𝑛ℓ

𝑖𝑖=𝑝 𝑋𝑋𝑖𝑖 and󵰃󵰃𝐩𝐩ℓ = 𝐾𝐾ℓ/𝑛𝑛ℓ. e stopping rule is
to be de�ned in terms of󵰃󵰃𝐩𝐩ℓ𝑝 ℓ = 𝑝𝑝… 𝑝 𝑠𝑠. Of course, the
index of stage at the termination of the sampling process,
denoted by 𝐥𝐥, is a random number. Accordingly, the number
of samples at the termination of the experiment, denoted by
𝐧𝐧, is a random number which equals 𝑛𝑛𝐥𝐥. Since for each ℓ,󵰃󵰃𝐩𝐩ℓ
is a maximum-likelihood and minimum-variance unbiased
estimator of 𝑝𝑝, the sequential estimator for 𝑝𝑝 is taken
as

󵰁󵰁𝐩𝐩 = 󵰂󵰂𝐩𝐩𝐥𝐥 =
∑𝑛𝑛𝐥𝐥
𝑖𝑖=𝑝 𝑋𝑋𝑖𝑖

𝑛𝑛𝐥𝐥
=
∑𝐧𝐧
𝑖𝑖=𝑝 𝑋𝑋𝑖𝑖

𝐧𝐧
. (3)

In the above discussion, we have outlined the general char-
acteristics of a multistage sampling scheme for estimating a
binomial proportion. It remains to determine the number
of stages, the sample sizes for all stages, and the stopping
rule so that the resultant estimator 󵰁󵰁𝐩𝐩 satis�es (2) for any
𝑝𝑝 𝑝 𝑝𝑝𝑝 𝑝𝑝.

Actually, the problem of sequential estimation of a
binomial proportion has been treated by Chen [14–18] in a
general framework of multistage parameter estimation. e
techniques of [14–18] are sufficient to offer exact solutions for
a wide range of sequential estimation problems, including the
estimation of a binomial proportion as a special case.e cen-
tral idea of the approach in [14–18] is the control of coverage
probability by a single parameter 𝜁𝜁, referred to as the coverage
tuning parameter, and the adaptive rigorous checking of cov-
erage guarantee by virtue of bounds of coverage probabilities.
It is recognized in [14–18] that, due to the discontinuity of the
coverage probability on parameter space, the conventional
method of evaluating the coverage probability for a �nite
number of parameter values is neither rigorous not com-
putationally efficient for checking the coverage probability
guarantee.

As mentioned in the introduction, Frey published an
article [13] in TAS on the sequential estimation of a binomial
proportion with prescribed margin of error and con�dence
level. For clarity of presentation, the comparison of the works
of Chen and Frey is given in Section 5.4. In the remainder of
this section, we shall only introduce the idea and techniques
of [14–18], which had been precedentially developed byChen
before Frey submitted his original manuscript to TAS in
July 2009. We will introduce the approach of [14–18] with
a focus on the special problem of estimating a binomial
proportion with prescribed margin of error and con�dence
level.

2.1. Four Components Suffice. e exact methods of [14–
18] for multistage parameter estimation have four main
components as follows.

(i) Stopping rules parameterized by the coverage tuning
parameter 𝜁𝜁 𝜁 𝑝 such that the associated coverage
probabilities can be made arbitrarily close to 𝑝 by
choosing 𝜁𝜁 𝜁 𝑝 to be a sufficiently small number.

(ii) Recursively computable lower and upper bounds for
the complementary coverage probability for a given 𝜁𝜁
and an interval of parameter values.

(iii) Adapted branch and bound algorithm.

(iv) Bisection coverage tuning.

Without looking at the technical details, one can see
that these four components are sufficient for constructing
a sequential estimator so that the prescribed con�dence
level is guaranteed. e reason is as follows. As lower and
upper bounds for the complementary coverage probability
are available, the global optimization technique, branch and
bound (B&B) algorithm [20], can be used to compute exactly
the maximum of complementary coverage probability on
the whole parameter space. us, it is possible to check
rigorously whether the coverage probability associated with
a given 𝜁𝜁 is no less than the prespeci�ed con�dence level.
Since the coverage probability can be controlled by 𝜁𝜁, it is
possible to determine 𝜁𝜁 as large as possible to guarantee
the desired con�dence level by a bisection search. is
process is referred to as bisection coverage tuning in [14–
18]. Since a critical subroutine needed for bisection coverage
tuning is to check whether the coverage probability is no
less than the prespeci�ed con�dence level, it is not necessary
to compute exactly the maximum of the complementary
coverage probability. erefore, Chen revised the standard
B&B algorithm to reduce the computational complexity
and called the improved algorithm as the adapted B&B
Algorithm. e idea is to adaptively partition the parameter
space as many subintervals. If for all subintervals, the upper
bounds of the complementary coverage probability are no
greater than 𝛿𝛿, then declare that the coverage probability is
guaranteed. If there exists a subinterval for which the lower
bound of the complementary coverage probability is greater
than 𝛿𝛿, then declare that the coverage probability is not
guaranteed. Continue partitioning the parameter space if no
decision can be made. e four components are illustrated
in the sequel under the headings of stopping rules, interval
bounding, adapted branch andbound, and bisection coverage
tuning.

2.2. Stopping Rules. e �rst component for the exact
sequential estimation of a binomial proportion is the stop-
ping rule for constructing a sequential estimator such that the
coverage probability can be controlled by the coverage tuning
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parameter 𝜁𝜁. For convenience of describing some concrete
stopping rules, de�ne

ℳ(𝑧𝑧𝑧 𝑧𝑧) =

󶀂󶀂󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀚󶀚

𝑧𝑧 𝑧𝑧
𝑧𝑧
𝑧𝑧

+(1 − 𝑧𝑧) 𝑧𝑧
1 − 𝑧𝑧
1 − 𝑧𝑧

for 𝑧𝑧 𝑧 (0𝑧 1) 𝑧
𝑧𝑧 𝑧 (0𝑧 1) 𝑧

𝑧𝑧(1 − 𝑧𝑧) for 𝑧𝑧 = 0𝑧 𝑧𝑧 𝑧 (0𝑧 1) 𝑧
𝑧𝑧 𝑧𝑧 for 𝑧𝑧 = 1𝑧 𝑧𝑧 𝑧 (0𝑧 1) 𝑧
−∞ for 𝑧𝑧 𝑧 [0𝑧 1] 𝑧

𝑧𝑧 𝜃 (0𝑧 1) 𝑧

𝑆𝑆󶀡󶀡𝑘𝑘𝑧 𝑘𝑘𝑧 𝑘𝑘𝑧 𝑘𝑘󶀱󶀱 =
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

𝑘𝑘
󵠈󵠈
𝑖𝑖=𝑘𝑘
󶀦󶀦
𝑘𝑘
𝑖𝑖
󶀶󶀶𝑘𝑘𝑖𝑖󶀡󶀡1 − 𝑘𝑘󶀱󶀱𝑘𝑘−𝑖𝑖 for 𝑘𝑘 𝑧 (0𝑧 1) 𝑧

0 for 𝑘𝑘 𝜃 (0𝑧 1) 𝑧
(4)

where 𝑘𝑘 and 𝑘𝑘 are integers such that 0 ≤ 𝑘𝑘 ≤ 𝑘𝑘 ≤ 𝑘𝑘. Assume
that 0 < 𝜁𝜁𝜁𝜁 < 1. For the purpose of controlling the coverage
probability Pr{|󵰁󵰁𝐩𝐩 − p| < 𝜖𝜖 𝜖 𝑘𝑘𝜖 by the coverage tuning
parameter, Chen has proposed four stopping rules as follows.

Stopping Rule A. Continue sampling untilℳ((1/2) − |(1/2) −
󵰃󵰃𝐩𝐩ℓ|𝑧 (1/2)−|(1/2)−󵰃󵰃𝐩𝐩ℓ|+𝜖𝜖) ≤ (𝑧𝑧(𝜁𝜁𝜁𝜁))/𝑘𝑘ℓ for some ℓ 𝑧 {1𝑧… 𝑧 𝑠𝑠𝜖.

Stopping Rule B. Continue sampling until (|󵰃󵰃𝐩𝐩ℓ − (1/2)| −
(2/3)𝜖𝜖)2 ≥ (1/4) + (𝜖𝜖2𝑘𝑘ℓ/2 𝑧𝑧(𝜁𝜁𝜁𝜁)) for some ℓ 𝑧 {1𝑧… 𝑧 𝑠𝑠𝜖.

Stopping Rule C. Continue sampling until 𝑆𝑆(𝑆𝑆ℓ𝑧 𝑘𝑘ℓ𝑧 𝑘𝑘ℓ𝑧󵰃󵰃𝐩𝐩ℓ −
𝜖𝜖) ≤ 𝜁𝜁𝜁𝜁 and 𝑆𝑆(0𝑧 𝑆𝑆ℓ𝑧 𝑘𝑘ℓ𝑧󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖) ≤ 𝜁𝜁𝜁𝜁 for some ℓ 𝑧 {1𝑧… 𝑧 𝑠𝑠𝜖.

Stopping Rule D. Continue sampling until 𝑘𝑘ℓ ≥ 󵰃󵰃𝐩𝐩ℓ(1 −
󵰃󵰃𝐩𝐩ℓ)(2/𝜖𝜖

2) 𝑧𝑧(1/𝜁𝜁𝜁𝜁) for some ℓ 𝑧 {1𝑧… 𝑧 𝑠𝑠𝜖.

Stopping Rule A was �rst proposed in [14, eorem 7]
and restated in [15, eorem 16]. Stopping Rule B was
�rst proposed in [16, eorem 1] and represented as the
third stopping rule in [21, Section 4.1.1]. Stopping Rule C
originated from [17, eorem 1] and was restated as the
�rst stopping rule in [21, Section 4.1.1]. Stopping Rule D
was described in the remarks following eorem 7 of [22].
All these stopping rules can be derived from the general
principles proposed in [18, Section 3] and [19, Section 2.4].

Given that a stopping rule can be expressed in terms of
󵰃󵰃𝐩𝐩ℓ and 𝑘𝑘ℓ for ℓ = 1𝑧… 𝑧 𝑠𝑠, it is possible to �nd a bivariate
function𝒟𝒟(𝒟𝑧 𝒟) on {(𝑧𝑧𝑧 𝑘𝑘) 𝑧 𝑧𝑧 𝑧 [0𝑧 1]𝑧 𝑘𝑘 𝑧 𝑧𝜖, taking values
from {0𝑧 1𝜖, such that the stopping rule can be stated as the
following: continue sampling until𝒟𝒟(󵰃󵰃𝐩𝐩ℓ𝑧 𝑘𝑘ℓ) = 1 for some ℓ 𝑧
{1𝑧… 𝑧 𝑠𝑠𝜖. It can be checked that such representation applies
to Stopping Rules A, B, C, and D. For example, Stopping Rule
B can be expressed in this way by virtue of function 𝒟𝒟(𝒟𝑧 𝒟)
such that

𝒟𝒟(𝑧𝑧𝑧 𝑘𝑘) =
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

1 if 󶀤󶀤󶙤󶙤𝑧𝑧 − 1
2
󶙤󶙤 −

2
3
𝜖𝜖󶀴󶀴

2
≥
1
4
+

𝜖𝜖2𝑘𝑘
2 𝑧𝑧(𝜁𝜁𝜁𝜁)

𝑧

0 otherwise.
(5)

e motivation of introducing function 𝒟𝒟(𝒟𝑧 𝒟) is to param-
eterize the stopping rule in terms of design parameters.
Function𝒟𝒟(𝒟𝑧 𝒟) determines the formof the stopping rule and,
consequently, the sample sizes for all stages can be chosen as
functions of design parameters. Speci�cally, let

𝑁𝑁mi𝑧 = mi𝑧󶁅󶁅𝑘𝑘 𝑧 𝑧 𝑧 𝒟𝒟󶀥󶀥
𝑘𝑘
𝑘𝑘
𝑧 𝑘𝑘󶀵󶀵 = 1

for some nonnegative

integer 𝑘𝑘 not exceeding 𝑘𝑘󶁕󶁕 𝑧

(6)

𝑁𝑁max = mi𝑧󶁅󶁅𝑘𝑘 𝑧 𝑧 𝑧 𝒟𝒟󶀥󶀥
𝑘𝑘
𝑘𝑘
𝑧 𝑘𝑘󶀵󶀵 = 1

for all nonnegative

integer 𝑘𝑘 not exceeding 𝑘𝑘󶁕󶁕 .

(7)

To avoid unnecessary checking of the stopping criterion and
thus reduce administrative cost, there should be a possibility
that the sampling process is terminated at the �rst stage.
Hence, the minimum sample size 𝑘𝑘1 should be chosen to
ensure that {𝐧𝐧 = 𝑘𝑘1𝜖 ≠∅. is implies that the sample size
𝑘𝑘1 for the �rst stage can be taken as 𝑁𝑁mi𝑧. On the other
hand, since the sampling process must be terminated at or
before the 𝑠𝑠th stage, the maximum sample size 𝑘𝑘𝑠𝑠 should be
chosen to guarantee that {𝐧𝐧 𝐧 𝑘𝑘𝑠𝑠𝜖 = ∅. is implies that the
sample size 𝑘𝑘𝑠𝑠 for the last stage can be taken as 𝑁𝑁max. If the
number of stages 𝑠𝑠 is given, then the sample sizes for stages in
between 1 and 𝑠𝑠 can be chosen as 𝑠𝑠−2 integers between𝑁𝑁mi𝑧
and 𝑁𝑁max. Particularly, if the group sizes are expected to be
approximately equal, then the sample sizes can be taken as

𝑘𝑘ℓ = 󶃤󶃤𝑁𝑁mi𝑧 +
ℓ − 1
𝑠𝑠 − 1

󶀡󶀡𝑁𝑁max − 𝑁𝑁mi𝑧󶀱󶀱󶃴󶃴 𝑧 ℓ = 1𝑧… 𝑧 𝑠𝑠. (8)

Since the stopping rule is associated with the coverage tuning
parameter 𝜁𝜁, it follows that the number of stages 𝑠𝑠 and the
sample sizes 𝑘𝑘1𝑧 𝑘𝑘2𝑧… 𝑧 𝑘𝑘𝑠𝑠 can be expressed as functions of
𝜁𝜁. In this sense, it can be said that the stopping rule is
parameterized by the coverage tuning parameter 𝜁𝜁.e above
method of parameterizing stopping rules has been used in
[14–17] and proposed in [21, Section 2.1, page 9].

2.3. Interval Bounding. e second component for the exact
sequential estimation of a binomial proportion is the method
of bounding the complementary coverage probability Pr{|󵰁󵰁𝐩𝐩−
𝑘𝑘| ≥ 𝜖𝜖 𝜖 𝑘𝑘𝜖 for 𝑘𝑘 in an interval [𝑎𝑎𝑧 𝑎𝑎] contained by interval
(0𝑧 1). Applying eorem 8 of [15] to the special case of a
Bernoulli distribution immediately yields

Pr{󵰁󵰁𝐩𝐩 ≤ 𝑎𝑎 − 𝜖𝜖 𝜖 𝑎𝑎𝜖 + Pr{󵰁󵰁𝐩𝐩 ≥ 𝑎𝑎 + 𝜖𝜖 𝜖 𝑎𝑎𝜖

≤ Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 − 𝑘𝑘󶁁󶁁 ≥ 𝜖𝜖 𝜖 𝑘𝑘󶁑󶁑

≤ Pr{󵰁󵰁𝐩𝐩 ≤ 𝑎𝑎 − 𝜖𝜖 𝜖 𝑎𝑎𝜖 + Pr{󵰁󵰁𝐩𝐩 ≥ 𝑎𝑎 + 𝜖𝜖 𝜖 𝑎𝑎𝜖 𝑧

(9)
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∇ Let 𝑘𝑘 𝑘 𝑘, 𝑙𝑙𝑘 𝑘 Ψlb(ℐinit) and 𝑢𝑢𝑘 𝑘 Ψub(ℐinit).
∇ Let 𝒮𝒮𝑘 𝑘 {ℐinit} if 𝑢𝑢𝑘 > 𝛿𝛿. Otherwise, let 𝒮𝒮𝑘 be empty.
∇While 𝒮𝒮𝑘𝑘 is nonempty, 𝑙𝑙𝑘𝑘 < 𝛿𝛿 and 𝑢𝑢𝑘𝑘 is greater than max{𝑙𝑙𝑘𝑘 + 𝜂𝜂𝜂 𝛿𝛿}, do the following:

⋄ Split each interval in 𝒮𝒮𝑘𝑘 as two new intervals of equal length.
Let 𝑆𝑆𝑘𝑘 denote the set of all new intervals obtained from this splitting procedure.

⋄ Eliminate any intervalℐ from 𝑆𝑆𝑘𝑘 such that Ψub(ℐ) ≤ 𝛿𝛿.
⋄ Let 𝒮𝒮𝑘𝑘+𝑘 be the set 𝑆𝑆𝑘𝑘 processed by the above elimination procedure.
⋄ Let 𝑙𝑙𝑘𝑘+𝑘 𝑘 maxℐ∈𝒮𝒮𝑘𝑘+𝑘Ψlb(ℐ) and 𝑢𝑢𝑘𝑘+𝑘 𝑘 maxℐ∈𝒮𝒮𝑘𝑘+𝑘Ψub(ℐ). Let 𝑘𝑘 𝑘 𝑘𝑘 + 𝑘.

∇ If 𝒮𝒮𝑘𝑘 is empty and 𝑙𝑙𝑘𝑘 < 𝛿𝛿, then declare max Ψ(ℐinit) ≤ 𝛿𝛿.
Otherwise, declare max Ψ(ℐinit) > 𝛿𝛿.

A 1

for all 𝑝𝑝 ∈ 𝑝𝑝𝑝𝜂 𝑝𝑝𝑝 𝑝 (𝑘𝜂 𝑘). e bounds of (9) can be shown
as follows. Note that Pr{󵰁󵰁𝐩𝐩 ≤ 𝑝𝑝 𝐩 𝐩𝐩 𝐩 𝑝𝑝} + Pr{󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝 + 𝐩𝐩 𝐩
𝑝𝑝} ≤ Pr{|󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝| 𝐩 𝐩𝐩 𝐩 𝑝𝑝} 𝐩 Pr{󵰁󵰁𝐩𝐩 ≤ 𝑝𝑝 𝐩 𝐩𝐩 𝐩 𝑝𝑝} + Pr{󵰁󵰁𝐩𝐩 𝐩
𝑝𝑝 + 𝐩𝐩 𝐩 𝑝𝑝} ≤ Pr{󵰁󵰁𝐩𝐩 ≤ 𝑝𝑝 𝐩 𝐩𝐩 𝐩 𝑝𝑝} + Pr{󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝 + 𝐩𝐩 𝐩 𝑝𝑝} for
𝑝𝑝 ∈ 𝑝𝑝𝑝𝜂 𝑝𝑝𝑝 𝑝 (𝑘𝜂 𝑘). As a consequence of the monotonicity of
Pr{󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩 𝐩 𝑝𝑝} and Pr{󵰁󵰁𝐩𝐩 ≤ 𝐩𝐩 𝐩 𝑝𝑝} with respect to 𝑝𝑝, where 𝐩𝐩 is
a real number independent of 𝑝𝑝, the lower and upper bounds
of Pr{|󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝| 𝐩 𝐩𝐩 𝐩 𝑝𝑝} for 𝑝𝑝 ∈ 𝑝𝑝𝑝𝜂 𝑝𝑝𝑝 𝑝 (𝑘𝜂 𝑘) can be given as
Pr{󵰁󵰁𝐩𝐩 ≤ 𝑝𝑝 𝐩 𝐩𝐩 𝐩 𝑝𝑝} + Pr{󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝 + 𝐩𝐩 𝐩 𝑝𝑝} and Pr{󵰁󵰁𝐩𝐩 ≤ 𝑝𝑝 𝐩 𝐩𝐩 𝐩
𝑝𝑝} + Pr{󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝 + 𝐩𝐩 𝐩 𝑝𝑝}, respectively.

In page 15, equation (𝑘) of [15], Chen proposed to apply
the recursive method of Schultz et al. [23, Section 2] to
compute the lower and upper bounds of Pr{|󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝| 𝐩 𝐩𝐩 𝐩 𝑝𝑝}
given by (9). It should be pointed out that such lower and
upper bounds of Pr{|󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝| 𝐩 𝐩𝐩 𝐩 𝑝𝑝} can also be computed
by the recursive path-counting method of Franzén [10, page
49].

2.4. Adapted Branch and Bound. e third component for
the exact sequential estimation of a binomial proportion is
the adapted B&B algorithm, which was proposed in [15,
Section 2.8], for quick determination ofwhether the coverage
probability is no less than 𝑘 𝐩 𝛿𝛿 for any value of the
associated parameter. Such a task of checking the coverage
probability is also referred to as checking the coverage
probability guarantee. Given that lower and upper bounds
of the complementary coverage probability on an interval of
parameter values can be obtained by the interval bounding
techniques, this task can be accomplished by applying the
B&B algorithm [20] to compute exactly the maximum of the
complementary coverage probability on the parameter space.
However, in our applications, it suffices to determine whether
the maximum of the complementary coverage probability
Pr{|󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝| 𝐩 𝐩𝐩 𝐩 𝑝𝑝} with respect to 𝑝𝑝 ∈ (𝑘𝜂 𝑘) is greater
than the con�dence parameter 𝛿𝛿. For fast checking whether
the maximal complementary coverage probability exceeds 𝛿𝛿,
Chen proposed to reduce the computational complexity by
revising the standard B&B algorithm as the Adapted B&B
Algorithm in [15, Section 2.8]. To describe this algorithm,
let ℐinit denote the parameter space (𝑘𝜂 𝑘). For an interval
ℐ 𝑝 ℐinit, let maxΨ(ℐ) denote the maximum of the
complementary coverage probability Pr{|󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝| 𝐩 𝐩𝐩 𝐩 𝑝𝑝} with
respect to 𝑝𝑝 ∈ ℐ. LetΨlb(ℐ) andΨub(ℐ) be, respectively, the
lower and upper bounds of Ψ(ℐ), which can be obtained by

the interval bounding techniques introduced in Section 2.3.
Let 𝜂𝜂 > 𝑘 be a prespeci�ed tolerance, which is much smaller
than 𝛿𝛿. e adapted B&B algorithm of [15] is represented
with a slight modi�cation as in Algorithm 1.

It should be noted that for a sampling scheme of sym-
metrical stopping boundary, the initial interval ℐinit may
be taken as (𝑘𝜂 𝑘/2) for the sake of efficiency. In Section
5.1, we will illustrate why the adapted B&B algorithm
is superior than the direct evaluation based on gridding
parameter space. As will be seen in Section 5.2, the objec-
tive of the adapted B&B algorithm can also be accom-
plished by the Adaptive Maximum Checking Algorithm due
to Chen [21, Section 3.3] and rediscovered by Frey [13,
Appendix]. An explanation is given in Section 5.3 for the
advantage of working with the complementary coverage
probability.

2.5. Bisection Coverage Tuning. e fourth component for
the exact sequential estimation of a binomial proportion is
Bisection Coverage Tuning. Based on the adaptive rigorous
checking of coverage probability, Chen proposed in [14,
Section 2.7] and [15, Section 2.6] to apply a bisection search
method to determine maximal 𝜁𝜁 such that the coverage
probability is no less than 𝑘𝐩𝛿𝛿 for any value of the associated
parameter. Moreover, Chen has developed asymptotic results
in [15, page 21, eorem 𝑘8] for determining the initial
interval of 𝜁𝜁 needed for the bisection search. Speci�cally, if
the complementary coverage probability Pr{|󵰁󵰁𝐩𝐩 𝐩 𝑝𝑝| 𝐩 𝐩𝐩 𝐩 𝑝𝑝}
associated with 𝜁𝜁 𝐩 𝜁𝜁𝑘 tends to 𝛿𝛿 as 𝐩𝐩 𝜖 𝑘, then the
initial interval of 𝜁𝜁 can be taken as 𝑝𝜁𝜁𝑘2

𝑖𝑖𝜂 𝜁𝜁𝑘2
𝑖𝑖+𝑘𝑝, where 𝑖𝑖

is the largest integer such that the complementary coverage
probability associated with 𝜁𝜁 𝐩 𝜁𝜁𝑘2

𝑖𝑖 is no greater than 𝛿𝛿 for
all 𝑝𝑝 ∈ (𝑘𝜂 𝑘). By virtue of a bisection search, it is possible
to obtain 𝜁𝜁∗ ∈ 𝑝𝜁𝜁𝑘2

𝑖𝑖𝜂 𝜁𝜁𝑘2
𝑖𝑖+𝑘𝑝 such that the complementary

coverage probability associated with 𝜁𝜁 𝐩 𝜁𝜁∗ is guaranteed to
be no greater than 𝛿𝛿 for all 𝑝𝑝 ∈ (𝑘𝜂 𝑘).

3. Principle of Constructing Stopping Rules

In this section, we shall illustrate the inherent connection
between various stopping rules. It will be demonstrated that a
lot of stopping rules can be derived by virtue of the inclusion
principle proposed by Chen [18, Section 3].
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3.1. Inclusion Principle. e problem of estimating a bino-
mial proportion can be considered as a special case of
parameter estimation for a random variable𝑋𝑋 parameterized
by 𝜃𝜃 𝜃 𝜃, where the objective is to construct a sequential
estimator 󵰁󵰁𝜃𝜃 for 𝜃𝜃 such that Pr{|󵰁󵰁𝜃𝜃 𝜃 𝜃𝜃| 𝜃 𝜃𝜃 𝜃 𝜃𝜃𝜃 𝜃 𝜃 𝜃 𝜃𝜃 for any
𝜃𝜃 𝜃 𝜃. Assume that the sampling process consists of 𝑠𝑠 stages
with sample sizes 𝑛𝑛𝜃 𝜃 𝑛𝑛2 𝜃 ⋯ 𝜃 𝑛𝑛𝑠𝑠. For ℓ = 𝜃,… , 𝑠𝑠, de�ne
an estimator 󵰁󵰁𝜃𝜃ℓ for 𝜃𝜃 in terms of samples𝑋𝑋𝜃,… ,𝑋𝑋𝑛𝑛ℓ of𝑋𝑋. Let
[𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 𝜃, 2,… , 𝑠𝑠 be a sequence of con�dence intervals
such that for any ℓ, [𝐿𝐿ℓ, 𝑈𝑈ℓ] is de�ned in terms of𝑋𝑋𝜃,… ,𝑋𝑋𝑛𝑛ℓ
and that the coverage probability Pr{𝐿𝐿ℓ ≤ 𝜃𝜃 ≤ 𝑈𝑈ℓ 𝜃 𝜃𝜃𝜃
can be made arbitrarily close to 𝜃 by choosing 𝜁𝜁 𝜁 𝜁 to
be a sufficiently small number. In eorem 2 of [18], Chen
proposed the following general stopping rule:

Continue sampling until 𝑈𝑈ℓ 𝜃 𝜃𝜃 ≤ 󵰁󵰁𝜃𝜃ℓ ≤ 𝐿𝐿ℓ + 𝜃𝜃

for some ℓ 𝜃 {𝜃,… , 𝑠𝑠𝜃 .
(10)

At the termination of the sampling process, a sequential
estimator for 𝜃𝜃 is taken as 󵰁󵰁𝜃𝜃 = 󵰁󵰁𝜃𝜃𝐥𝐥, where 𝐥𝐥 is the index of stage
at the termination of sampling process.

Clearly, the general stopping rule (10) can be restated as
follows.

Continue sampling until the con�dence interval [𝐿𝐿ℓ, 𝑈𝑈ℓ]
is included by interval [󵰁󵰁𝜃𝜃ℓ 𝜃 𝜃𝜃, 󵰁󵰁𝜃𝜃ℓ + 𝜃𝜃] for some ℓ 𝜃 {𝜃,… , 𝑠𝑠𝜃.

e sequence of con�dence intervals are parameterized
by 𝜁𝜁 for purpose of controlling the coverage probability
Pr{|󵰁󵰁𝜃𝜃 𝜃 𝜃𝜃| 𝜃 𝜃𝜃 𝜃 𝜃𝜃𝜃. Due to the inclusion relationship
[𝐿𝐿ℓ, 𝑈𝑈ℓ] ⊆ [󵰁󵰁𝜃𝜃ℓ𝜃𝜃𝜃, 󵰁󵰁𝜃𝜃ℓ+𝜃𝜃], such a general methodology of using
a sequence of con�dence intervals to construct a stopping
rule for controlling the coverage probability is referred to as
the inclusion principle. It is asserted byeorem 2 of [18] that

Pr󶁂󶁂󶁂󶁂󵰁󵰁𝜃𝜃 𝜃 𝜃𝜃󶁂󶁂 𝜃 𝜃𝜃 𝜃 𝜃𝜃󶁒󶁒 𝜃 𝜃 𝜃 𝑠𝑠𝜁𝜁𝜃𝜃, 𝑠𝜃𝜃 𝜃 𝜃, (11)

provided that Pr{𝐿𝐿ℓ 𝜃 𝜃𝜃 𝜃 𝑈𝑈ℓ 𝜃 𝜃𝜃𝜃 𝜃 𝜃 𝜃 𝜁𝜁𝜃𝜃 for ℓ = 𝜃,… , 𝑠𝑠
and 𝜃𝜃 𝜃 𝜃. is demonstrates that if the number of stages 𝑠𝑠 is
bounded respective to 𝜁𝜁, then the coverage probability Pr{|󵰁󵰁𝜃𝜃𝜃
𝜃𝜃| 𝜃 𝜃𝜃 𝜃 𝜃𝜃𝜃 associated with the stopping rule derived from the
inclusion principle can be controlled by 𝜁𝜁. Actually, before
explicitly proposing the inclusion principle in [18], Chen
had extensively applied the inclusion principle in [14–17] to
construct stopping rules for estimating parameters of various
distributions such as binomial, Poisson, geometric, hyperge-
ometric, and normal distributions. A more general version
of the inclusion principle is proposed in [19, Section 2.4].
For simplicity of the stopping rule, Chen had made effort to
eliminate the computation of con�dence limits.

In the context of estimating a binomial proportion 𝑝𝑝, the
inclusion principle immediately leads to the following general
stopping rule:

Continue sampling until󵰃󵰃𝐩𝐩ℓ 𝜃 𝜃𝜃 ≤ 𝐿𝐿ℓ ≤ 𝑈𝑈ℓ ≤󵰃󵰃𝐩𝐩ℓ + 𝜃𝜃

for some ℓ 𝜃 {𝜃,… , 𝑠𝑠𝜃 .
(12)

Consequently, the sequential estimator for 𝑝𝑝 is taken as 󵰁󵰁𝐩𝐩
according to (3). It should be pointed out that the stopping

rule (12) had been rediscovered by Frey in Section 2, the 1st
paragraph of [13]. e four stopping rules considered in his
paper follow immediately from applying various con�dence
intervals to the general stopping rule (12).

In the sequel, we will illustrate how to apply (12) to the
derivation of Stopping Rules A, B, C, and D introduced in
Section 2.2 and other speci�c stopping rules.

3.2. Stopping Rule from Wald Intervals. By virtue of Wald’s
method of interval estimation for a binomial proportion 𝑝𝑝, a
sequence of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 𝜃,… , 𝑠𝑠 for 𝑝𝑝
can be constructed such that

𝐿𝐿ℓ =󵰃󵰃𝐩𝐩ℓ 𝜃 𝒵𝒵𝜁𝜁𝜃𝜃󵀌󵀌
󵰃󵰃𝐩𝐩ℓ󶀡󶀡𝜃 𝜃󵰃󵰃𝐩𝐩ℓ󶀱󶀱

𝑛𝑛ℓ
, 𝑈𝑈ℓ =󵰃󵰃𝐩𝐩ℓ + 𝒵𝒵𝜁𝜁𝜃𝜃󵀌󵀌

󵰃󵰃𝐩𝐩ℓ󶀡󶀡𝜃 𝜃󵰃󵰃𝐩𝐩ℓ󶀱󶀱
𝑛𝑛ℓ

,

ℓ = 𝜃,… , 𝑠𝑠,
(13)

and that Pr{𝐿𝐿ℓ ≤ 𝑝𝑝 ≤ 𝑈𝑈ℓ 𝜃 𝑝𝑝𝜃 𝑝 𝜃 𝜃 2𝜁𝜁𝜃𝜃 for ℓ =
𝜃,… , 𝑠𝑠 and 𝑝𝑝 𝜃 𝑝𝜁, 𝜃𝑝. Note that, for ℓ = 𝜃,… , 𝑠𝑠, the event
{󵰃󵰃𝐩𝐩ℓ 𝜃 𝜃𝜃 ≤ 𝐿𝐿ℓ ≤ 𝑈𝑈ℓ ≤ 󵰃󵰃𝐩𝐩ℓ + 𝜃𝜃𝜃 is the same as the event
{𝑝󵰃󵰃𝐩𝐩ℓ 𝜃 𝜃/2𝑝

2 𝜃 𝑝𝜃/4𝑝𝜃𝑛𝑛ℓ𝑝𝜃𝜃/𝒵𝒵𝜁𝜁𝜃𝜃𝑝
2𝜃. So, applying this sequence

of con�dence intervals to (12) results in the stopping rule
“continue sampling until 𝑝󵰃󵰃𝐩𝐩ℓ 𝜃 𝜃/2𝑝

2 𝜃 𝑝𝜃/4𝑝 𝜃 𝑛𝑛ℓ𝑝𝜃𝜃/𝒵𝒵𝜁𝜁𝜃𝜃𝑝
2

for some ℓ 𝜃 {𝜃,… , 𝑠𝑠𝜃”. Since for any 𝜁𝜁 𝜃 𝑝𝜁, 𝜃/𝜃𝜃𝑝, there exists

a unique number 𝜁𝜁
′

𝜃 𝑝𝜁, 𝜃/𝜃𝜃𝑝 such that𝒵𝒵𝜁𝜁𝜃𝜃 = 󵀆󵀆2 ln𝑝𝜃/𝜁𝜁
′
𝜃𝜃𝑝,

this stopping rule is equivalent to “Continue sampling until
𝑝󵰃󵰃𝐩𝐩ℓ 𝜃 𝜃/2𝑝

2 𝜃 𝑝𝜃/4𝑝 + 𝑝𝜃𝜃2𝑛𝑛ℓ/2 ln𝑝𝜁𝜁𝜃𝜃𝑝𝑝 for some ℓ 𝜃 {𝜃,… , 𝑠𝑠𝜃.”
is stopping rule is actually the same as Stopping Rule D,
since {𝑝󵰃󵰃𝐩𝐩ℓ 𝜃 𝜃/2𝑝

2 𝜃 𝑝𝜃/4𝑝 + 𝑝𝜃𝜃2𝑛𝑛ℓ/2 ln𝑝𝜁𝜁𝜃𝜃𝑝𝑝𝜃 = {𝑛𝑛ℓ 𝜃 󵰃󵰃𝐩𝐩ℓ𝑝𝜃 𝜃
󵰃󵰃𝐩𝐩ℓ𝑝𝑝2/𝜃𝜃

2𝑝 ln𝑝𝜃/𝜁𝜁𝜃𝜃𝑝𝜃 for ℓ 𝜃 {𝜃,… , 𝑠𝑠𝜃.

3.3. Stopping Rule from Revised Wald Intervals. De�ne󵰓󵰓𝐩𝐩ℓ =
𝑝𝑛𝑛ℓ 󵰃󵰃𝐩𝐩ℓ + 𝑎𝑎𝑝/𝑝𝑛𝑛ℓ + 2𝑎𝑎𝑝 for ℓ = 𝜃,… , 𝑠𝑠, where 𝑎𝑎 is a positive
number. Inspired byWald’s method of interval estimation for
𝑝𝑝, a sequence of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 𝜃,… , 𝑠𝑠
can be constructed such that

𝐿𝐿ℓ =󵰃󵰃𝐩𝐩ℓ 𝜃 𝒵𝒵𝜁𝜁𝜃𝜃󵀌󵀌
󵰓󵰓𝐩𝐩ℓ󶀡󶀡𝜃 𝜃󵰓󵰓𝐩𝐩ℓ󶀱󶀱

𝑛𝑛ℓ
,

𝑈𝑈ℓ =󵰃󵰃𝐩𝐩ℓ + 𝒵𝒵𝜁𝜁𝜃𝜃󵀌󵀌
󵰓󵰓𝐩𝐩ℓ󶀡󶀡𝜃 𝜃󵰓󵰓𝐩𝐩ℓ󶀱󶀱

𝑛𝑛ℓ

(14)

and that Pr{𝐿𝐿ℓ ≤ 𝑝𝑝 ≤ 𝑈𝑈ℓ 𝜃 𝑝𝑝𝜃 𝑝 𝜃 𝜃 2𝜁𝜁𝜃𝜃 for ℓ =
𝜃,… , 𝑠𝑠 and 𝑝𝑝 𝜃 𝑝𝜁, 𝜃𝑝. is sequence of con�dence intervals
was applied by Frey [13] to the general stopping rule (12).
As a matter of fact, such idea of revising Wald interval
[ 𝑋𝑋𝑛𝑛𝜃𝒵𝒵𝜁𝜁𝜃𝜃󵀆󵀆𝑝𝑋𝑋𝑛𝑛𝑝𝜃 𝜃 𝑋𝑋𝑛𝑛𝑝𝑝/𝑛𝑛, 𝑋𝑋𝑛𝑛+𝒵𝒵𝜁𝜁𝜃𝜃󵀆󵀆𝑝𝑋𝑋𝑛𝑛𝑝𝜃 𝜃 𝑋𝑋𝑛𝑛𝑝𝑝/𝑛𝑛 ] by
replacing the relative frequency𝑋𝑋𝑛𝑛 = 𝑝∑

𝑛𝑛
𝑖𝑖=𝜃 𝑋𝑋𝑖𝑖𝑝/𝑛𝑛 involved in

the con�dence limits with󵰓󵰓𝑝𝑝𝑎𝑎 = 𝑝𝑛𝑛𝑋𝑋𝑛𝑛 + 𝑎𝑎𝑝/𝑝𝑛𝑛 + 2𝑎𝑎𝑝 had been
proposed by Chen [24, Section 4].

As can be seen from Section 2, page 243, of Frey
[13], applying (12) with the sequence of revised Wald
intervals yields the stopping rule “Continue sampling until
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(󵰓󵰓𝐩𝐩ℓ − 1/2)
2 ≥ (1/4) + (𝜖𝜖2𝑛𝑛ℓ/2 ln(𝜁𝜁𝜁𝜁)) for some ℓ ∈ {1,… , 𝑠𝑠𝑠.”

Clearly, replacing󵰃󵰃𝐩𝐩ℓ in Stopping Rule D with󵰓󵰓𝐩𝐩ℓ = (𝑎𝑎 +
𝑛𝑛ℓ󵰃󵰃𝐩𝐩ℓ)/(𝑛𝑛ℓ + 2𝑎𝑎) also leads to this stopping rule.

�.�. �to���n� �u�e from ���son�s �on�den�e �nter�a�s. Mak-
ing use of the interval estimation method ofWilson [25], one
can obtain a sequence of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ =
1,… , 𝑠𝑠 for 𝑝𝑝 such that

𝐿𝐿ℓ = max
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

0,
󵰃󵰃𝐩𝐩ℓ + 󶀢󶀢𝒵𝒵

2
𝜁𝜁𝜁𝜁/2𝑛𝑛ℓ󶀲󶀲

1 + 󶀢󶀢𝒵𝒵2
𝜁𝜁𝜁𝜁/𝑛𝑛ℓ󶀲󶀲

−
𝒵𝒵𝜁𝜁𝜁𝜁󵀊󵀊󶀡󶀡󵰃󵰃𝐩𝐩ℓ󶀡󶀡1 −󵰃󵰃𝐩𝐩ℓ󶀱󶀱 /𝑛𝑛ℓ󶀱󶀱 + 󶀢󶀢𝒵𝒵𝜁𝜁𝜁𝜁/2𝑛𝑛ℓ󶀲󶀲

2

1 + 󶀢󶀢𝒵𝒵2
𝜁𝜁𝜁𝜁/𝑛𝑛ℓ󶀲󶀲

󶀃󶀃󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓
󶀛󶀛

,

𝑈𝑈ℓ = min
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

1,
󵰃󵰃𝐩𝐩ℓ + 󶀢󶀢𝒵𝒵

2
𝜁𝜁𝜁𝜁/2𝑛𝑛ℓ󶀲󶀲

1 + 󶀢󶀢𝒵𝒵2
𝜁𝜁𝜁𝜁/𝑛𝑛ℓ󶀲󶀲

+
𝒵𝒵𝜁𝜁𝜁𝜁󵀊󵀊󶀡󶀡󵰃󵰃𝐩𝐩ℓ󶀡󶀡1 −󵰃󵰃𝐩𝐩ℓ󶀱󶀱 /𝑛𝑛ℓ󶀱󶀱 + 󶀢󶀢𝒵𝒵𝜁𝜁𝜁𝜁/2𝑛𝑛ℓ󶀲󶀲

2

1 + 󶀢󶀢𝒵𝒵2
𝜁𝜁𝜁𝜁/𝑛𝑛ℓ󶀲󶀲

󶀃󶀃󶀓󶀓󶀓󶀓
󶀋󶀋󶀓󶀓󶀓󶀓
󶀛󶀛
(15)

and that Pr{𝐿𝐿ℓ ≤ 𝑝𝑝 ≤ 𝑈𝑈ℓ ∣ 𝑝𝑝𝑠 𝑝 1−2𝜁𝜁𝜁𝜁 for ℓ = 1,… , 𝑠𝑠 and𝑝𝑝 ∈
(0, 1). It should be pointed out that the sequence of Wilson’s
con�dence intervals has been applied by Frey [13, Section 2,
page 243] to the general stopping rule (12) for estimating a
binomial proportion.

Since a stopping rule directly involves the sequence of
Wilson’s con�dence intervals is cumbersome, it is desirable
to eliminate the computation ofWilson’s con�dence intervals
in the stopping rule. For this purpose, we need to use the
following result.

eorem 1. Assume that 0 < 𝜁𝜁𝜁𝜁 < 1 and 0 < 𝜖𝜖 < 1/2. en,
���son�s �on�den�e �nter�a�s sat�sf� {󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 ≤ 𝐿𝐿ℓ ≤ 𝑈𝑈ℓ ≤󵰃󵰃𝐩𝐩ℓ +
𝜖𝜖𝑠 = {(𝜖󵰃󵰃𝐩𝐩ℓ − 1/2𝜖 − 𝜖𝜖)

2 ≥ (1/4) − 𝑛𝑛ℓ(𝜖𝜖/𝒵𝒵𝜁𝜁𝜁𝜁)
2𝑠 for ℓ = 1,… , 𝑠𝑠.

SeeAppendixA for a proof. As a consequence ofeorem
1 and the fact that for any 𝜁𝜁 ∈ (0, 1/𝜁𝜁), there exists a unique

number 𝜁𝜁
′

∈ (0, 1/𝜁𝜁) such that𝒵𝒵𝜁𝜁𝜁𝜁 = 󵀆󵀆2 ln(1/𝜁𝜁
′
𝜁𝜁), applying

the sequence of Wilson’s con�dence intervals to (12) leads to
the following stopping rule.

Continue sampling until

󶀤󶀤󶙤󶙤󵰃󵰃𝐩𝐩ℓ −
1
2
󶙤󶙤 − 𝜖𝜖󶀴󶀴

2
≥
1
4
+

𝜖𝜖2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

, (16)

for some ℓ ∈ {1,… , 𝑠𝑠𝑠.

�.�. �to���n� �u�e from ��o��er��earson �on�den�e �nter�a�s.
Applying the interval estimationmethod of Clopper-Pearson

[26], a sequence of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 1,… , 𝑠𝑠
for 𝑝𝑝 can be obtained such that Pr{𝐿𝐿ℓ ≤ 𝑝𝑝 ≤ 𝑈𝑈ℓ ∣ 𝑝𝑝𝑠 ≥ 1−2𝜁𝜁𝜁𝜁
for ℓ = 1,… , 𝑠𝑠 and 𝑝𝑝 ∈ (0, 1), where the upper con�dence
limit 𝑈𝑈ℓ satis�es the equation 𝑆𝑆(0,𝑆𝑆ℓ, 𝑛𝑛ℓ, 𝑈𝑈ℓ) = 𝜁𝜁𝜁𝜁 if 𝑆𝑆ℓ <
𝑛𝑛ℓ� and the lower con�dence limit 𝐿𝐿ℓ satis�es the equation
𝑆𝑆(𝑆𝑆ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ, 𝐿𝐿ℓ) = 𝜁𝜁𝜁𝜁 if 𝑆𝑆ℓ > 0. e well-known equation
(10.8) in [27, page 173] implies that 𝑆𝑆(0, 𝑆𝑆, 𝑛𝑛, 𝑝𝑝), with 0 ≤ 𝑆𝑆 <
𝑛𝑛, is decreasing with respect to𝑝𝑝 ∈ (0, 1) and that 𝑆𝑆(𝑆𝑆, 𝑛𝑛, 𝑛𝑛, 𝑝𝑝),
with 0 < 𝑆𝑆 ≤ 𝑛𝑛, is increasing with respect to 𝑝𝑝 ∈ (0, 1). It
follows that

󶁁󶁁󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 ≤ 𝐿𝐿ℓ󶁑󶁑 = 󶁁󶁁0 <󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 ≤ 𝐿𝐿ℓ󶁑󶁑 ∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖󶁑󶁑

= 󶁁󶁁󵰃󵰃𝐩𝐩ℓ > 𝜖𝜖, 𝑆𝑆󶀡󶀡𝑆𝑆ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖󶁑󶁑

= 󶁁󶁁󵰃󵰃𝐩𝐩ℓ > 𝜖𝜖, 𝑆𝑆󶀡󶀡𝑆𝑆ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≤ 𝜖𝜖, 𝑆𝑆󶀡󶀡𝑆𝑆ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

= 󶁁󶁁𝑆𝑆󶀡󶀡𝑆𝑆ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑 ,

󶁁󶁁󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖 ≥ 𝑈𝑈ℓ󶁑󶁑 = 󶁁󶁁1 >󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖 ≥ 𝑈𝑈ℓ󶁑󶁑 ∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≥ 1 − 𝜖𝜖󶁑󶁑

= 󶁁󶁁󵰃󵰃𝐩𝐩ℓ < 1 − 𝜖𝜖, 𝑆𝑆󶀡󶀡0,𝑆𝑆ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≥ 1 − 𝜖𝜖󶁑󶁑

= 󶁁󶁁󵰃󵰃𝐩𝐩ℓ < 1 − 𝜖𝜖, 𝑆𝑆󶀡󶀡0,𝑆𝑆ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≥ 1 − 𝜖𝜖, 𝑆𝑆󶀡󶀡0,𝑆𝑆ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑

= 󶁁󶁁𝑆𝑆󶀡󶀡0,𝑆𝑆ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑 ,
(17)

for ℓ = 1,… , 𝑠𝑠. Consequently,

󶁁󶁁󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 ≤ 𝐿𝐿ℓ ≤ 𝑈𝑈ℓ ≤󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶁑󶁑

= 󶁁󶁁𝑆𝑆󶀡󶀡𝑆𝑆ℓ, 𝑛𝑛ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁, 𝑆𝑆󶀡󶀡0,𝑆𝑆ℓ, 𝑛𝑛ℓ,󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖󶀱󶀱 ≤ 𝜁𝜁𝜁𝜁󶁑󶁑 ,
(18)

for ℓ = 1,… , 𝑠𝑠. is demonstrates that applying the sequence
of Clopper-Pearson con�dence intervals to the general stop-
ping rule (12) gives Stopping Rule C.

It should be pointed out that Stopping Rule C was
rediscovered by Frey as the third stopping rule in Section 2,
page 243 of his paper [13].

�.�. �to���n� �u�e from ��shman�s �on�den�e �nter�a�s. By
the interval estimation method of Fishman [28], a sequence
of con�dence intervals [𝐿𝐿ℓ, 𝑈𝑈ℓ], ℓ = 1,… , 𝑠𝑠 for 𝑝𝑝 can be
obtained such that

𝐿𝐿ℓ =
󶀂󶀂
󶀊󶀊
󶀚󶀚

0 if 󵰃󵰃𝐩𝐩ℓ = 0,

󶁅󶁅𝜃𝜃ℓ ∈ 󶀡󶀡0,󵰃󵰃𝐩𝐩ℓ󶀱󶀱 ∶ ℳ󶀡󶀡󵰃󵰃𝐩𝐩ℓ, 𝜃𝜃ℓ󶀱󶀱 =
ln(𝜁𝜁𝜁𝜁)
𝑛𝑛ℓ

󶁕󶁕 if 󵰃󵰃𝐩𝐩ℓ > 0,

𝑈𝑈ℓ =
󶀂󶀂
󶀊󶀊
󶀚󶀚

1 if 󵰃󵰃𝐩𝐩ℓ = 1,

󶁅󶁅𝜃𝜃ℓ ∈ 󶀡󶀡󵰃󵰃𝐩𝐩ℓ, 1󶀱󶀱 ∶ ℳ󶀡󶀡󵰃󵰃𝐩𝐩ℓ, 𝜃𝜃ℓ󶀱󶀱 =
ln(𝜁𝜁𝜁𝜁)
𝑛𝑛ℓ

󶁕󶁕 if 󵰃󵰃𝐩𝐩ℓ < 1.

(19)
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Under the assumption that 0 < 𝜁𝜁𝜁𝜁 < 𝜁 and 0 < 𝜖𝜖 < 𝜁𝜖𝜖, by
similar techniques as the proof ofeorem 7 of [22], it can be
shown that {󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖 𝜖𝜖ℓ 𝜖 𝑈𝑈ℓ 𝜖󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖𝜖 𝜖 {𝜖𝜖𝜖𝜁𝜖𝜖𝜖 − 𝜖𝜖𝜁𝜖𝜖𝜖 −
󵰃󵰃𝐩𝐩ℓ𝜖, 𝜖𝜁𝜖𝜖𝜖 − 𝜖𝜖𝜁𝜖𝜖𝜖 −󵰃󵰃𝐩𝐩ℓ𝜖 + 𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜁𝜁𝜁𝜁𝜖𝜖𝜖𝜖𝜖ℓ𝜖 for ℓ 𝜖 𝜁,… , 𝑠𝑠.
erefore, applying the sequence of con�dence intervals of
Fishman to the general stopping rule (12) gives Stopping Rule
A.

It should be noted that Fishman’s con�dence intervals are
actually derived from the Chernoff bounds of the tailed prob-
abilities of the sample mean of Bernoulli random variable.
Hence, Stopping Rule A is also referred to as the stopping rule
from Chernoff bounds in this paper.

�.�. Stopping �ule from �on�dence �ntervals of �hen et al.
Using the interval estimation method of Chen et al. [29], a
sequence of con�dence intervals [𝜖𝜖ℓ, 𝑈𝑈ℓ], ℓ 𝜖 𝜁,… , 𝑠𝑠 for 𝑝𝑝
can be obtained such that

𝜖𝜖ℓ 𝜖 max
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

0,󵰃󵰃𝐩𝐩ℓ +
3
4

×
𝜁 − 𝜖󵰃󵰃𝐩𝐩ℓ − 󵀆󵀆𝜁 + 󶀡󶀡9𝜖𝜖ℓ𝜖𝜖 𝜖𝜖𝜖𝜁𝜖𝜁𝜁𝜁𝜁𝜖󶀱󶀱󵰃󵰃𝐩𝐩ℓ󶀡󶀡𝜁−󵰃󵰃𝐩𝐩ℓ󶀱󶀱

𝜁 + 󶀡󶀡9𝜖𝜖ℓ𝜖8 𝜖𝜖𝜖𝜁𝜖𝜁𝜁𝜁𝜁𝜖󶀱󶀱

󶀃󶀃󶀓󶀓
󶀋󶀋󶀓󶀓
󶀛󶀛

,

𝑈𝑈ℓ 𝜖 mi𝜖
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

𝜁,󵰃󵰃𝐩𝐩ℓ +
3
4

×
𝜁 − 𝜖󵰃󵰃𝐩𝐩ℓ + 󵀆󵀆𝜁 + 󶀡󶀡9𝜖𝜖ℓ𝜖𝜖 𝜖𝜖𝜖𝜁𝜖𝜁𝜁𝜁𝜁𝜖󶀱󶀱󵰃󵰃𝐩𝐩ℓ󶀡󶀡𝜁 −󵰃󵰃𝐩𝐩ℓ󶀱󶀱

𝜁 + 󶀡󶀡9𝜖𝜖ℓ𝜖8 𝜖𝜖𝜖𝜁𝜖𝜁𝜁𝜁𝜁𝜖󶀱󶀱

󶀃󶀃󶀓󶀓
󶀋󶀋󶀓󶀓
󶀛󶀛

(20)

and that Pr{𝜖𝜖ℓ 𝜖 𝑝𝑝 𝜖 𝑈𝑈ℓ ∣ 𝑝𝑝𝜖 𝑝 𝜁 − 𝜖𝜁𝜁𝜁𝜁 for ℓ 𝜖 𝜁,… , 𝑠𝑠 and
𝑝𝑝 𝑝 𝜖0, 𝜁𝜖. Under the assumption that 0 < 𝜁𝜁𝜁𝜁 < 𝜁 and 0 < 𝜖𝜖 <
𝜁𝜖𝜖, by similar techniques as the proof of eorem 𝜁 of [30],
it can be shown that {󵰃󵰃𝐩𝐩ℓ − 𝜖𝜖 𝜖 𝜖𝜖ℓ 𝜖 𝑈𝑈ℓ 𝜖 󵰃󵰃𝐩𝐩ℓ + 𝜖𝜖𝜖 𝜖 {𝜖𝜖󵰃󵰃𝐩𝐩ℓ −
𝜁𝜖𝜖𝜖 − 𝜖𝜖𝜖3𝜖𝜖𝜖𝜖𝜖 𝑝 𝜖𝜁𝜖4𝜖 + 𝜖𝜖𝜖𝜖𝜖𝜖ℓ𝜖𝜖 𝜖𝜖𝜖𝜁𝜁𝜁𝜁𝜖𝜖𝜖 for ℓ 𝜖 𝜁,… , 𝑠𝑠. is
implies that applying the sequence of con�dence intervals of
Chen et al. to the general stopping rule (12) leads to Stopping
Rule B.

Actually, the con�dence intervals of Chen et al. [29] are
derived from Massart’s inequality [31] on the tailed proba-
bilities of the sample mean of Bernoulli random variable. For
this reason, Stopping Rule B is also referred to as the stopping
rule fromMassart’s inequality in [21, Section 4.𝜁.𝜁].

4. Double-Parabolic Sequential Estimation

From Sections 2.2, 3.2, and 3.7, it can be seen that, by
introducing a new parameter 𝜌𝜌 𝑝 [0, 𝜁] and letting 𝜌𝜌 take
values 𝜖𝜖3 and 0, respectively, Stopping Rules B and D can
be accommodated as special cases of the following general
stopping rule.

0 0.2 0.4 0.6 0.8 1
40

60

80

100

120

140

160

F 1: Double-parabolic sampling.

Continue the sampling process until

󶀤󶀤󶙤󶙤󵰃󵰃𝐩𝐩ℓ −
𝜁
𝜖
󶙤󶙤 − 𝜌𝜌𝜖𝜖󶀴󶀴

𝜖
𝑝
𝜁
4
+

𝜖𝜖𝜖𝜖𝜖ℓ
𝜖 𝜖𝜖𝜖𝜁𝜁𝜁𝜁𝜖

(21)

for some ℓ 𝑝 {𝜁, 𝜖,… , 𝑠𝑠𝜖, where 𝜁𝜁 𝑝 𝜖0, 𝜁𝜖𝜁𝜁𝜖.
Moreover, as can be seen from (16), the stopping rule

derived from applying �ilson’s con�dence intervals to (12)
can also be viewed as a special case of such general stopping
rule with 𝜌𝜌 𝜖 𝜁.

From the stopping condition (21), it can be seen that the
stopping boundary is associated with the double-parabolic
function 𝑓𝑓𝜖𝑓𝑓𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖𝜖 𝜖𝜖𝜖𝜁𝜁𝜁𝜁𝜖[𝜖𝜁𝜖4𝜖 − 𝜖𝜖𝑓𝑓 − 𝜁𝜖𝜖𝜖 − 𝜌𝜌𝜖𝜖𝜖𝜖] such
that 𝑓𝑓 and 𝑓𝑓𝜖𝑓𝑓𝜖 correspond to the sample mean and sample
size, respectively. For 𝜖𝜖 𝜖 0.𝜁, 𝜁𝜁 𝜖 0.0𝛿, and 𝜁𝜁 𝜖 𝜁, stopping
boundaries with various 𝜌𝜌 are shown by Figure 1.

For �xed 𝜖𝜖 and 𝜁𝜁, the parameters 𝜌𝜌 and 𝜁𝜁 affect the
shape of the stoping boundary in a way as follows. As 𝜌𝜌
increases, the span of stopping boundary is increasing in the
axis of sample mean. By decreasing 𝜁𝜁, the stopping boundary
can be dragged toward the direction of increasing sample
size. Hence, the parameter 𝜌𝜌 is referred to as the dilation
coefficient. e parameter 𝜁𝜁 is referred to as the coverage
tuning parameter. Since the stopping boundary consists
of two parabolas, this approach of estimating a binomial
proportion is referred to as the double-parabolic sequential
estimationmethod.

4.1. Parametrization of the Sampling Scheme. In this sec-
tion, we shall parameterize the double-parabolic sequential
sampling scheme by the method described in Section 2.2.
From the stopping condition (21), the stopping rule can be
restated as follows. Continue sampling until 𝒟𝒟𝜖󵰃󵰃𝐩𝐩ℓ, 𝜖𝜖ℓ𝜖 𝜖 𝜁
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for some ℓ ∈ {1,… , 𝑠𝑠𝑠, where the function 𝒟𝒟𝒟𝒟, 𝒟𝒟 is de�ned
by

𝒟𝒟𝒟𝑧𝑧, 𝑧𝑧𝒟 =
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

1 if 󶀤󶀤󶙤󶙤𝑧𝑧 𝑧 1
2
󶙤󶙤 𝑧 𝜌𝜌𝜌𝜌󶀴󶀴

2
≥
1
4
+

𝜌𝜌2𝑧𝑧
2 ln𝒟𝜁𝜁𝜁𝜁𝒟

,

0 otherwise.
(22)

Clearly, the function 𝒟𝒟𝒟𝒟, 𝒟𝒟 associated with the double-
parabolic sequential sampling scheme depends on the design
parameters 𝜌𝜌, 𝜁𝜁, 𝜌𝜌 and 𝜁𝜁. Applying the function 𝒟𝒟𝒟𝒟, 𝒟𝒟
de�ned by (22) to (6) yields

𝑁𝑁min = min󶁆󶁆𝑧𝑧 ∈ 𝑛 𝑛 󶀥󶀥󶙥󶙥
𝑘𝑘
𝑧𝑧
𝑧
1
2
󶙥󶙥 𝑧 𝜌𝜌𝜌𝜌󶀵󶀵

2
≥
1
4
+

𝜌𝜌2𝑧𝑧
2 ln𝒟𝜁𝜁𝜁𝜁𝒟

for some nonnegative

integer 𝑘𝑘 not exceeding 𝑧𝑧󶁗󶁗 .

(23)

Since 𝜌𝜌 is usually small in practical applications, we restrict
𝜌𝜌 to satisfy 0 < 𝜌𝜌𝜌𝜌 𝜌 1𝜌4. As a consequence of 0 𝜌 𝜌𝜌𝜌𝜌 𝜌
1𝜌4 and the fact that |𝑧𝑧 𝑧 1𝜌2| 𝜌 1𝜌2 for any 𝑧𝑧 ∈ 𝑧0, 1𝑧, it
must be true that 𝒟|𝑧𝑧 𝑧 1𝜌2| 𝑧 𝜌𝜌𝜌𝜌𝒟2 𝜌 𝒟𝒟1𝜌2𝒟 𝑧 𝜌𝜌𝜌𝜌𝒟2 for any
𝑧𝑧 ∈ 𝑧0, 1𝑧. It follows from (23) that 𝒟𝒟1𝜌2𝒟 𝑧 𝜌𝜌𝜌𝜌𝒟2 ≥ 𝒟1𝜌4𝒟 +
𝒟𝜌𝜌2𝑁𝑁min𝜌2 ln𝒟𝜁𝜁𝜁𝜁𝒟𝒟, which implies that the minimum sample
size can be taken as

𝑁𝑁min = 󶃥󶃥2𝜌𝜌󶀤󶀤
1
𝜌𝜌
𝑧 𝜌𝜌󶀴󶀴 ln

1
𝜁𝜁𝜁𝜁
󶃵󶃵 . (24)

On the other hand, applying the function 𝒟𝒟𝒟𝒟, 𝒟𝒟 de�ned by
(22) to (7) gives

𝑁𝑁max = min󶁆󶁆𝑧𝑧 ∈ 𝑛 𝑛 󶀥󶀥󶙥󶙥
𝑘𝑘
𝑧𝑧
𝑧
1
2
󶙥󶙥 𝑧 𝜌𝜌𝜌𝜌󶀵󶀵

2
≥
1
4
+

𝜌𝜌2𝑧𝑧
2 ln𝒟𝜁𝜁𝜁𝜁𝒟

for all nonnegative

integer 𝑘𝑘 not exceeding 𝑧𝑧󶁗󶁗 .

(25)

Since 𝒟|𝑧𝑧 𝑧 1𝜌2| 𝑧 𝜌𝜌𝜌𝜌𝒟2 ≥ 0 for any 𝑧𝑧∈𝑧0, 1𝑧, it follows from
(25) that 𝒟1𝜌4𝒟 + 𝒟𝜌𝜌2𝑁𝑁max𝜌2 ln𝒟𝜁𝜁𝜁𝜁𝒟𝒟 𝜌 0, which implies that
maximum sample size can be taken as

𝑁𝑁max = 󶃥󶃥
1
2𝜌𝜌2

ln
1
𝜁𝜁𝜁𝜁
󶃵󶃵 . (26)

erefore, the sample sizes 𝑧𝑧1,… , 𝑧𝑧𝑠𝑠 can be chosen as func-
tions of 𝜌𝜌, 𝜁𝜁, 𝜌𝜌, and 𝜁𝜁 which satisfy the following constraint:

𝑁𝑁min 𝜌 𝑧𝑧1 < ⋯ < 𝑧𝑧𝑠𝑠𝑧1 < 𝑁𝑁max 𝜌 𝑧𝑧𝑠𝑠. (27)

In particular, if the number of stages 𝑠𝑠 is given and the group
sizes are expected to be approximately equal, then the sample
sizes, 𝑧𝑧1,… , 𝑧𝑧𝑠𝑠, for all stages can be obtained by substituting

𝑁𝑁min de�ned by (24) and𝑁𝑁max de�ned by (26) into (8). For
example, if the values of design parameters are 𝜌𝜌 = 0.0𝜖, 𝜁𝜁 =
0.0𝜖, 𝜌𝜌 = 𝜌𝜌4, 𝜁𝜁 = 2.𝜌𝜌𝜖𝜌 and 𝑠𝑠 = 𝜌, then the sample sizes of
this sampling scheme are calculated as

𝑧𝑧1 = 𝜖𝜌, 𝑧𝑧2 = 11𝜌, 𝑧𝑧𝜌 = 1𝜌𝜌, 𝑧𝑧4 = 2𝜌1,

𝑧𝑧𝜖 = 288, 𝑧𝑧𝜌 = 𝜌4𝜖, 𝑧𝑧𝜌 = 40𝜌.
(28)

e stopping rule is completely determined by substituting
the values of design parameters into (21).

4.2. Uniform Controllability of Coverage Probability. Clearly,
for prespeci�ed 𝜌𝜌, 𝜁𝜁, and 𝜌𝜌, the coverage probability Pr{|󵰁󵰁𝐩𝐩 𝑧
𝑝𝑝| < 𝜌𝜌 𝑝 𝑝𝑝𝑠 depends on the parameter 𝜁𝜁, the number of stages
𝑠𝑠, and the sample sizes 𝑧𝑧1,… , 𝑧𝑧𝑠𝑠. As illustrated in Section
4.1, the number of stages 𝑠𝑠 and the sample sizes 𝑧𝑧1,… , 𝑧𝑧𝑠𝑠
can be de�ned as functions of 𝜁𝜁 ∈ 𝒟0, 1𝜌𝜁𝜁𝒟. at is, the
stopping rule can be parameterized by 𝜁𝜁. Accordingly, for any
𝑝𝑝 ∈ 𝒟0, 1𝒟, the coverage probability Pr{|󵰁󵰁𝐩𝐩 𝑧 𝑝𝑝| < 𝜌𝜌 𝑝 𝑝𝑝𝑠
becomes a function of 𝜁𝜁. e following theorem shows that
it suffices to choose 𝜁𝜁 ∈ 𝒟0, 1𝜌𝜁𝜁𝒟 small enough to guarantee
the prespeci�ed con�dence level.

eorem 2. Let 𝜌𝜌, 𝜁𝜁 ∈ 𝒟0, 1𝒟 and 𝜌𝜌 ∈ 𝒟0, 1𝑧 be ��ed. Assume
that the number of stages 𝑠𝑠 and the sample sizes 𝑧𝑧1,… , 𝑧𝑧𝑠𝑠
are functions of 𝜁𝜁 ∈ 𝒟0, 1𝜌𝜁𝜁𝒟 such that the constraint (27) is
satis�ed. �en� Pr{|󵰁󵰁𝐩𝐩 𝑧 𝑝𝑝| < 𝜌𝜌 𝑝 𝑝𝑝𝑠 is no less than 1 𝑧 𝜁𝜁 for any
𝑝𝑝 ∈ 𝒟0, 1𝒟 provided that

0 < 𝜁𝜁 𝜌
1
𝜁𝜁
exp󶀧󶀧

ln𝒟𝜁𝜁𝜌2𝒟 + ln󶁢󶁢1 𝑧 exp󶀢󶀢𝑧2𝜌𝜌2󶀲󶀲󶀲󶀲
4𝜌𝜌𝜌𝜌󶀡󶀡1 𝑧 𝜌𝜌𝜌𝜌󶀱󶀱

󶀷󶀷 . (29)

See Appendix B for a proof. Foreorem 2 to be valid, the
choice of sample sizes is very �exible. Particularly, the sample
sizes can be arithmetic or geometric progressions or any
others, as long as the constraint (27) is satis�ed. It can be seen
that for the coverage probability to be uniformly controllable,
the dilation coefficient 𝜌𝜌 must be greater than 0. eorem
2 asserts that there exists 𝜁𝜁 𝜁 0 such that the coverage
probability is no less than 1 𝑧 𝜁𝜁, regardless of the associated
binomial proportion𝑝𝑝. For the purpose of reducing sampling
cost, we want to have a value of 𝜁𝜁 as large as possible such that
the prespeci�ed con�dence level is guaranteed for any 𝑝𝑝 ∈
𝒟0, 1𝒟.is can be accomplished by the technical components
introduced in Sections 2.1, 2.3, 2.4, and 2.5. Clearly, for every
value of 𝜌𝜌, we can obtain a corresponding value of 𝜁𝜁 (as large
as possible) to ensure the desired con�dence level. �owever,
the performance of resultant stopping rules are different.
erefore, we can try a number of values of 𝜌𝜌 and pick the
best resultant stopping rule for practical use.

4.3. Asymptotic Optimality of Sampling Schemes. Now we
shall provide an important reason why we propose the
sampling scheme of that structure by showing its asymptotic
optimality. Since the performance of a group sampling
scheme will be close to its fully sequential counterpart, we
investigate the optimality of the fully sequential sampling
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scheme. In this scenario, the sample sizes 𝑛𝑛1, 𝑛𝑛2,… , 𝑛𝑛𝑠𝑠 are
consecutive integers such that

󶃥󶃥2𝜌𝜌󶀤󶀤
1
𝜖𝜖
− 𝜌𝜌󶀴󶀴 ln

1
𝜁𝜁𝜁𝜁
󶃵󶃵 = 𝑛𝑛1 < 𝑛𝑛2 < ⋯ < 𝑛𝑛𝑠𝑠−1 < 𝑛𝑛𝑠𝑠

= 󶃥󶃥
1
2𝜖𝜖2

ln
1
𝜁𝜁𝜁𝜁
󶃵󶃵 .

(30)

e fully sequential sampling scheme can be viewed as a
special case of a group sampling schemeof 𝑠𝑠 = 𝑛𝑛𝑠𝑠−𝑛𝑛1+1 stages
and group size 1. Clearly, if 𝜁𝜁, 𝜁𝜁 and 𝜌𝜌 are �xed, the sampling
scheme is dependent only on 𝜖𝜖. Hence, for any 𝑝𝑝 𝑝 𝑝𝑝, 1𝑝,
if we allow 𝜖𝜖 to vary in 𝑝𝑝, 1𝑝, then the coverage probability
Pr{|󵰁󵰁𝐩𝐩 − 𝑝𝑝| < 𝜖𝜖 𝐩 𝑝𝑝𝐩 and the average sample number 𝔼𝔼𝔼𝔼𝔼𝔼 are
functions of 𝜖𝜖. We are interested in knowing the asymptotic
behavior of these functions as 𝜖𝜖 𝜖 𝑝, since 𝜖𝜖 is usually small
in practical situations.e following theorem provides us the
desired insights.

eorem 3. Assume that 𝜁𝜁 𝑝 𝑝𝑝, 1𝑝, 𝜁𝜁 𝑝 𝑝𝑝, 1𝛿𝜁𝜁𝑝 and 𝜌𝜌 𝑝
𝑝𝑝, 1𝔼 are �xed. De�ne𝑁𝑁𝑝𝑝𝑝, 𝜖𝜖, 𝜁𝜁, 𝜁𝜁𝑝 = 𝑝2𝑝𝑝𝑝1 − 𝑝𝑝𝑝 ln𝑝1𝛿𝜁𝜁𝜁𝜁𝑝𝑝𝛿𝜖𝜖2
for 𝑝𝑝 𝑝 𝑝𝑝, 1𝑝 and 𝜖𝜖 𝑝 𝑝𝑝, 1𝑝. en,

Pr󶁆󶁆lim
𝜖𝜖𝜖𝑝

𝔼𝔼
𝑁𝑁󶀡󶀡𝑝𝑝, 𝜖𝜖, 𝜁𝜁, 𝜁𝜁󶀱󶀱

= 1 𝐩 𝑝𝑝󶁖󶁖 = 1, (31)

lim
𝜖𝜖𝜖𝑝

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 − 𝑝𝑝󶁁󶁁 < 𝜖𝜖 𝐩 𝑝𝑝󶁑󶁑 = 2Φ󶀧󶀧󵀌󵀌2 ln 1
𝜁𝜁𝜁𝜁
󶀷󶀷 − 1, (32)

lim
𝜖𝜖𝜖𝑝

𝔼𝔼𝔼𝔼𝔼𝔼
𝑁𝑁󶀡󶀡𝑝𝑝, 𝜖𝜖, 𝜁𝜁, 𝜁𝜁󶀱󶀱

= 1, (33)

for any 𝑝𝑝 𝑝 𝑝𝑝, 1𝑝.

See Appendix C for a proof. From (32), it can be seen that
lim𝜖𝜖𝜖𝑝Pr{|󵰁󵰁𝐩𝐩 − 𝑝𝑝| < 𝜖𝜖 𝐩 𝑝𝑝𝐩 = 1 − 𝜁𝜁 for any 𝑝𝑝 𝑝 𝑝𝑝, 1𝑝 if
𝜁𝜁 = 𝑝1𝛿𝜁𝜁𝑝 𝜁𝜁𝜁𝑝−𝑝1𝛿2𝑝𝜁𝜁2

𝜁𝜁𝛿2𝑝. Such value can be taken as an
initial value for the coverage tuning parameter 𝜁𝜁. In addition
to providing guidance on the coverage tuning techniques,
eorem 3 also establishes the optimality of the sampling
scheme. To see this, let 𝒩𝒩𝑝𝑝𝑝, 𝜖𝜖, 𝜁𝜁𝑝 denote the minimum
sample size 𝑛𝑛 required for a �xed-sample-size procedure to
guarantee that Pr{|𝑋𝑋𝑛𝑛 − 𝑝𝑝| < 𝜖𝜖 𝐩 𝑝𝑝𝐩 𝑝 1 − 𝜁𝜁 for any
𝑝𝑝 𝑝 𝑝𝑝, 1𝑝, where 𝑋𝑋𝑛𝑛 = 𝑝∑𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑖𝑖𝑝𝛿𝑛𝑛. It is well known that
from the central limit theorem,

lim
𝜖𝜖𝜖𝑝

𝒩𝒩󶀡󶀡𝑝𝑝, 𝜖𝜖, 𝜁𝜁󶀱󶀱

𝑝𝑝󶀡󶀡1 − 𝑝𝑝󶀱󶀱 󶀱󶀱𝜁𝜁𝜁𝜁𝛿2𝛿𝜖𝜖󶀲󶀲
2 = 1. (34)

Applying (33), (34), and letting 𝜁𝜁 = 𝑝1𝛿𝜁𝜁𝑝 𝜁𝜁𝜁𝑝−𝑝1𝛿2𝑝𝜁𝜁2
𝜁𝜁𝛿2𝑝,

we have lim𝜖𝜖𝜖𝑝𝑝𝒩𝒩𝑝𝑝𝑝, 𝜖𝜖, 𝜁𝜁𝑝𝛿𝑁𝑁𝑝𝑝𝑝, 𝜖𝜖, 𝜁𝜁, 𝜁𝜁𝑝𝑝 = 1 for 𝑝𝑝 𝑝 𝑝𝑝, 1𝑝
and 𝜁𝜁 𝑝 𝑝𝑝, 1𝑝, which implies the asymptotic optimality of
the double-parabolic sampling scheme. By virtue of (33),
an approximate formula for computing the average sample
number is given as follows:

𝔼𝔼𝔼𝔼𝔼𝔼 ≈ 𝑁𝑁󶀡󶀡𝑝𝑝, 𝜖𝜖, 𝜁𝜁, 𝜁𝜁󶀱󶀱 =
2𝑝𝑝󶀡󶀡1 − 𝑝𝑝󶀱󶀱 ln𝑝1𝛿𝜁𝜁𝜁𝜁𝑝

𝜖𝜖2
, (35)

for 𝑝𝑝 𝑝 𝑝𝑝, 1𝑝 and 𝜖𝜖 𝑝 𝑝𝑝, 1𝑝. From (34), one obtains
𝒩𝒩𝑝𝑝𝑝, 𝜖𝜖, 𝜁𝜁𝑝 ≈ 𝑝𝑝𝑝1 − 𝑝𝑝𝑝𝑝𝜁𝜁𝜁𝜁𝛿2𝛿𝜖𝜖𝑝

2, which is a well-known result
in statistics. In situations that no information of𝑝𝑝 is available,
one usually uses

𝑁𝑁normal
d𝜁f= 󶃧󶃧

1
4
󶀥󶀥
𝜁𝜁𝜁𝜁𝛿2

𝜖𝜖
󶀵󶀵
2

󶃷󶃷 (36)

as the sample size for estimating the binomial proportion
𝑝𝑝 with prescribed margin of error 𝜖𝜖 and con�dence level
1 − 𝜁𝜁. Since the sample size formula (36) can lead to under-
coverage, researchers in many areas are willing to use a more
conservative but rigorous sample size formula

𝑁𝑁ch
d𝜁f= 󶃥󶃥

ln𝑝2𝛿𝜁𝜁𝑝
2𝜖𝜖2

󶃵󶃵 , (37)

which is derived from the Chernoff-Hoeffding bound [32,
33]. Comparing (35) and (37), one can see that under
the premise of guaranteeing the prescribed con�dence level
1 − 𝜁𝜁, the double-parabolic sampling scheme can lead to a
substantial reduction of sample number when the unknown
binomial proportion 𝑝𝑝 is close to 𝑝 or 1.

4.4. Bounds on Distribution and Expectation of Sample
Number. We shall derive analytic bounds for the cumulative
distribution function and expectation of the sample number
𝔼𝔼 associated with the double-parabolic sampling scheme. In
this direction, we have obtained the following results.

eorem 4. Let 𝑝𝑝 𝑝 𝑝𝑝, 1𝛿2𝔼. De�ne 𝑎𝑎ℓ = 𝑝1𝛿2𝑝 − 𝜌𝜌𝜖𝜖 −
󵀆󵀆𝑝1𝛿4𝑝 + 𝑝𝜖𝜖2𝑛𝑛ℓ𝛿2 ln𝑝𝜁𝜁𝜁𝜁𝑝𝑝 for ℓ = 1,… , 𝑠𝑠. Let 𝜏𝜏 denote the
index of stage such that 𝑎𝑎𝜏𝜏−1 ≤ 𝑝𝑝 < 𝑎𝑎𝜏𝜏. en, Pr{𝔼𝔼 𝐧 𝑛𝑛ℓ 𝐩
𝑝𝑝𝐩 ≤ 𝜁𝜁𝜁𝑝𝑛𝑛ℓℳ𝑝𝑎𝑎ℓ, 𝑝𝑝𝑝𝑝 for 𝜏𝜏 ≤ ℓ < 𝑠𝑠. Moreover, 𝔼𝔼𝔼𝔼𝔼𝔼 ≤
𝑛𝑛𝜏𝜏 + ∑

𝑠𝑠−1
ℓ=𝜏𝜏𝑝𝑛𝑛ℓ+1 − 𝑛𝑛ℓ𝑝 𝜁𝜁𝜁𝑝𝑛𝑛ℓℳ𝑝𝑎𝑎ℓ, 𝑝𝑝𝑝𝑝.

See Appendix D for a proof. By the symmetry of the
double-parabolic sampling scheme, similar analytic bounds
for the distribution and expectation of the sample number
can be derived for the case that 𝑝𝑝 𝑝 𝔼1𝛿2, 1𝑝.

5. Comparison of Computational Methods

In this section, we shall compare various computational
methods. First, we will illustrate why a frequently used
method of evaluating the coverage probability based on grid-
ding the parameter space is not rigorous and is less efficient
as compared to the adapted B&B algorithm. Second, we will
introduce the Adaptive Maximum Checking Algorithm of
[21] which has better computational efficiency as compared
to the adapted B&B algorithm.ird, we will explain that it is
more advantageous in terms of numerical accuracy to work
with the complementary coverage probability as compared
to direct evaluation of the coverage probability. Finally, we
will compare the computational methods of Chen [14–18]
and Frey [13] for the design of sequential procedures for
estimating a binomial proportion.
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∇ Choose initial step size 𝑑𝑑 𝑑 𝑑𝑑.
∇ Let 𝐹𝐹 𝐹 𝐹, 𝑇𝑇 𝐹 𝐹 and 𝑏𝑏 𝐹 𝜃𝜃.
∇While 𝐹𝐹 𝐹 𝑇𝑇 𝐹 𝐹, do the following:

⋄ Let st 𝐹 𝐹 and ℓ 𝐹 2;
⋄While st = 0, do the following:

⋆ Let ℓ 𝐹 ℓ − 1 and 𝑑𝑑 𝐹 𝑑𝑑2ℓ.
⋆ If 𝑏𝑏 − 𝑑𝑑 𝑑 𝜃𝜃, then let 𝑎𝑎 𝐹 𝑏𝑏 − 𝑑𝑑 and 𝑇𝑇 𝐹 𝐹.

Otherwise, let 𝑎𝑎 𝐹 𝜃𝜃 and 𝑇𝑇 𝐹 1.
⋆ If 𝐶𝐶𝐶𝑎𝑎𝐶 𝑏𝑏𝐶 𝐶 𝐶𝐶, then let st𝐹 1 and 𝑏𝑏 𝐹 𝑎𝑎.
⋆ If 𝑑𝑑 𝐶 𝑑𝑑, then let st𝐹 1 and F𝐹 1.

∇ Return 𝐹𝐹.

A 2

5.1. Verifying Coverage Guarantee without Gridding Param-
eter Space. For purpose of constructing a sampling scheme
so that the prescribed con�dence level 1 − 𝐶𝐶 is guaranteed,
an essential task is to determine whether the coverage
probability Pr{|󵰁󵰁𝐩𝐩 − 𝐩𝐩| 𝐶 𝐩𝐩 𝐩 𝐩𝐩𝐩 associated with a given
stopping rule is no less than 1 − 𝐶𝐶. In other words, it is
necessary to compare the in�mum of coverage probability
with 1 − 𝐶𝐶. To accomplish such a task of checking coverage
guarantee, a natural method is to evaluate the in�mum of
coverage probability as follows:

(i) choose 𝑚𝑚 grid points 𝐩𝐩1𝐶… 𝐶 𝐩𝐩𝑚𝑚 from parameter
space 𝐶𝐹𝐶 1𝐶;

(ii) compute 𝑐𝑐𝑗𝑗 𝐹 Pr{|󵰁󵰁𝐩𝐩 − 𝐩𝐩| 𝐶 𝐩𝐩 𝐩 𝐩𝐩𝑗𝑗𝐩 for 𝑗𝑗 𝐹 1𝐶… 𝐶𝑚𝑚;

(iii) Takemin{𝑐𝑐1𝐶… 𝐶 𝑐𝑐𝑚𝑚𝐩 as inf𝐩𝐩𝑝𝐶𝐹𝐶1𝐶Pr{|󵰁󵰁𝐩𝐩 − 𝐩𝐩| 𝐶 𝐩𝐩 𝐩 𝐩𝐩𝐩.

is method can be easily mistaken as an exact approach
and has been frequently used for evaluating coverage proba-
bilities in many problem areas.

It is not hard to show that if the sample size 𝐧𝐧 of a
sequential procedure has a support 𝒮𝒮, then the coverage
probability Pr{|󵰁󵰁𝐩𝐩 − 𝐩𝐩| 𝐶 𝐩𝐩 𝐩 𝐩𝐩𝐩 is discontinuous at 𝐩𝐩 𝑝
𝒫𝒫𝒫 𝐶𝐹𝐶 1𝐶, where𝒫𝒫 𝐹 {𝐶𝒫𝒫𝒫𝒫𝒫𝐶 𝒫 𝐩𝐩 𝒫 𝒫𝒫 is a nonnegative integer
no greater than 𝒫𝒫 𝑝 𝒮𝒮𝐩.e set𝒫𝒫 typically has a large number
of parameter values. Due to the discontinuity of the coverage
probability as a function of 𝐩𝐩, the coverage probabilities
can di�er signi�cantly for two parameter values which are
extremely close. is implies that an intolerable error can be
introduced by taking the minimum of coverage probabilities
of a �nite number of parameter values as the in�mum of
coverage probability on the whole parameter space. So, if one
simply uses the minimum of the coverage probabilities of a
�nite number of parameter values as the in�mumof coverage
probability to check the coverage guarantee, the sequential
estimator 󵰁󵰁𝐩𝐩 of the resultant stopping rule will fail to guarantee
the prescribed con�dence level.

In addition to the lack of rigorousness, another drawback
of checking coverage guarantee based on the method of
gridding parameter space is its low efficiency. A critical issue
is on the choice of the number, 𝑚𝑚, of grid points. If the
number 𝑚𝑚 is too small, the induced error can be substantial.
On the other hand, choosing a large number for 𝑚𝑚 results in
high computational complexity.

In contrast to the method based on gridding parameter
space, the adapted B&B algorithm is a rigorous approach
for checking coverage guarantee as a consequence of the
mechanism for comparing the bounds of coverage prob-
ability with the prescribed con�dence level. e algo-
rithm is also efficient due to the mechanism of pruning
branches.

5.2. Adaptive Maximum Checking Algorithm. As illustrated
in Section 2, the techniques developed in [14–18] are suffi-
cient to provide exact solutions for a wide range of sequential
estimation problems. However, one of the four components,
the adapted B&B algorithm, requires computing both the
lower and upper bounds of the complementary coverage
probability. To further reduce the computational complexity,
it is desirable to have a checking algorithm which needs only
one of the lower and upper bounds. For this purpose, Chen
had developed the Adaptive Maximum Checking Algorithm
(AMCA) in [21, Section 3.3] and [19, Section 2.7]. In the
following introduction of the AMCA, we shall follow the
description of [21]. e AMCA can be applied to a wide
class of computational problems dependent on the following
critical subroutine.

Determine whether a function 𝐶𝐶𝐶𝜃𝜃𝐶 is smaller than a
prescribed number 𝐶𝐶 for every value of 𝜃𝜃 contained in interval
[𝜃𝜃𝐶 𝜃𝜃𝜃.

Particularly, for checking the coverage guarantee in the
context of estimating a binomial proportion, the parameter
𝜃𝜃 is the binomial proportion 𝐩𝐩 and the function 𝐶𝐶𝐶𝜃𝜃𝐶 is
actually the complementary coverage probability. In many
situations, it is impossible or very difficult to evaluate 𝐶𝐶𝐶𝜃𝜃𝐶
for every value of 𝜃𝜃 in interval [𝜃𝜃𝐶 𝜃𝜃𝜃, since the interval may
contain in�nitely many or an extremely large number of
values. Similar to the adapted B&B algorithm, the purpose of
AMCA is to reduce the computational complexity associated
with the problem of determining whether the maximum of
𝐶𝐶𝐶𝜃𝜃𝐶 over [𝜃𝜃𝐶 𝜃𝜃𝜃 is less than 𝐶𝐶. e only assumption required
for AMCA is that, for any interval [𝑎𝑎𝐶 𝑏𝑏𝜃 𝑎 [𝜃𝜃𝐶 𝜃𝜃𝜃, it is possible
to compute an upper bound 𝐶𝐶𝐶𝑎𝑎𝐶 𝑏𝑏𝐶 such that 𝐶𝐶𝐶𝜃𝜃𝐶 𝐶 𝐶𝐶𝐶𝑎𝑎𝐶 𝑏𝑏𝐶
for any 𝜃𝜃 𝑝 [𝑎𝑎𝐶 𝑏𝑏𝜃 and that the upper bound converges to𝐶𝐶𝐶𝜃𝜃𝐶
as the interval width 𝑏𝑏 − 𝑎𝑎 tends to 𝐹. e backward AMCA
proceeds as in Algorithm 2.
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e output of the backward AMCA is a binary variable
𝐹𝐹 such that “𝐹𝐹 𝐹 𝐹” means “𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶” and “𝐹𝐹 𝐹 𝐹” means
“𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶.” An intermediate variable 𝑇𝑇 is introduced in the
description of AMCA such that “𝑇𝑇 𝐹 𝐹” means that the le
endpoint of the interval is reached. e backward AMCA
starts from the right endpoint of the interval (i.e., 𝑏𝑏 𝐹 𝐶𝐶) and
attempts to �nd an interval [𝑎𝑎𝑎 𝑏𝑏𝑎 such that𝐶𝐶𝐶𝑎𝑎𝑎 𝑏𝑏𝐶 𝐶 𝐶𝐶. If such
an interval is available, then, attempt to go backward to �nd
the next consecutive interval with twice width. If doubling
the interval width fails to guarantee 𝐶𝐶𝐶𝑎𝑎𝑎 𝑏𝑏𝐶 𝐶 𝐶𝐶, then try
to repeatedly cut the interval width in half to ensure that
𝐶𝐶𝐶𝑎𝑎𝑎 𝑏𝑏𝐶 𝐶 𝐶𝐶. If the interval width becomes smaller than a
prescribed tolerance 𝜂𝜂, then AMCA declares that “𝐹𝐹 𝐹 𝐹.”
For our relevant statistical problems, if 𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶 for some
𝐶𝐶 𝜃 [𝐶𝐶𝑎 𝐶𝐶𝑎, it is sure that “𝐹𝐹 𝐹 𝐹” will be declared. On the
other hand, it is possible that “𝐹𝐹 𝐹 𝐹” is declared even though
𝐶𝐶𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶 for any 𝐶𝐶 𝜃 [𝐶𝐶𝑎 𝐶𝐶𝑎. However, such situation can
be made extremely rare and immaterial if we choose 𝜂𝜂 to
be a very small number. Moreover, this will only introduce
negligible conservativeness in the evaluation of 𝐶𝐶𝐶𝐶𝐶𝐶 if 𝜂𝜂 is
chosen to be sufficiently small (e.g., 𝜂𝜂 𝐹 𝐹𝐹−𝐹5). Clearly,
the backward AMCA can be easily modi�ed as forward
AMCA. Moreover, the AMCA can also be easily modi�ed
as Adaptive Minimum Checking Algorithm (forward and
backward). For checking the maximum of complementary
coverage probability Pr{|󵰁󵰁𝐩𝐩 − 𝐩𝐩| 𝐶 𝐩𝐩 𝐩 𝐩𝐩𝐩, one can use the
AMCA with 𝐶𝐶𝐶𝐩𝐩𝐶 𝐹 Pr{|󵰁󵰁𝐩𝐩 − 𝐩𝐩| 𝐶 𝐩𝐩 𝐩 𝐩𝐩𝐩 over interval
[𝐹𝑎 𝐹/2𝑎. We would like to point out that, in contrast to the
adapted B&B algorithm, it seems difficult to generalize the
AMCA to problems involving multidimensional parameter
spaces.

5.3. Working with Complementary Coverage Probability. We
would like to point out that, instead of evaluating the coverage
probability as in [13], it is better to evaluate the complemen-
tary coverage probability for purpose of reducing numerical
error. e advantage of working on the complementary
coverage probability can be explained as follows. Note that,
in many cases, the coverage probability is very close to 𝐹 and
the complementary coverage probability is very close to 𝐹.
Since the absolute precision for computing a number close
to 𝐹 is much lower than the absolute precision for computing
a number close to 𝐹, the method of directly evaluating the
coverage probability will lead to intolerable numerical error
for problems involving small 𝐶𝐶. As an example, consider
a situation that the complementary coverage probability is
in the order of 𝐹𝐹−5. Direct computation of the coverage
probability can easily lead to an absolute error of the order
of 𝐹𝐹−5. However, the absolute error of computing the com-
plementary coverage probability can be readily controlled at
the order of 𝐹𝐹−9.

5.4. Comparison of Approaches of Chen and Frey. As men-
tioned in the introduction, Frey published a paper [13] in
eAmerican Statistician (TAS) on the sequential estimation
of a binomial proportion with prescribed margin of error
and con�dence level. e approaches of Chen and Frey are

based on the same strategy as follows. First, construct a
family of stopping rules parameterized by 𝛾𝛾 (and possibly
other design parameters) so that the associated coverage
probability Pr{|󵰁󵰁𝐩𝐩−𝐩𝐩| 𝐶 𝐩𝐩 𝐩 𝐩𝐩𝐩 can be controlled by parameter
𝛾𝛾 in the sense that the coverage probability can be made
arbitrarily close to 𝐹 by increasing 𝛾𝛾. Second, apply a bisection
search method to determine the parameter 𝛾𝛾 so that the
coverage probability is no less than the prescribed con�dence
level 𝐹 − 𝐶𝐶 for any 𝐩𝐩 𝜃 𝐶𝐹𝑎 𝐹𝐶.

For the purpose of controlling the coverage probability,
Frey [13] applied the inclusion principle previously proposed
in [18, Section 3] and used in [14–17]. As illustrated in
Section 3, the central idea of inclusion principle is to use
a sequence of con�dence intervals to construct stopping
rules so that the sampling process is continued until a
con�dence interval is included by an interval de�ned in
terms of the estimator and margin of error. Due to the
inclusion relationship, the associated coverage probability
can be controlled by the con�dence coefficients of the
sequence of con�dence intervals. e critical value 𝛾𝛾 used by
Frey plays the same role for controlling coverage probabilities
as that of the coverage tuning parameter 𝜁𝜁 used by Chen.
Frey [13] stated stopping rules in terms of con�dence limits.
is way of expressing stopping rules is straightforward and
insightful, since one can readily see the principle behind
the construction. For convenience of practical use, Chen
proposed to eliminate the necessity of computing con�dence
limits.

Similar to the AMCA proposed in [21, Section 3.3],
the algorithm of Frey [13, Appendix] for checking coverage
guarantee adaptively scans the parameter space based on
interval bounding. e adaptive method used by Frey for
updating step size is essentially the same as that of the
AMCA. Ignoring the number 𝐹.𝐹𝐹 in Frey’s expression “𝜀𝜀𝑖𝑖 𝐹
min{𝐹.𝐹𝐹𝑎 2𝐶𝐩𝐩𝑖𝑖−𝐹 − 𝐩𝐩𝑖𝑖−2𝐶𝐩,” which has very little impact on the
computational efficiency, Frey’s step size 𝜀𝜀𝑖𝑖 can be identi�ed
as the adaptive step size 𝑑𝑑 in the AMCA. e operation
associated with “𝜀𝜀𝑖𝑖 𝐹 min{𝐹.𝐹𝐹𝑎 2𝐶𝐩𝐩𝑖𝑖−𝐹 − 𝐩𝐩i−2𝐶𝐩” has a similar
function as that of the command “Let st ← 𝐹 and ℓ ← 2” in
the outer loop of the AMCA. e operation associated with
Frey’s expression “𝐩𝐩𝑖𝑖−𝐹 + 𝜀𝜀𝑖𝑖/2

𝑗𝑗, 𝑗𝑗 𝐶 𝐹” is equivalent to that of
the command “Let ℓ ← ℓ − 𝐹 and 𝑑𝑑 ← 𝑑𝑑2ℓ” in the inner loop
of the AMCA. Frey proposed to declare a failure of coverage
guarantee if “the distance from 𝐩𝐩𝑖𝑖−𝐹 to the candidate value
for 𝐩𝐩𝑖𝑖 falls below 𝐹𝐹−𝐹4.” e number “𝐹𝐹−𝐹4” actually plays
the same role as “𝜂𝜂” in the AMCA, where “𝜂𝜂 𝐹 𝐹𝐹−𝐹5” is
recommended by [21].

6. Numerical Results

In this section, we shall illustrate the proposed double-
parabolic sampling scheme through examples. As demon-
strated in Sections 2.2 and 4, the double-parabolic sampling
scheme can be parameterized by the dilation coefficient 𝜌𝜌
and the coverage tuning parameter 𝜁𝜁. Hence, the performance
of the resultant stopping rule can be optimized with respect
to 𝜌𝜌 𝜃 𝐶𝐹𝑎 𝐹𝑎 and 𝜁𝜁 by choosing various values of 𝜌𝜌 from
interval 𝐶𝐹𝑎 𝐹𝑎 and determining the corresponding values of
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F 2: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖𝜖, 𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿, 𝜌𝜌 𝜖 𝜖𝜌𝜖𝜖, and 𝜁𝜁 𝜖 𝜁𝜖𝜁𝜁.

T 1: Coverage tuning parameter.

𝜖𝜖 𝛿𝛿 𝜁𝜁 𝜖𝜖 𝛿𝛿 𝜁𝜁 𝜖𝜖 𝛿𝛿 𝜁𝜁
𝜖𝜖𝜖 𝜖𝜖𝜖 𝜁𝜖𝜖4𝜁7 𝜖𝜖𝜖 𝜖𝜖𝜖𝛿 𝜁𝜖4𝜖74 𝜖𝜖𝜖 𝜖𝜖𝜖𝜖 𝜁𝜖𝜖6𝜖8
𝜖𝜖𝜖𝛿 𝜖𝜖𝜖 𝜁𝜖𝜖𝛿𝜖𝜁 𝜖𝜖𝜖𝛿 𝜖𝜖𝜖𝛿 𝜁𝜖𝛿86𝜁 𝜖𝜖𝜖𝛿 𝜖𝜖𝜖𝜖 𝜁𝜖𝜁𝜖𝜁𝛿
𝜖𝜖𝜖𝜁 𝜖𝜖𝜖 𝜁𝜖𝜖7𝜁𝛿 𝜖𝜖𝜖𝜁 𝜖𝜖𝜖𝛿 𝜁𝜖𝛿𝛿𝜁𝜁 𝜖𝜖𝜖𝜁 𝜖𝜖𝜖𝜖 𝜁𝜖446𝜖
𝜖𝜖𝜖𝜖 𝜖𝜖𝜖 𝜁𝜖𝜖7𝜁𝛿 𝜖𝜖𝜖𝜖 𝜖𝜖𝜖𝛿 𝜁𝜖𝛿𝛿𝜁𝜁 𝜖𝜖𝜖𝜖 𝜖𝜖𝜖𝜖 𝜁𝜖446𝜖

𝜁𝜁 by the computational techniques introduced in Section 2 to
guarantee the desired con�dence interval.

6.1. Asymptotic Analysis May Be Inadequate. For fully
sequential cases, we have evaluated the double-parabolic
sampling scheme with 𝜖𝜖 𝜖 𝜖𝜖𝜖, 𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿, 𝜌𝜌 𝜖 𝜖𝜖𝜖, and
𝜁𝜁 𝜖 𝜁𝜖𝜌𝛿𝛿𝜁𝜁𝜁𝜁𝜁𝜁𝜁𝜖𝜌𝜁𝜁𝜁𝜁𝜁

𝛿𝛿𝜌𝜁𝜁 ≈ 𝜁𝜖𝜁𝜁. e stopping boundary
is displayed in the le side of Figure 2. e function of
coverage probability with respect to the binomial proportion
is shown in the right side of Figure 2, which indicates that the
coverage probabilities are generally substantially lower than
the prescribed con�dence level 𝜖 𝜁 𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿. By considering
𝜖𝜖 𝜖 𝜖𝜖𝜖 as a small number and applying the asymptotic
theory, the coverage probability associated with the sampling
scheme is expected to be close to 𝜖𝜖𝜁𝛿. is numerical
example demonstrates that although the asymptotic method
is insightful and involves virtually no computation, it may not
be adequate.

In general, the main drawback of an asymptotic method
is that there is no guarantee of coverage probability. Although
an asymptotical method asserts that if the margin of error
𝜖𝜖 tends to 𝜖, the coverage probability will tend to the
prespeci�ed con�dence level 𝜖 𝜁 𝛿𝛿, it is difficult to determine
how small themargin of error 𝜖𝜖 is sufficient for the asymptotic
method to be applicable. Note that 𝜖𝜖 𝜖 𝜖 implies the average
sample size tends to ∞. However, in reality, the sample
sizes must be �nite. Consequently, an asymptotic method

inevitably introduces unknown statistical error. Since an
asymptotic method does not necessarily guarantee the pre-
scribed con�dence level, it is not fair to compare its associated
sample size with that of an exact method, which guarantees
the prespeci�ed con�dence level.

is example also indicates that, due to the discrete nature
of the problem, the coverage probability is a discontinuous
and erratic function of 𝑝𝑝, which implies that Monte Carlo
simulation is not suitable for evaluating the coverage perfor-
mance.

6.2. Parametric Values of Fully Sequential Schemes. For fully
sequential cases, to allow direct application of our double-
parabolic sequential method, we have obtained values of
coverage tuning parameter 𝜁𝜁, which guarantee the prescribed
con�dence levels, for double-parabolic sampling schemes
with 𝜌𝜌 𝜖 𝜁𝜌4 and various combinations of 𝜁𝜖𝜖𝜖 𝛿𝛿𝜁 as shown in
Table 1.We used the computational techniques introduced in
Section 2 to obtain this table.

To illustrate the use of Table 1, suppose that one wants a
fully sequential sampling procedure to ensure that Pr{|󵰁󵰁𝐩𝐩𝜁𝑝𝑝| 𝐩
𝜖𝜖𝜖 ∣ 𝑝𝑝𝑝 𝑝 𝜖𝜖𝜁𝛿 for any 𝑝𝑝 𝑝 𝜁𝜖𝜖 𝜖𝜁. is means that one
can choose 𝜖𝜖 𝜖 𝜖𝜖𝜖, 𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿 and the range of sample
size is given by (30). From Table 1, it can be seen that the
value of 𝜁𝜁 corresponding to 𝜖𝜖 𝜖 𝜖𝜖𝜖 and 𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿 is 𝜁𝜖4𝜖74.
Consequently, the stopping rule is completely determined
by substituting the values of design parameters 𝜖𝜖 𝜖 𝜖𝜖𝜖,



14 Journal of Probability and Statistics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample size

R
el

at
iv

e 
fr

eq
u

en
cy

20 30 40 50 60 70 80 90 100 110 0 0.2 0.4 0.6 0.8 1
0.94

0.95

0.96

0.97

0.98

0.99

1

Binomial proportion

C
o

ve
ra

ge
 p

ro
b

ab
il

it
y

True coverage probability

Prescribed con�dence level

F 3: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖𝜖, 𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿, 𝜌𝜌 𝜖 𝜌𝜌𝜌, and 𝜁𝜁 𝜖 𝜁𝜖𝜌𝜖𝜁𝜌.

T 2: Coverage tuning parameter.

𝑠𝑠 𝜖 𝜌 𝑠𝑠 𝜖 𝜌 𝑠𝑠 𝜖 𝛿 𝑠𝑠 𝜖 𝑠 𝑠𝑠 𝜖 𝜁 𝑠𝑠 𝜖 𝑠 𝑠𝑠 𝜖 𝑠 𝑠𝑠 𝜖 𝜖𝜖
𝜖𝜖 𝜖 𝜖𝜖𝜖 𝜁𝜖𝑠𝛿𝑠𝜌 𝜁𝜖𝑠𝛿𝑠𝜌 𝜁𝜖𝛿𝜖𝑠𝑠 𝜁𝜖𝛿𝑠𝜌𝑠 𝜁𝜖𝜌𝜌𝛿𝑠 𝜁𝜖𝑠𝛿𝜖𝜁 𝜁𝜖𝛿𝜖𝑠𝑠 𝜁𝜖𝜌𝜌𝛿𝑠
𝜖𝜖 𝜖 𝜖𝜖𝜖𝛿 𝜁𝜖𝑠𝜁𝛿𝑠 𝜁𝜖𝑠𝜁𝛿𝑠 𝜁𝜖𝑠𝜁𝛿𝑠 𝜁𝜖𝑠𝜁𝛿𝑠 𝜁𝜖𝑠𝜁𝛿𝑠 𝜁𝜖𝑠𝜁𝛿𝑠 𝜁𝜖𝑠𝜁𝛿𝑠 𝜁𝜖𝑠𝜁𝛿𝑠
𝜖𝜖 𝜖 𝜖𝜖𝜖𝜁 𝜁𝜖𝑠𝜁𝜁𝛿 𝜁𝜖𝑠𝜁𝜁𝛿 𝜁𝜖𝑠𝜁𝜁𝛿 𝜁𝜖𝑠𝜁𝜁𝛿 𝜁𝜖𝑠𝜁𝜁𝛿 𝜁𝜖𝑠𝜁𝜁𝛿 𝜁𝜖𝑠𝜁𝜁𝛿 𝜁𝜖𝑠𝜁𝜁𝛿
𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 𝜁𝜖𝑠𝜁𝑠𝑠 𝜁𝜖𝑠𝜁𝑠𝑠 𝜁𝜖𝑠𝜁𝑠𝑠 𝜁𝜖𝑠𝜁𝑠𝑠 𝜁𝜖𝑠𝜁𝑠𝑠 𝜁𝜖𝛿𝑠𝜁𝛿 𝜁𝜖𝑠𝜁𝑠𝑠 𝜁𝜖𝑠𝜁𝑠𝑠

𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿, 𝜌𝜌 𝜖 𝜌𝜌𝜌, and 𝜁𝜁 𝜖 𝜁𝜖𝜌𝜖𝜁𝜌 into its de�nition. e
stopping boundary of this sampling scheme is displayed in
the le side of Figure 3. e function of coverage probability
with respect to the binomial proportion is shown in the right
side of Figure 3.

6.3. Parametric Values of Group Sequential Schemes. In many
situations, especially in clinical trials, it is desirable to use
group sequential sampling schemes. In Tables 2 and 3,
assuming that sample sizes satisfy (8) for the purpose of
having approximately equal group sizes, we have obtained
parameters for concrete schemes by the computational tech-
niques introduced in Section 2.

For dilation coefficient 𝜌𝜌 𝜖 𝜌𝜌𝜌 and con�dence parameter
𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿, we have obtained values of coverage tuning
parameter 𝜁𝜁, which guarantee the prescribed con�dence
level 𝜖𝜖𝑠𝛿, for double-parabolic sampling schemes, with the
number of stages 𝑠𝑠 ranging from 𝜌 to 𝜖𝜖, as shown in Table 2.

For dilation coefficient 𝜌𝜌 𝜖 𝜌𝜌𝜌 and con�dence parameter
𝛿𝛿 𝜖 𝜖𝜖𝜖𝜖, we have obtained values of coverage tuning
parameter 𝜁𝜁, which guarantee the prescribed con�dence
level 𝜖𝜖𝑠𝑠, for double-parabolic sampling schemes, with the
number of stages 𝑠𝑠 ranging from 𝜌 to 𝜖𝜖, as shown in Table 3.

To illustrate the use of these tables, suppose that one
wants a ten-stage sampling procedure of approximately equal
group sizes to ensure that Pr{|󵰁󵰁𝐩𝐩 𝐩 𝐩𝐩| 𝐩 𝜖𝜖𝜖𝜖 𝐩 𝐩𝐩𝐩 𝐩 𝜖𝜖𝑠𝑠
for any 𝐩𝐩 𝑝 𝑝𝜖𝑝 𝜖𝑝. is means that one can choose 𝜖𝜖 𝜖
𝛿𝛿 𝜖 𝜖𝜖𝜖𝜖, 𝑠𝑠 𝜖 𝜖𝜖 and sample sizes satisfying (8). To obtain

appropriate parameter values for the sampling procedure, one
can look at Table 3 to �nd the coverage tuning parameter
𝜁𝜁 corresponding to 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 and 𝑠𝑠 𝜖 𝜖𝜖. From Table 3,
it can be seen that 𝜁𝜁 can be taken as 𝜌𝜖𝛿𝜁𝛿𝜌. Consequently,
the stopping rule is completely determined by substituting
the values of design parameters 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖, 𝛿𝛿 𝜖 𝜖𝜖𝜖𝜖, 𝜌𝜌 𝜖
𝜌𝜌𝜌, 𝜁𝜁 𝜖 𝜌𝜖𝛿𝜁𝛿𝜌, and 𝑠𝑠 𝜖 𝜖𝜖 into its de�nition and (8).
e stopping boundary of this sampling scheme and the
function of coverage probability with respect to the binomial
proportion are displayed, respectively, in the le and right
sides of Figure 4.

6.4. Comparison of Sampling Schemes. We have conducted
numerical experiments to investigate the impact of dilation
coefficient 𝜌𝜌 on the performance of our double-parabolic
sampling schemes. Our computational experiences indicate
that the dilation coefficient 𝜌𝜌 𝜖 𝜌𝜌𝜌 is frequently a good
choice in terms of average sample number and coverage
probability. For example, consider the case that the margin
of error is given as 𝜖𝜖 𝜖 𝜖𝜖𝜖 and the prescribed con�dence
level is 𝜖 𝐩 𝛿𝛿 with 𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿. For the double-parabolic
sampling scheme with the dilation coefficient 𝜌𝜌 chosen as
𝜁𝜌𝜌𝑝 𝜌𝜌𝜌, and 𝜖, we have determined that, to ensure the
prescribed con�dence level 𝜖 𝐩 𝛿𝛿 𝜖 𝜖𝜖𝑠𝛿, it suffices to set the
coverage tuning parameter 𝜁𝜁 as 𝜁𝜖𝜖𝑝 𝜁𝜖𝜌 and 𝜁𝜖𝜌, respectively.
e average sample numbers of these sampling schemes
and the coverage probabilities as functions of the binomial
proportion are shown, respectively, in the le and right sides
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T 3: Coverage tuning parameter.
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F 4: Double-parabolic sampling with 𝜖𝜖 𝑠 𝜖𝜖 𝑠 𝑠𝜖𝑠𝑠, 𝑠𝑠 𝑠 𝑠𝑠, 𝜌𝜌 𝑠 𝑠𝜌𝑠, and 𝜁𝜁 𝑠 𝑠𝜖𝑠𝑠𝑠𝑠.

of Figure 5. From Figure 5, it can be seen that a double-
parabolic sampling scheme with dilation coefficient 𝜌𝜌 𝑠 𝑠𝜌𝑠
has better performance in terms of average sample number
and coverage probability as compared to that of the double-
parabolic sampling scheme with smaller or larger values of
dilation coefficient.

We have investigated the impact of con�dence intervals
on the performance of fully sequential sampling schemes
constructed from the inclusion principle. We have observed
that the stopping rule derived from Clopper-Pearson inter-
vals generally outperforms the stopping rules derived from
other types of con�dence intervals. �owever, via appropri-
ate choice of the dilation coefficient, the double-parabolic
sampling scheme can perform uniformly better than the
stopping rule derived from Clopper-Pearson intervals. To
illustrate, consider the case that 𝜖𝜖 𝑠 𝑠𝜖𝑠 and 𝜖𝜖 𝑠 𝑠𝜖𝑠𝑠.
For stopping rules derived from Clopper-Pearson intervals,
Fishman’s intervals, Wilson’s intervals, and revised Wald
intervals with 𝑎𝑎 𝑠 𝑠, we have determined that to guarantee
the prescribed con�dence level 𝑠 − 𝜖𝜖 𝑠 𝑠𝜖𝑠𝑠, it suffices
to set the coverage tuning parameter 𝜁𝜁 as 𝑠𝜖𝑠, 𝑠, 2𝜖𝑠, and
𝑠𝜖𝑠𝑠, respectively. For the stopping rule derived from Wald
intervals, we have determined 𝜁𝜁 𝑠 𝑠𝜖𝑠𝑠 to ensure the
con�dence level, under the condition that the minimum
sample size is taken as ⌈(𝑠𝜌𝜖𝜖𝜖 𝜖𝜖(𝑠𝜌𝜁𝜁𝜖𝜖𝜖𝜖. Recall that for the
double-parabolic sampling scheme with 𝜌𝜌 𝑠 𝑠𝜌𝑠, we have
obtained 𝜁𝜁 𝑠 2𝜖𝑠 for purpose of guaranteeing the con�dence
level.e average sample numbers of these sampling schemes

are shown in Figure 6. From these plots, it can be seen that as
compared to the stopping rule derived fromClopper-Pearson
intervals, the stopping rule derived from the revised Wald
intervals performs better in the region of 𝑝𝑝 close to 𝑠 or 𝑠,
but performs worse in the region of 𝑝𝑝 in the middle of (𝑠, 𝑠𝜖.
e performance of stopping rules from Fishman’s intervals
(i.e., from Chernoff bound) andWald intervals are obviously
inferior as compared to that of the stopping rule derived
from Clopper-Pearson intervals. It can be observed that the
double-parabolic sampling scheme uniformly outperforms
the stopping rule derived from Clopper-Pearson intervals.

In some situa-
tions, we need to estimate a binomial proportion with a high
con�dence level. For e�ample, one might want to construct
a sampling scheme such that, for 𝜖𝜖 𝑠 𝑠𝜖𝑠𝑠 and 𝜖𝜖 𝑠 𝑠𝑠−𝑠𝑠,
the resultant sequential estimator 󵰁󵰁𝐩𝐩 satis�es Pr{|󵰁󵰁𝐩𝐩 − 𝑝𝑝| 𝐩
𝜖𝜖 𝜖 𝑝𝑝𝜖 𝜖 𝑠 − 𝜖𝜖 for any 𝑝𝑝 𝑝 (𝑠, 𝑠𝜖. By working with
the complementary coverage probability, we determined that
it suffices to let the dilation coefficient 𝜌𝜌 𝑠 𝑠𝜌𝑠 and the
coverage tuning parameter 𝜁𝜁 𝑠 𝑠𝜖𝑠𝑠. e stopping boundary
and the function of coverage probability with respect to the
binomial proportion are displayed, respectively, in the le
and right sides of Figure 7. As addressed in Section 5.3, it
should be noted that it is impossible to obtain such a sampling
scheme without working with the complementary coverage
probability.
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F 5: Double-parabolic sampling with various dilation coefficients.
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F 6: Comparison of average sample numbers.

7. Illustrative Examples for Clinical Trials

In this section, we shall illustrate the applications of our
double-parabolic group sequential estimation method in
clinical trials.

An example of our double-parabolic sampling scheme
can be illustrated as follows. Assume that 𝜖𝜖 𝜖 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 is given
and that the sampling procedure is expected to have 7 stages
with sample sizes satisfying (8). Choosing 𝜌𝜌 𝜖 𝜌𝜌𝜌, we have
determined that it suffices to take 𝜁𝜁 𝜖 𝜁𝜖𝜁7𝜖𝜁 to guarantee
that the coverage probability is no less than 1 − 𝜖𝜖 𝜖 𝜖𝜖𝜁𝜖 for
all 𝑝𝑝 𝑝 𝑝𝜖𝑝 1𝑝. Accordingly, the sample sizes of this sampling

scheme are calculated as 𝜖𝜁𝑝 11𝜁𝑝 17𝜌𝑝 𝜁𝜌1𝑝 𝜁88𝑝 𝜌𝜌𝜖, and 𝜌𝜖𝜌.
is sampling scheme, with a sample path, is shown in the
le side of Figure 8. In this case, the stopping rule can be
equivalently described by virtue of Figure 8 as the following:
continue sampling until 𝑝󵰃󵰃𝐩𝐩ℓ𝑝 𝑛𝑛ℓ𝑝 hit a green line at some stage.
e coverage probability is shown in the right side of Figure
8.

To apply this estimation method in a clinical trial for
estimating the proportion 𝑝𝑝 of a binomial response with
margin of error 𝜖𝜖𝜖𝜖 and con�dence level 𝜁𝜖%, we can have
seven groups of patients with group sizes 𝜖𝜁𝑝 𝜖7𝑝 𝜖7𝑝 𝜖8𝑝 𝜖7𝑝 𝜖7,
and 𝜖8. In the �rst stage, we conduct experiment with
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F 7: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖, 𝛿𝛿 𝜖 𝛿𝜖−𝛿𝜖, 𝜌𝜌 𝜖 𝜌𝜌𝜌, and 𝜁𝜁 𝜖 𝜁𝜖𝜁𝜖.
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F 8: Double-parabolic sampling with 𝜖𝜖 𝜖 𝛿𝛿 𝜖 𝜖𝜖𝜖𝜖, 𝑠𝑠 𝜖 𝜁, 𝜌𝜌 𝜖 𝜌𝜌𝜌, and 𝜁𝜁 𝜖 𝜁𝜖𝜁𝜁𝜖𝜁.

the 𝜖𝜁 patients of the �rst group. We observe the relative
frequency of response and record it as󵰃󵰃𝐩𝐩𝛿. Suppose that there
are 𝛿𝜁 patients having positive responses, then the relative
frequency at the �rst stage is󵰃󵰃𝐩𝐩𝛿 𝜖 𝛿𝜁𝜌𝜖𝜁 𝜖 𝜖𝜖𝜁𝜖𝜌𝜌. With
the values of (󵰃󵰃𝐩𝐩𝛿, 𝑛𝑛𝛿) 𝜖 (𝜖𝜖𝜁𝜖𝜌𝜌, 𝜖𝜁), we check if the stopping
rule is satis�ed. is is equivalent to see if the point (󵰃󵰃𝐩𝐩𝛿, 𝑛𝑛𝛿)
hits a green line at the �rst stage. For such value of (󵰃󵰃𝐩𝐩𝛿, 𝑛𝑛𝛿),
it can be seen that the stopping condition is not ful�lled.
So, we need to conduct the second stage of experiment
with the 𝜖𝜁 patients of the second group. We observe the
response of these 𝜖𝜁 patients. Suppose we observe that 𝜖
patients among this group have positive responses. en,
we add 𝜖 with 𝛿𝜁, the number of positive responses before
the second stage, to obtain 𝛿𝜁 positive responses among
𝑛𝑛𝜁 𝜖 𝜖𝜁 + 𝜖𝜁 𝜖 𝛿𝛿𝜁 patients. So, at the second stage,
we get the relative frequency 󵰃󵰃𝐩𝐩𝜁 𝜖 𝛿𝜁𝜌𝛿𝛿𝜁 𝜖 𝜖𝜖𝛿𝜌𝜁𝜁.

Since the stopping rule is not satis�ed with the values of
(󵰃󵰃𝐩𝐩𝜁, 𝑛𝑛𝜁) 𝜖 (𝜖𝜖𝛿𝜌𝜁𝜁, 𝛿𝛿𝜁), we need to conduct the third
stage of experiment with the 𝜖𝜁 patients of the third group.
Suppose we observe that 𝛿𝜌 patients among this group have
positive responses. en, we add 𝛿𝜌 with 𝛿𝜁, the number of
positive responses before the third stage, to get 𝜌𝛿 positive
responses among 𝑛𝑛𝜌 𝜖 𝜖𝜁 + 𝜖𝜁 + 𝜖𝜁 𝜖 𝛿𝜁𝜌 patients.
So, at the third stage, we get the relative frequency 󵰃󵰃𝐩𝐩𝜌 𝜖
𝜌𝛿𝜌𝛿𝜁𝜌 𝜖 𝜖𝜖𝛿𝜁𝜁𝜁. Since the stopping rule is not satis�ed with
the values of (󵰃󵰃𝐩𝐩𝜌, 𝑛𝑛𝜌) 𝜖 (𝜖𝜖𝛿𝜁𝜁𝜁, 𝛿𝜁𝜌), we need to conduct
the fourth stage of experiment with the 𝜖8 patients of the
fourth group. Suppose we observe that 𝛿𝜖 patients among this
group have positive responses. en, we add 𝛿𝜖 with 𝜌𝛿, the
number of positive responses before the fourth stage, to get
𝜌𝜁 positive responses among 𝑛𝑛𝜌 𝜖 𝜖𝜁 + 𝜖𝜁 + 𝜖𝜁 + 𝜖8 𝜖 𝜁𝜌𝛿
patients. So, at the fourth stage, we get the relative frequency
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F 9: Double-parabolic sampling with 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖, 𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿, 𝑠𝑠 𝜖 𝑠𝜖, 𝜌𝜌 𝜖 𝜌𝜌𝜌, and 𝜁𝜁 𝜖 𝜖𝜖𝜁𝜁𝜖𝛿.

󵰃󵰃𝐩𝐩𝜌 𝜖 𝜌𝜁𝜌𝜖𝜌𝑠 𝜖 𝜖𝜖𝑠99𝑠. Since the stopping rule is not satis�ed
with the values of (󵰃󵰃𝐩𝐩𝜌, 𝑛𝑛𝜌) 𝜖 (𝜖𝜖𝑠99𝑠, 𝜖𝜌𝑠), we need to conduct
the �h stage of experiment with the 𝛿𝜁 patients of the �h
group. Suppose we observe that 𝜁 patients among this group
have positive responses. en, we add 𝜁 with 𝜌𝜁, the number
of positive responses before the �h stage, to get 𝛿𝜖 positive
responses among 𝑛𝑛𝛿 𝜖 𝛿9 + 𝛿𝜁 + 𝛿𝜁 + 𝛿8 + 𝛿𝜁 𝜖 𝜖88
patients. So, at the �h stage, we get the relative frequency
󵰃󵰃𝐩𝐩𝛿 𝜖 𝛿𝜖𝜌𝜖88 𝜖 𝜖𝜖𝑠8𝜖𝜁. It can be seen that the stopping
rule is satis�ed with the values of (󵰃󵰃𝐩𝐩𝛿, 𝑛𝑛𝛿) 𝜖 (𝜖𝜖𝑠8𝜖𝜁, 𝜖88).
erefore, we can terminate the sampling experiment and
take 󵰁󵰁𝐩𝐩 𝜖 𝛿𝜖𝜌𝜖88 𝜖 𝜖𝜖𝑠8𝜖𝜁 as an estimate of the proportion of
the whole population having positive responses. With a 9𝛿%
con�dence level, one can believe that the difference between
the true value of 𝑝𝑝 and its estimate 󵰁󵰁𝐩𝐩 𝜖 𝜖𝜖𝑠8𝜖𝜁 is less than
𝜖𝜖𝜖𝛿.

In this experiment, we only use 𝜖88 samples to obtain
the estimate for 𝑝𝑝. Except the round-off error, there is
no other source of error for reporting statistical accuracy,
since no asymptotic approximation is involved. As compared
to �xed-sample-size procedure, we achieved a substantial
save of samples. To see this, one can check that using the
rigorous formula (37) gives a sample size 𝜁𝜌8, which is overly
conservative. From the classical approximate formula (35),
the sample size is determined as 𝜌8𝛿, which has been known
to be insufficient to guarantee the prescribed con�dence
level 9𝛿%. e exact method of [34] shows that at least 𝜌9𝑠
samples are needed. As compared to the best-�xed-sample
size obtained by the method of [34], the reduction of sample
sizes resulted from our double-parabolic sampling scheme is
𝜌9𝑠 − 𝜖88 𝜖 𝑠𝜖𝜌. It can be seen that the �xed-sample-size
procedure wastes 𝑠𝜖𝜌𝜌𝜖88 𝜖 𝜌𝛿𝜖𝜁𝜁% samples as compared to
our group sequential method, which is also an exact method.
is percentage may not be serious if it were a save of a
number of simulation runs. However, as the number count
is for patients, the reduction of samples is important for

ethical and economical reasons. Using our group sequential
method, the worst-case sample size is equal to 𝜌𝜖𝜌, which is
only 𝑠𝜖more than the minimum sample size of �xed-sample
procedure. However, a lot of samples can be saved in the
average case.

As 𝜖𝜖 or 𝛿𝛿 become smaller, the reduction of samples is
more signi�cant. For example, let 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 and 𝛿𝛿 𝜖 𝜖𝜖𝜖𝛿, we
have a double-parabolic sample scheme with 𝑠𝜖 stages. e
sampling scheme, with a sample path, is shown in the le side
of Figure 9.e coverage probability is shown in the right side
of Figure 9.

8. Conclusion

In this paper, we have reviewed recent development of group
sequential estimationmethods for a binomial proportion.We
have illustrated the inclusion principle and its applications to
various stopping rules. We have introduced computational
techniques in the literature, which suffice for determining
parameters of stopping rules to guarantee desired con�dence
levels. Moreover, we have proposed a new family of sam-
pling schemes with stopping boundary of double-parabolic
shape, which are parameterized by the coverage tuning
parameter and the dilation coefficient. ese parameters
can be determined by the exact computational techniques
to reduce the sampling cost, while ensuring prescribed
con�dence levels. e new family of sampling schemes are
extremely simple in structure and asymptotically optimal as
the margin of error tends to 𝜖. We have established analytic
bounds for the distribution and expectation of the sample
number at the termination of the sampling process. We
have obtained parameter values via the exact computational
techniques for the proposed sampling schemes such that
the con�dence levels are guaranteed and that the sampling
schemes are generally more efficient as compared to existing
ones.
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Appendices

A. Proof of Theorem 1

Consider function 𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔 𝑔 𝑔𝑔𝑔2/𝑔𝑔𝑔𝑥 𝑔 𝑔𝑔𝑔 for 𝑔𝑔 𝑥 𝑔𝑥𝑔 𝑥𝑔
and 𝑔𝑔 𝑥 𝑧𝑥𝑔 𝑥𝑧. It can be checked that 𝜕𝜕𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔/𝜕𝜕𝑔𝑔 𝑔 𝑔𝑔𝑔 𝑔
𝑔𝑔𝑔𝑧𝑔𝑔𝑔𝑥 𝑔 𝑔𝑔𝑔 𝑧 𝑔𝑔𝑔𝑥 𝑔 𝑔𝑔𝑔𝑧𝑧𝑔𝑔𝑔𝑥 𝑔 𝑔𝑔𝑔𝑧𝑔2, which shows that for any
�xed 𝑔𝑔 𝑥 𝑧𝑥𝑔 𝑥𝑧, 𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔 is a unimodal function of 𝑔𝑔 𝑥 𝑔𝑥𝑔 𝑥𝑔,
with a maximum attained at 𝑔𝑔 𝑔 𝑔𝑔. By such a property of
𝑔𝑔𝑔𝑔𝑔𝑔 𝑔𝑔𝑔 and the de�nition of�ilson�s con�dence intervals, we
have

󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖 𝜖 𝜖𝜖ℓ󶁑󶁑 𝑔 󶁁󶁁𝑥 <󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖 𝜖 𝜖𝜖ℓ󶁑󶁑 ∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝜖 𝜖𝜖󶁑󶁑

𝑔 󶁇󶁇𝑥 <󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖 𝜖 𝜖𝜖ℓ 𝜖󵰃󵰃𝐩𝐩ℓ𝑔 𝑔𝑔󶀡󶀡𝜖𝜖ℓ𝑔󵰃󵰃𝐩𝐩ℓ󶀱󶀱 𝑔
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝜖 𝜖𝜖󶁑󶁑

𝑔 󶁇󶁇󵰃󵰃𝐩𝐩ℓ > 𝜖𝜖𝑔
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖󶀱󶀱 󶁡󶁡𝑥 𝑔 󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖󶀱󶀱󶁱󶁱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝜖 𝜖𝜖󶁑󶁑 𝑔

󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝑧 𝜖𝜖 ≥ 𝜖𝜖ℓ󶁑󶁑 𝑔 󶁁󶁁𝑥 >󵰃󵰃𝐩𝐩ℓ 𝑧 𝜖𝜖 ≥ 𝜖𝜖ℓ󶁑󶁑 ∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝑧 𝜖𝜖 ≥ 𝑥󶁑󶁑

𝑔 󶁇󶁇𝑥 >󵰃󵰃𝐩𝐩ℓ 𝑧 𝜖𝜖 ≥ 𝜖𝜖ℓ ≥󵰃󵰃𝐩𝐩ℓ𝑔 𝑔𝑔󶀡󶀡𝜖𝜖ℓ𝑔󵰃󵰃𝐩𝐩ℓ󶀱󶀱 𝑔
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝑧𝜖𝜖 ≥ 𝑥󶁑󶁑 𝑔 󶁇󶁇󵰃󵰃𝐩𝐩ℓ < 𝑥𝑔𝜖𝜖𝑔
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑧𝜖𝜖󶀱󶀱 󶁡󶁡𝑥𝑔󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑧𝜖𝜖󶀱󶀱󶁱󶁱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁁󶁁󵰃󵰃𝐩𝐩ℓ ≥ 𝑥 𝑔 𝜖𝜖󶁑󶁑 𝑔
(A.1)

for ℓ 𝑔 𝑥𝑔… 𝑔 𝑠𝑠, where we have used the fact that {󵰃󵰃𝐩𝐩ℓ > 𝜖𝜖𝜖 𝜖
{𝜖𝜖ℓ > 𝑥𝜖𝑔 {󵰃󵰃𝐩𝐩ℓ < 𝑥 𝑔 𝜖𝜖𝜖 𝜖 {𝜖𝜖ℓ < 𝑥𝜖 and 𝑥 𝜖 𝜖𝜖ℓ 𝜖󵰃󵰃𝐩𝐩ℓ 𝜖 𝜖𝜖ℓ 𝜖 𝑥.
Recall that 𝑥 < 𝜖𝜖 < 𝑥/2. It follows that

󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖 𝜖 𝜖𝜖ℓ 𝜖 𝜖𝜖ℓ 𝜖󵰃󵰃𝐩𝐩ℓ 𝑧 𝜖𝜖󶁑󶁑

𝑔 󶁇󶁇𝜖𝜖 <󵰃󵰃𝐩𝐩ℓ < 𝑥 𝑔 𝜖𝜖𝑔
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖󶀱󶀱 󶁡󶁡𝑥 𝑔 󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖󶀱󶀱󶁱󶁱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
𝑔

𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑧 𝜖𝜖󶀱󶀱 󶁡󶁡𝑥 𝑔 󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑧 𝜖𝜖󶀱󶀱󶁱󶁱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁇󶁇󵰃󵰃𝐩𝐩ℓ 𝜖 𝜖𝜖𝑔
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑧 𝜖𝜖󶀱󶀱 󶁡󶁡𝑥 𝑔 󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑧 𝜖𝜖󶀱󶀱󶁱󶁱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

∪ 󶁇󶁇󵰃󵰃𝐩𝐩ℓ ≥ 𝑥 𝑔 𝜖𝜖𝑔
𝜖𝜖2

󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖󶀱󶀱 󶁡󶁡𝑥 𝑔 󶀡󶀡󵰃󵰃𝐩𝐩ℓ 𝑔 𝜖𝜖󶀱󶀱󶁱󶁱
≥
𝒵𝒵2

𝜁𝜁𝜁𝜁

𝑛𝑛ℓ
󶁗󶁗

𝑔 󶁇󶁇𝜖𝜖 <󵰃󵰃𝐩𝐩ℓ < 𝑥 𝑔 𝜖𝜖𝑔 󶀤󶀤󶀤󶀤󵰃󵰃𝐩𝐩ℓ 𝑔
𝑥
2
󶀤󶀤 𝑔 𝜖𝜖󶀴󶀴

2
≥
𝑥
4
𝑔 𝑛𝑛ℓ󶀦󶀦

𝜖𝜖
𝒵𝒵𝜁𝜁𝜁𝜁

󶀶󶀶
2

󶁗󶁗

∪ 󶁇󶁇󵰃󵰃𝐩𝐩ℓ 𝜖 𝜖𝜖𝑔 󶀤󶀤󶀤󶀤󵰃󵰃𝐩𝐩ℓ 𝑔
𝑥
2
󶀤󶀤 𝑔 𝜖𝜖󶀴󶀴

2
≥
𝑥
4
𝑔 𝑛𝑛ℓ󶀦󶀦

𝜖𝜖
𝒵𝒵𝜁𝜁𝜁𝜁

󶀶󶀶
2

󶁗󶁗

∪ 󶁇󶁇󵰃󵰃𝐩𝐩ℓ ≥ 𝑥 𝑔 𝜖𝜖𝑔 󶀤󶀤󶀤󶀤󵰃󵰃𝐩𝐩ℓ 𝑔
𝑥
2
󶀤󶀤 𝑔 𝜖𝜖󶀴󶀴

2
≥
𝑥
4
𝑔 𝑛𝑛ℓ󶀦󶀦

𝜖𝜖
𝒵𝒵𝜁𝜁𝜁𝜁

󶀶󶀶
2

󶁗󶁗

𝑔 󶁇󶁇󶀤󶀤󶀤󶀤󵰃󵰃𝐩𝐩ℓ 𝑔
𝑥
2
󶀤󶀤 𝑔 𝜖𝜖󶀴󶀴

2
≥
𝑥
4
𝑔 𝑛𝑛ℓ󶀦󶀦

𝜖𝜖
𝒵𝒵𝜁𝜁𝜁𝜁

󶀶󶀶
2

󶁗󶁗 𝑔

(A.2)

for ℓ 𝑔 𝑥𝑔… 𝑔 𝑠𝑠. is completes the proof of the theorem.

B. Proof of Theorem 2

By the assumption that 𝑛𝑛𝑠𝑠 ≥ 𝑔𝑥/2𝜖𝜖
2𝑔 ln𝑔𝑥/𝜁𝜁𝜁𝜁𝑔, we have 𝑔𝑥/4𝑔𝑧

𝑔𝜖𝜖2𝑛𝑛𝑠𝑠/2 ln𝑔𝜁𝜁𝜁𝜁𝑔𝑔 𝜖 𝑥 and, consequently, Pr{𝑔|󵰃󵰃𝐩𝐩𝑠𝑠 𝑔 𝑥/2| 𝑔 𝜌𝜌𝜖𝜖𝑔
2 ≥

𝑔𝑥/4𝑔 𝑧 𝑔𝜖𝜖2𝑛𝑛𝑠𝑠/2 ln𝑔𝜁𝜁𝜁𝜁𝑔𝑔𝜖 𝑔 𝑥. It follows from the de�nition of
the sampling scheme that the sampling process must stop at
or before the 𝑠𝑠th stage. In other words, Pr{𝐥𝐥 𝜖 𝑠𝑠𝜖 𝑔 𝑥. is
allows one to write

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 𝑔 𝐩𝐩󶁁󶁁 ≥ 𝜖𝜖 𝜖 𝐩𝐩󶁑󶁑 𝑔
𝑠𝑠
󵠈󵠈
ℓ𝑔𝑥

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 𝑔 𝐩𝐩󶁁󶁁 ≥ 𝜖𝜖𝑔 𝐥𝐥 𝑔 ℓ 𝜖 𝐩𝐩󶁑󶁑

𝑔
𝑠𝑠
󵠈󵠈
ℓ𝑔𝑥

Pr󶁁󶁁󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝑔 𝐩𝐩󶁁󶁁 ≥ 𝜖𝜖𝑔 𝐥𝐥 𝑔 ℓ 𝜖 𝐩𝐩󶁑󶁑

𝜖
𝑠𝑠
󵠈󵠈
ℓ𝑔𝑥

Pr󶁁󶁁󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝑔 𝐩𝐩󶁁󶁁 ≥ 𝜖𝜖 𝜖 𝐩𝐩󶁑󶁑 𝑔

(B.1)

for 𝐩𝐩 𝑥 𝑔𝑥𝑔 𝑥𝑔. By virtue of the well-known Chernoff-
Hoeffding bound [32, 33], we have

Pr󶁁󶁁󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝑔 𝐩𝐩󶁁󶁁 ≥ 𝜖𝜖 𝜖 𝐩𝐩󶁑󶁑 𝜖 2 exp󶀢󶀢𝑔2𝑛𝑛ℓ𝜖𝜖
2󶀲󶀲 𝑔 (B.2)

for ℓ 𝑔 𝑥𝑔… 𝑔 𝑠𝑠. Making use of (B.1), (B.2), and the fact that
𝑛𝑛𝑥 ≥ 2𝜌𝜌𝑔𝑔𝑥/𝜖𝜖𝑔 𝑔 𝜌𝜌𝑔 ln𝑔𝑥/𝜁𝜁𝜁𝜁𝑔 as can be seen from (30), we have

Pr󶁁󶁁󶁁󶁁󵰁󵰁𝐩𝐩 𝑔 𝐩𝐩󶁁󶁁 ≥ 𝜖𝜖 𝜖 𝐩𝐩󶁑󶁑

𝜖 2
𝑠𝑠
󵠈󵠈
ℓ𝑔𝑥

exp󶀢󶀢𝑔2𝑛𝑛ℓ𝜖𝜖
2󶀲󶀲

𝜖 2
∞
󵠈󵠈
𝑚𝑚𝑔𝑛𝑛𝑥

exp󶀢󶀢𝑔2𝑚𝑚𝜖𝜖2󶀲󶀲 𝑔
2 exp󶀢󶀢𝑔2𝑛𝑛𝑥𝜖𝜖

2󶀲󶀲
𝑥 𝑔 exp󶀡󶀡𝑔2𝜖𝜖2󶀱󶀱

𝜖
2 exp󶀢󶀢𝑔2𝜖𝜖2 × 2𝜌𝜌󶀡󶀡𝑔𝑥/𝜖𝜖𝑔 𝑔 𝜌𝜌󶀱󶀱 ln𝑔𝑥/𝜁𝜁𝜁𝜁𝑔󶀲󶀲

𝑥 𝑔 exp󶀡󶀡𝑔2𝜖𝜖2󶀱󶀱

𝑔
2 exp󶀡󶀡4𝜖𝜖𝜌𝜌󶀡󶀡𝑥 𝑔 𝜌𝜌𝜖𝜖󶀱󶀱 ln𝑔𝜁𝜁𝜁𝜁𝑔󶀱󶀱

𝑥 𝑔 exp󶀡󶀡𝑔2𝜖𝜖2󶀱󶀱
𝑔

(B.3)

for any 𝐩𝐩 𝑥 𝑔𝑥𝑔 𝑥𝑔. erefore, to guarantee that Pr{|󵰁󵰁𝐩𝐩 𝑔 𝐩𝐩| <
𝜖𝜖 𝜖 𝐩𝐩𝜖 ≥ 𝑥 𝑔 𝜁𝜁 for any 𝐩𝐩 𝑥 𝑔𝑥𝑔 𝑥𝑔, it is sufficient to choose 𝜁𝜁
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such that 2 exp(4𝜖𝜖𝜖𝜖(𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖 𝜖𝜖(𝜖𝜖𝜖𝜖𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖 𝜖 exp(𝜖2𝜖𝜖2𝜖]. is
inequality can be written as 4𝜖𝜖𝜖𝜖(𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖 𝜖𝜖(𝜖𝜖𝜖𝜖𝜖 𝜖 𝜖𝜖(𝜖𝜖𝜖2𝜖 𝜖
𝜖𝜖𝜖𝜖 𝜖 exp(𝜖2𝜖𝜖2𝜖] or, equivalently, 𝜖𝜖 𝜖 (𝜖𝜖𝜖𝜖𝜖 exp((𝜖𝜖(𝜖𝜖𝜖2𝜖 𝜖
𝜖𝜖𝜖𝜖 𝜖 exp(𝜖2𝜖𝜖2𝜖]𝜖𝜖4𝜖𝜖𝜖𝜖(𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖. e proof of the theorem is
thus completed.

C. Proof of Theorem 3

First, we need to show that Pr{𝜖im𝜖𝜖𝜖𝜖(𝐧𝐧𝜖𝐧𝐧(𝐧𝐧𝐧 𝜖𝜖𝐧 𝜖𝜖𝐧 𝜖𝜖𝜖𝜖 𝐧 𝜖 𝐧
𝐧𝐧𝑝 𝐧 𝜖 for any 𝐧𝐧 𝑝 (𝜖𝐧 𝜖𝜖. Clearly, the sample number
𝐧𝐧 is a random number dependent on 𝜖𝜖. Note that for any
𝜔𝜔 𝑝 𝜔, the sequences {𝑋𝑋𝐧𝐧(𝜔𝜔𝜖(𝜔𝜔𝜖𝑝𝜖𝜖𝑝(𝜖𝐧𝜖𝜖 and {𝑋𝑋𝐧𝐧(𝜔𝜔𝜖𝜖𝜖(𝜔𝜔𝜖𝑝𝜖𝜖𝑝(𝜖𝐧𝜖𝜖
are subsets of {𝑋𝑋𝑚𝑚(𝜔𝜔𝜖𝑝

∞
𝑚𝑚𝐧𝜖. By the strong lawof large numbers,

for almost every 𝜔𝜔 𝑝 𝜔, the sequence {𝑋𝑋𝑚𝑚(𝜔𝜔𝜖𝑝
∞
𝑚𝑚𝐧𝜖 converges

to 𝐧𝐧. Since every subsequence of a convergent sequence must
converge, it follows that the sequences {𝑋𝑋𝐧𝐧(𝜔𝜔𝜖(𝜔𝜔𝜖𝑝𝜖𝜖𝑝(𝜖𝐧𝜖𝜖 and
{𝑋𝑋𝐧𝐧(𝜔𝜔𝜖𝜖𝜖(𝜔𝜔𝜖𝑝𝜖𝜖𝑝(𝜖𝐧𝜖𝜖 converge to 𝐧𝐧 as 𝜖𝜖 𝜖 𝜖 provided that
𝐧𝐧(𝜔𝜔𝜖 𝜖 ∞ as 𝜖𝜖 𝜖 𝜖. Since it is certain that 𝐧𝐧 𝐧 2𝜖𝜖((𝜖𝜖𝜖𝜖𝜖 𝜖
𝜖𝜖𝜖 𝜖𝜖(𝜖𝜖𝜖𝜖𝜖𝜖𝜖 𝜖 ∞ as 𝜖𝜖 𝜖 𝜖, we have that {𝜖im𝜖𝜖𝜖𝜖((𝐧𝐧 𝜖
𝜖𝜖𝜖𝐧𝐧𝜖 𝐧 𝜖𝑝 is a sure event. It follows that 𝐵𝐵 𝐧 {𝜖im𝜖𝜖𝜖𝜖𝑋𝑋𝐧𝐧𝜖𝜖 𝐧
𝐧𝐧𝐧 𝜖im𝜖𝜖𝜖𝜖𝑋𝑋𝐧𝐧 𝐧 𝐧𝐧𝐧 𝜖im𝜖𝜖𝜖𝜖((𝐧𝐧 𝜖 𝜖𝜖𝜖𝐧𝐧𝜖 𝐧 𝜖𝑝 is an almost sure
event. By the de�nition of the sampling scheme, we have

𝐴𝐴 𝐧 󶁆󶁆󶁆󶁆󶁆󶁆𝑋𝑋𝐧𝐧𝜖𝜖 𝜖
𝜖
2
󶁆󶁆 𝜖 𝜖𝜖𝜖𝜖󶀴󶀴

2
<
𝜖
4
𝜖
𝜖𝜖2(𝐧𝐧 𝜖 𝜖𝜖
2 𝜖𝜖(𝜖𝜖𝜖𝜖𝜖

𝐧

󶁆󶁆󶁆󶁆𝑋𝑋𝐧𝐧 𝜖
𝜖
2
󶁆󶁆 𝜖 𝜖𝜖𝜖𝜖󶀴󶀴

2
𝐧
𝜖
4
𝜖

𝜖𝜖2𝐧𝐧
2 𝜖𝜖(𝜖𝜖𝜖𝜖𝜖

󶁖󶁖

(C.1)

as a sure event. Hence, 𝐴𝐴 𝐴 𝐵𝐵 is an almost sure event. �e�ne
𝐶𝐶 𝐧 {𝜖im𝜖𝜖𝜖𝜖(𝐧𝐧𝜖𝐧𝐧(𝐧𝐧𝐧 𝜖𝜖𝐧 𝜖𝜖𝐧 𝜖𝜖𝜖𝜖 𝐧 𝜖𝑝. We need to show that𝐶𝐶 is
an almost sure event. For this purpose, we let 𝜔𝜔 𝑝 𝐴𝐴 𝐴 𝐵𝐵 and
expect to show that 𝜔𝜔 𝑝 𝐶𝐶. As a consequence of 𝜔𝜔 𝑝 𝐴𝐴 𝐴 𝐵𝐵,

𝐧𝐧(𝜔𝜔𝜖
𝐧𝐧󶀡󶀡𝐧𝐧𝐧 𝜖𝜖𝐧 𝜖𝜖𝐧 𝜖𝜖󶀱󶀱

<
𝐧𝐧(𝜔𝜔𝜖

𝐧𝐧(𝜔𝜔𝜖 𝜖 𝜖

×
󶁣󶁣(𝜖𝜖4𝜖 𝜖 󶀢󶀢󶙢󶙢𝑋𝑋𝐧𝐧(𝜔𝜔𝜖𝜖𝜖(𝜔𝜔𝜖 𝜖 (𝜖𝜖2𝜖󶙢󶙢 𝜖 𝜖𝜖𝜖𝜖󶀲󶀲

2
󶁳󶁳

𝐧𝐧󶀡󶀡𝜖 𝜖 𝐧𝐧󶀱󶀱
𝐧

𝜖im
𝜖𝜖𝜖𝜖

𝑋𝑋𝐧𝐧(𝜔𝜔𝜖𝜖𝜖(𝜔𝜔𝜖 𝐧 𝐧𝐧𝐧 𝜖im
𝜖𝜖𝜖𝜖

𝐧𝐧(𝜔𝜔𝜖 𝜖 𝜖
𝐧𝐧(𝜔𝜔𝜖

𝐧 𝜖.

(C.2)

By the continuity of the function |𝑥𝑥 𝜖 𝜖𝜖2| 𝜖 𝜖𝜖𝜖𝜖 with respect
to 𝑥𝑥 and 𝜖𝜖, we have

𝜖im sup
𝜖𝜖𝜖𝜖

𝐧𝐧(𝜔𝜔𝜖
𝐧𝐧󶀡󶀡𝐧𝐧𝐧 𝜖𝜖𝐧 𝜖𝜖𝐧 𝜖𝜖󶀱󶀱

𝜖 𝜖im
𝜖𝜖𝜖𝜖

𝐧𝐧(𝜔𝜔𝜖
𝐧𝐧(𝜔𝜔𝜖 𝜖 𝜖

×
󶁣󶁣(𝜖𝜖4𝜖𝜖󶀢󶀢󶙢󶙢𝜖im𝜖𝜖𝜖𝜖𝑋𝑋𝐧𝐧(𝜔𝜔𝜖𝜖𝜖(𝜔𝜔𝜖𝜖(𝜖𝜖2𝜖󶙢󶙢𝜖𝜖im𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖󶀲󶀲

2
󶁳󶁳

𝐧𝐧󶀡󶀡𝜖 𝜖 𝐧𝐧󶀱󶀱

𝐧 𝜖.
(C.3)

On the other hand, as a consequence of 𝜔𝜔 𝑝 𝐴𝐴 𝐴 𝐵𝐵,

𝐧𝐧(𝜔𝜔𝜖
𝐧𝐧󶀡󶀡𝐧𝐧𝐧 𝜖𝜖𝐧 𝜖𝜖𝐧 𝜖𝜖󶀱󶀱

𝐧
󶁣󶁣(𝜖𝜖4𝜖 𝜖 󶀢󶀢󶙢󶙢𝑋𝑋𝐧𝐧(𝜔𝜔𝜖(𝜔𝜔𝜖 𝜖 (𝜖𝜖2𝜖󶙢󶙢 𝜖 𝜖𝜖𝜖𝜖󶀲󶀲

2
󶁳󶁳

𝐧𝐧󶀡󶀡𝜖 𝜖 𝐧𝐧󶀱󶀱
𝐧

𝜖im
𝜖𝜖𝜖𝜖

𝑋𝑋𝐧𝐧(𝜔𝜔𝜖(𝜔𝜔𝜖 𝐧 𝐧𝐧.

(C.4)

Making use of the continuity of the function |𝑥𝑥 𝜖 𝜖𝜖2| 𝜖 𝜖𝜖𝜖𝜖
with respect to 𝑥𝑥 and 𝜖𝜖, we have

𝜖im i𝜖f
𝜖𝜖𝜖𝜖

𝐧𝐧(𝜔𝜔𝜖
𝐧𝐧󶀡󶀡𝐧𝐧𝐧 𝜖𝜖𝐧 𝜖𝜖𝐧 𝜖𝜖󶀱󶀱

𝐧
󶁣󶁣(𝜖𝜖4𝜖 𝜖 󶀢󶀢󶙢󶙢𝜖im𝜖𝜖𝜖𝜖𝑋𝑋𝐧𝐧(𝜔𝜔𝜖(𝜔𝜔𝜖 𝜖 (𝜖𝜖2𝜖󶙢󶙢 𝜖 𝜖im𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖󶀲󶀲

2
󶁳󶁳

𝐧𝐧󶀡󶀡𝜖 𝜖 𝐧𝐧󶀱󶀱

𝐧 𝜖.
(C.5)

Combining (C.3) and (C.5) yields 𝜖im𝜖𝜖𝜖𝜖(𝐧𝐧(𝜔𝜔𝜖𝜖𝐧𝐧(𝐧𝐧𝐧 𝜖𝜖𝐧
𝜖𝜖𝐧 𝜖𝜖𝜖𝜖 𝐧 𝜖 and thus𝐴𝐴𝐴𝐵𝐵 𝐴 𝐶𝐶.is implies that𝐶𝐶 is an almost
sure event and thus Pr{𝜖im𝜖𝜖𝜖𝜖(𝐧𝐧𝜖𝐧𝐧(𝐧𝐧𝐧 𝜖𝜖𝐧 𝜖𝜖𝐧 𝜖𝜖𝜖𝜖 𝐧 𝜖 𝐧 𝐧𝐧𝑝 𝐧 𝜖
for 𝐧𝐧 𝑝 (𝜖𝐧 𝜖𝜖.

Next, we need to show that 𝜖im𝜖𝜖𝜖𝜖Pr{|󵰁󵰁𝐩𝐩 𝜖 𝐧𝐧| < 𝜖𝜖 𝐧 𝐧𝐧𝑝 𝐧
2Φ(󵀄󵀄2 𝜖𝜖(𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖 𝜖 𝜖 for any 𝐧𝐧 𝑝 (𝜖𝐧 𝜖𝜖. For simplicity of
notations, let 𝜎𝜎 𝐧 󵀆󵀆𝐧𝐧(𝜖 𝜖 𝐧𝐧𝜖 and 𝑎𝑎 𝐧 󵀄󵀄2 𝜖𝜖(𝜖𝜖𝜖𝜖𝜖𝜖𝜖. Note that
Pr{|󵰁󵰁𝐩𝐩𝜖𝐧𝐧| < 𝜖𝜖 𝐧 𝐧𝐧𝑝 𝐧 Pr{|𝑋𝑋𝐧𝐧𝜖𝐧𝐧| < 𝜖𝜖 𝐧 𝐧𝐧𝑝 𝐧 Pr{√𝐧𝐧|𝑋𝑋𝐧𝐧𝜖𝐧𝐧|𝜖𝜎𝜎 <
𝜖𝜖√𝐧𝐧𝜖𝜎𝜎𝑝. Clearly, for any 𝜂𝜂 𝑝 (𝜖𝐧 𝑎𝑎𝜖,

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 𝜖 𝐧𝐧󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

𝜖 Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 𝜖 𝐧𝐧󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

𝐧
𝜖𝜖√𝐧𝐧
𝜎𝜎

𝑝 󶁡󶁡𝑎𝑎 𝜖 𝜂𝜂𝐧 𝑎𝑎 𝜖 𝜂𝜂󶁱󶁱󶁗󶁗

𝜖 Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 𝜖 𝜂𝜂𝐧 𝑎𝑎 𝜖 𝜂𝜂󶁱󶁱󶁱󶁱

𝜖 Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 𝜖 𝐧𝐧󶙢󶙢

𝜎𝜎
< 𝑎𝑎 𝜖 𝜂𝜂𝐧

𝜖𝜖√𝐧𝐧
𝜎𝜎

𝑝 󶁡󶁡𝑎𝑎 𝜖 𝜂𝜂𝐧 𝑎𝑎 𝜖 𝜂𝜂󶁱󶁱󶁗󶁗

𝜖 Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 𝜖 𝜂𝜂𝐧 𝑎𝑎 𝜖 𝜂𝜂󶁱󶁱󶁱󶁱

𝜖 Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 𝜖 𝐧𝐧󶙢󶙢

𝜎𝜎
< 𝑎𝑎 𝜖 𝜂𝜂󶁗󶁗

𝜖 Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 𝜖 𝜂𝜂𝐧 𝑎𝑎 𝜖 𝜂𝜂󶁱󶁱󶁱󶁱 𝐧

(C.6)
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Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

≥ Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

,
𝜖𝜖√𝐧𝐧
𝜎𝜎

∈ 󶁡󶁡𝑎𝑎 − 𝑎𝑎, 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁗󶁗

≥ Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
< 𝑎𝑎 − 𝑎𝑎,

𝜖𝜖√𝐧𝐧
𝜎𝜎

∈ 󶁡󶁡𝑎𝑎 − 𝑎𝑎, 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁗󶁗

≥ Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
< 𝑎𝑎 − 𝑎𝑎󶁗󶁗

− Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 − 𝑎𝑎, 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁱󶁱 .

(C.7)

Recall that we have established that 𝐧𝐧𝐧𝐧𝐧𝐧𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧𝐧 𝐧 𝐧
almost surely as 𝜖𝜖 𝐧 𝜖. is implies that 𝐧𝜖𝜖√𝐧𝐧𝐧𝜎𝜎𝐧 𝐧 𝑎𝑎
and 𝐧𝐧𝐧𝐧𝐧𝐧𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧𝐧 𝐧 𝐧 in probability as 𝜖𝜖 tends to zero.
It follows from Anscombe’s random central limit theorem
[35] that as 𝜖𝜖 tends to zero, √𝐧𝐧𝐧𝑋𝑋𝐧𝐧 − 𝑝𝑝𝐧𝐧𝜎𝜎 converges in
distribution to a Gaussian random variable with zero mean
and unit variance. Hence, from (C.6),

lim sup
𝜖𝜖𝐧𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

≤ lim
𝜖𝜖𝐧𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
< 𝑎𝑎 𝑎 𝑎𝑎󶁗󶁗

𝑎 lim
𝜖𝜖𝐧𝜖

Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 − 𝑎𝑎, 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁱󶁱

= 2Φ󶀡󶀡𝑎𝑎 𝑎 𝑎𝑎󶀱󶀱 − 𝐧

(C.8)

and from (C.7),

lim inf
𝜖𝜖𝐧𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

≥ lim
𝜖𝜖𝐧𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
< 𝑎𝑎 − 𝑎𝑎󶁗󶁗

− lim
𝜖𝜖𝐧𝜖

Pr󶁅󶁅𝜖𝜖
√𝐧𝐧
𝜎𝜎

∉ 󶁡󶁡𝑎𝑎 − 𝑎𝑎, 𝑎𝑎 𝑎 𝑎𝑎󶁱󶁱󶁱󶁱

= 2Φ󶀡󶀡𝑎𝑎 − 𝑎𝑎󶀱󶀱 − 𝐧.

(C.9)

Since this argument holds for arbitrarily small 𝑎𝑎 ∈ 𝐧𝜖, 𝑎𝑎𝐧, it
must be true that

lim inf
𝜖𝜖𝐧𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

= lim sup
𝜖𝜖𝐧𝜖

Pr󶁇󶁇
√𝐧𝐧󶙢󶙢𝑋𝑋𝐧𝐧 − 𝑝𝑝󶙢󶙢

𝜎𝜎
<
𝜖𝜖√𝐧𝐧
𝜎𝜎

󶁗󶁗

= 2Φ𝐧𝑎𝑎𝐧 − 𝐧.

(C.10)

So, lim𝜖𝜖𝐧𝜖Pr{|󵰁󵰁𝐩𝐩 − 𝑝𝑝| < 𝜖𝜖 𝐩 𝑝𝑝𝐩 = lim𝜖𝜖𝐧𝜖Pr{√𝐧𝐧|𝑋𝑋𝐧𝐧 − 𝑝𝑝|𝐧𝜎𝜎 <
𝜖𝜖√𝐧𝐧𝐧𝜎𝜎𝐩 = 2Φ𝐧𝑎𝑎𝐧−𝐧 = 2Φ𝐧󵀄󵀄2 ln𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧−𝐧 for any 𝑝𝑝 ∈ 𝐧𝜖, 𝐧𝐧.

Now, we focus our attention to show that
lim𝜖𝜖𝐧𝜖𝐧𝔼𝔼𝔼𝐧𝐧𝔼𝐧𝐧𝐧𝐧𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧𝐧𝐧 = 𝐧 for any 𝑝𝑝 ∈ 𝐧𝜖, 𝐧𝐧. For
this purpose, it suffices to show that

𝐧 − 𝑎𝑎 ≤ lim inf
𝜖𝜖𝐧𝜖

𝔼𝔼𝔼𝐧𝐧𝔼
𝐧𝐧󶀡󶀡𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧󶀱󶀱

≤ lim sup
𝜖𝜖𝐧𝜖

𝔼𝔼𝔼𝐧𝐧𝔼
𝐧𝐧󶀡󶀡𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧󶀱󶀱

≤ 𝐧 𝑎 𝑎𝑎, 𝜂𝑝𝑝 ∈ 𝐧𝜖, 𝐧𝐧 ,

(C.11)

for any 𝑎𝑎 ∈ 𝐧𝜖, 𝐧𝐧. For simplicity of notations, we abbreviate
𝐧𝐧𝐧𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧𝐧 as 𝐧𝐧 in the sequel. Since we have established
Pr{lim𝜖𝜖𝐧𝜖𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧𝐧𝐧 = 𝐧𝐩 = 𝐧, we can conclude that

lim
𝜖𝜖𝐧𝜖

Pr󶁁󶁁󶀡󶀡𝐧 − 𝑎𝑎󶀱󶀱𝐧𝐧 ≤ 𝐧𝐧 ≤ 󶀡󶀡𝐧 𝑎 𝑎𝑎󶀱󶀱𝐧𝐧󶁑󶁑 = 𝐧. (C.12)

Noting that

𝔼𝔼𝔼𝐧𝐧𝔼 =
∞
󵠈󵠈
𝑚𝑚=𝜖

𝑚𝑚Pr{𝐧𝐧 = 𝑚𝑚𝐩

≥ 󵠈󵠈
󶀡󶀡𝐧−𝑎𝑎󶀱󶀱𝐧𝐧≤𝑚𝑚≤󶀡󶀡𝐧𝑎𝑎𝑎󶀱󶀱𝐧𝐧

𝑚𝑚Pr{𝐧𝐧 = 𝑚𝑚𝐩

≥ 󶀡󶀡𝐧 − 𝑎𝑎󶀱󶀱𝐧𝐧 󵠈󵠈
󶀡󶀡𝐧−𝑎𝑎󶀱󶀱𝐧𝐧≤𝑚𝑚≤󶀡󶀡𝐧𝑎𝑎𝑎󶀱󶀱𝐧𝐧

Pr{𝐧𝐧 = 𝑚𝑚𝐩 ,

(C.13)

we have

𝔼𝔼𝔼𝐧𝐧𝔼 ≥ 󶀡󶀡𝐧 − 𝑎𝑎󶀱󶀱𝐧𝐧Pr󶁁󶁁󶀡󶀡𝐧 − 𝑎𝑎󶀱󶀱𝐧𝐧 ≤ 𝐧𝐧 ≤ 󶀡󶀡𝐧 𝑎 𝑎𝑎󶀱󶀱𝐧𝐧󶁑󶁑 . (C.14)

Combining (C.12) and (C.14) yields

lim inf
𝜖𝜖𝐧𝜖

𝔼𝔼𝔼𝐧𝐧𝔼
𝐧𝐧󶀡󶀡𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧󶀱󶀱

≥ 󶀡󶀡𝐧 − 𝑎𝑎󶀱󶀱 lim
𝜖𝜖𝐧𝜖

Pr󶁁󶁁󶀡󶀡𝐧 − 𝑎𝑎󶀱󶀱𝐧𝐧 ≤ 𝐧𝐧 ≤ 󶀡󶀡𝐧 𝑎 𝑎𝑎󶀱󶀱𝐧𝐧󶁑󶁑

= 𝐧 − 𝑎𝑎.

(C.15)

On the other hand, using 𝔼𝔼𝔼𝐧𝐧𝔼 = 𝔼∞
𝑚𝑚=𝜖 Pr{𝐧𝐧 𝐧 𝑚𝑚𝐩, we can

write

𝔼𝔼𝔼𝐧𝐧𝔼 = 󵠈󵠈
𝜖≤𝑚𝑚<󶀡󶀡𝐧𝑎𝑎𝑎󶀱󶀱𝐧𝐧

Pr{𝐧𝐧 𝐧 𝑚𝑚𝐩 𝑎 󵠈󵠈
𝑚𝑚≥󶀡󶀡𝐧𝑎𝑎𝑎󶀱󶀱𝐧𝐧

Pr{𝐧𝐧 𝐧 𝑚𝑚𝐩

≤ 󶃡󶃡󶀡󶀡𝐧 𝑎 𝑎𝑎󶀱󶀱𝐧𝐧󶃱󶃱 𝑎 󵠈󵠈
𝑚𝑚≥󶀡󶀡𝐧𝑎𝑎𝑎󶀱󶀱𝐧𝐧

Pr{𝐧𝐧 𝐧 𝑚𝑚𝐩 .
(C.16)

Since lim sup𝜖𝜖𝐧𝜖𝐧⌈𝐧𝐧 𝑎 𝑎𝑎𝐧𝐧𝐧𝜂𝐧𝐧𝐧𝐧𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧𝐧𝐧 = 𝐧 𝑎 𝑎𝑎, for the
purpose of establishing lim sup𝜖𝜖𝐧𝜖𝐧𝔼𝔼𝔼𝐧𝐧𝔼𝐧𝐧𝐧𝐧𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧𝐧𝐧 ≤ 𝐧 𝑎
𝑎𝑎, it remains to show that

lim sup
𝜖𝜖𝐧𝜖

𝔼𝑚𝑚≥𝐧𝐧𝑎𝑎𝑎𝐧𝐧𝐧 Pr{𝐧𝐧 𝐧 𝑚𝑚𝐩
𝐧𝐧󶀡󶀡𝑝𝑝, 𝜖𝜖, 𝐧𝐧, 𝐧𝐧󶀱󶀱

= 𝜖. (C.17)
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Consider functions 𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 and
𝑔𝑔𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓 for 𝑓𝑓 𝑥 𝑥𝑥𝑥 𝑓𝑥. Note that

󶙡󶙡𝑓𝑓𝑓𝑓𝑓𝑓 𝑓 𝑔𝑔𝑓𝑓𝑓𝑓󶙡󶙡 𝑓 󶙢󶙢𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓𝑓 𝑓 󶀡󶀡𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓󶀱󶀱𝑓󶙢󶙢

𝑓 𝑓𝑓𝑓𝑓󶙡󶙡𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓󶙡󶙡 ≤ 𝑓𝑓𝑓𝑓󶀡󶀡𝑓 + 𝑓𝑓𝑓𝑓󶀱󶀱 𝑥
(C.18)

for all 𝑓𝑓 𝑥 𝑥𝑥𝑥 𝑓𝑥. For 𝑝𝑝 𝑥 𝑓𝑥𝑥 𝑓𝑓, there exists a positive number
𝛾𝛾 𝛾 𝛾𝛾𝛾𝛾𝑝𝑝𝑥 𝑓 𝑓 𝑝𝑝𝛾 such that 𝑓𝑔𝑔𝑓𝑓𝑓𝑓 𝑓 𝑔𝑔𝑓𝑝𝑝𝑓𝑓 𝛾 𝑓𝑔𝑔𝑓𝑓𝑓𝑝𝑝𝑓𝑓 𝑓 𝑝𝑝𝑓
for any 𝑓𝑓 𝑥 𝑓𝑝𝑝 𝑓 𝛾𝛾𝑥 𝑝𝑝 + 𝛾𝛾𝑓, since 𝑔𝑔𝑓𝑓𝑓𝑓 is a continuous function
of 𝑓𝑓. From now on, let 𝑓𝑓 𝜖 𝑥 be sufficiently small such that
𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑓𝑓 𝛾 𝑓𝑔𝑔𝑓𝑓𝑓𝑝𝑝𝑓𝑓 𝑓 𝑝𝑝𝑓. en,

𝑓𝑓𝑓𝑓𝑓𝑓 ≤ 𝑔𝑔𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑓󶀡󶀡𝑓 + 𝑓𝑓𝑓𝑓󶀱󶀱

𝛾 𝑔𝑔󶀡󶀡𝑝𝑝󶀱󶀱 +
𝑔𝑔
𝑓
𝑝𝑝󶀡󶀡𝑓 𝑓 𝑝𝑝󶀱󶀱 + 𝑓𝑓𝑓𝑓󶀡󶀡𝑓 + 𝑓𝑓𝑓𝑓󶀱󶀱

𝛾 󶀡󶀡𝑓 + 𝑔𝑔󶀱󶀱 𝑝𝑝󶀡󶀡𝑓 𝑓 𝑝𝑝󶀱󶀱 𝑥

(C.19)

for all 𝑓𝑓 𝑥 𝑓𝑝𝑝 𝑓 𝛾𝛾𝑥 𝑝𝑝 + 𝛾𝛾𝑓. is implies that

󶁂󶁂𝑋𝑋𝑚𝑚 𝑥 󶀡󶀡𝑝𝑝 𝑓 𝛾𝛾𝑥 𝑝𝑝 + 𝛾𝛾󶀱󶀱󶀱󶀱

⊆ 󶁅󶁅󶀡󶀡𝑓 + 𝑔𝑔󶀱󶀱 𝑝𝑝󶀡󶀡𝑓 𝑓 𝑝𝑝󶀱󶀱 ≥
𝑓
𝑓
𝑓 󶀤󶀤󶙤󶙤𝑋𝑋𝑚𝑚 𝑓

𝑓
𝑓
󶙤󶙤 𝑓 𝑓𝑓𝑓𝑓󶀴󶀴

𝑓
󶁕󶁕

(C.20)

for all𝑚𝑚 𝜖 𝑥. Taking complementary events on both sides of
(C.20) leads to

󶁅󶁅󶀡󶀡𝑓 + 𝑔𝑔󶀱󶀱 𝑝𝑝󶀡󶀡𝑓 𝑓 𝑝𝑝󶀱󶀱 𝛾
𝑓
𝑓
𝑓 󶀤󶀤󶙤󶙤𝑋𝑋𝑚𝑚 𝑓

𝑓
𝑓
󶙤󶙤 𝑓 𝑓𝑓𝑓𝑓󶀴󶀴

𝑓
󶁕󶁕

⊆ 󶁂󶁂𝑋𝑋𝑚𝑚 ∉ 󶀡󶀡𝑝𝑝 𝑓 𝛾𝛾𝑥 𝑝𝑝 + 𝛾𝛾󶀱󶀱󶀱󶀱 𝑥
(C.21)

for all𝑚𝑚 𝜖 𝑥. Since 𝑓𝑓+𝑔𝑔𝑓𝑝𝑝𝑓𝑓𝑓𝑝𝑝𝑓 𝑓 𝑓𝑓𝑓+𝑔𝑔𝑓𝜂𝜂𝑓𝑓𝑓𝑓𝑓 l𝛾𝑓𝑓𝑓𝜁𝜁𝜁𝜁𝑓𝑓 ≤
𝑓𝑚𝑚𝑓𝑓𝑓𝑓𝑓 l𝛾𝑓𝑓𝑓𝜁𝜁𝜁𝜁𝑓𝑓 for all𝑚𝑚 ≥ 𝑓𝑓 + 𝑔𝑔𝑓𝜂𝜂, it follows that

󶁆󶁆
𝑚𝑚𝑓𝑓𝑓

𝑓 l𝛾𝑓𝑓𝑓𝜁𝜁𝜁𝜁𝑓
𝛾
𝑓
𝑓
𝑓 󶀤󶀤󶙤󶙤𝑋𝑋𝑚𝑚 𝑓

𝑓
𝑓
󶙤󶙤 𝑓 𝑓𝑓𝑓𝑓󶀴󶀴

𝑓
󶁖󶁖

⊆ 󶁂󶁂𝑋𝑋𝑚𝑚 ∉ 󶀡󶀡𝑝𝑝 𝑓 𝛾𝛾𝑥 𝑝𝑝 + 𝛾𝛾󶀱󶀱󶀱󶀱 𝑥

(C.22)

for all 𝑚𝑚 ≥ 𝑓𝑓 + 𝑔𝑔𝑓𝜂𝜂. erefore, we have shown that if 𝑓𝑓 is
sufficiently small, then there exists a number 𝛾𝛾 𝜖 𝑥 such that

𝛾𝐧𝐧 𝜖 𝑚𝑚𝛾 ⊆ 󶁆󶁆󶀤󶀤󶙤󶙤𝑋𝑋𝑚𝑚 𝑓
𝑓
𝑓
󶙤󶙤 𝑓 𝑓𝑓𝑓𝑓󶀴󶀴

𝑓
𝛾
𝑓
𝑓
+

𝑚𝑚𝑓𝑓𝑓

𝑓 l𝛾𝑓𝜁𝜁𝜁𝜁𝑓
󶁖󶁖

⊆ 󶁂󶁂𝑋𝑋𝑚𝑚 ∉ 󶀡󶀡𝑝𝑝 𝑓 𝛾𝛾𝑥 𝑝𝑝 + 𝛾𝛾󶀱󶀱󶀱󶀱 𝑥

(C.23)

for all𝑚𝑚 ≥ 𝑓𝑓+𝑔𝑔𝑓𝜂𝜂. Using this inclusion relationship and the
Chernoff-Hoeffding bound [32, 33], we have

Pr𝛾𝐧𝐧 𝜖 𝑚𝑚𝛾 ≤ Pr󶁂󶁂𝑋𝑋𝑚𝑚 ∉ 󶀡󶀡𝑝𝑝 𝑓 𝛾𝛾𝑥 𝑝𝑝 + 𝛾𝛾󶀱󶀱󶀱󶀱 ≤ 𝑓 exp󶀢󶀢𝑓𝑓𝑚𝑚𝛾𝛾𝑓󶀲󶀲 𝑥
(C.24)

for all𝑚𝑚 ≥ 𝑓𝑓 + 𝑔𝑔𝑓𝜂𝜂 provided that 𝑓𝑓 𝜖 𝑥 is sufficiently small.
Letting 𝑘𝑘 𝑓 𝑘𝑓𝑓 + 𝑔𝑔𝑓𝜂𝜂𝑘 and using (C.24), we have

󵠈󵠈
𝑚𝑚≥𝑓𝑓+𝑔𝑔𝑓𝜂𝜂

Pr𝛾𝐧𝐧 𝜖 𝑚𝑚𝛾 𝑓 󵠈󵠈
𝑚𝑚≥𝑘𝑘

Pr𝛾𝐧𝐧 𝜖 𝑚𝑚𝛾

≤ 󵠈󵠈
𝑚𝑚≥𝑘𝑘

𝑓 exp󶀢󶀢𝑓𝑓𝑚𝑚𝛾𝛾𝑓󶀲󶀲

𝑓
𝑓 exp󶀢󶀢𝑓𝑓𝑘𝑘𝛾𝛾𝑓󶀲󶀲
𝑓 𝑓 exp󶀡󶀡𝑓𝑓𝛾𝛾𝑓󶀱󶀱

𝑥

(C.25)

provided that 𝑓𝑓 is sufficiently small. Consequently,

l𝛾𝛾 sup
𝑓𝑓𝜖𝑥

∑𝑚𝑚≥𝑓𝑓+𝑔𝑔𝑓𝜂𝜂 Pr𝛾𝐧𝐧 𝜖 𝑚𝑚𝛾
𝜂𝜂󶀡󶀡𝑝𝑝𝑥 𝑓𝑓𝑥 𝜁𝜁𝑥 𝜁𝜁󶀱󶀱

≤ l𝛾𝛾 sup
𝑓𝑓𝜖𝑥

𝑓
𝜂𝜂

exp󶀢󶀢𝑓𝑓𝑘𝑘𝛾𝛾𝑓󶀲󶀲
𝑓 𝑓 exp󶀡󶀡𝑓𝑓𝛾𝛾𝑓󶀱󶀱

𝑓 𝑥𝑥

(C.26)

since 𝑘𝑘 𝜖 𝑘 and 𝜂𝜂 𝜖 𝑘 as 𝑓𝑓 𝜖 𝑥. So, we have
established (C.11). Since the argument holds for arbitrarily
small 𝑔𝑔 𝜖 𝑥, it must be true that l𝛾𝛾𝑓𝑓𝜖𝑥𝑓𝔼𝔼𝑥𝐧𝐧𝑥𝑓𝜂𝜂𝑓𝑝𝑝𝑥 𝑓𝑓𝑥 𝜁𝜁𝑥 𝜁𝜁𝑓𝑓 𝑓
𝑓 for any 𝑝𝑝 𝑥 𝑓𝑥𝑥 𝑓𝑓. is completes the proof of the theorem.

D. Proof of Theorem 4

Recall that 𝐥𝐥 denotes the index of stage at the termination of
the sampling process. Observing that

𝑛𝑛𝑠𝑠 𝑓 𝑛𝑛𝑓 Pr𝛾𝐥𝐥 𝑓 𝑓𝛾 𝑓 𝑛𝑛𝑠𝑠Pr𝛾𝐥𝐥 ≤ 𝑠𝑠𝛾 𝑓 𝑛𝑛𝑓Pr𝛾𝐥𝐥 ≤ 𝑓𝛾

𝑓
𝑠𝑠
󵠈󵠈
ℓ𝑓𝑓
󶀡󶀡𝑛𝑛ℓPr𝛾𝐥𝐥 ≤ ℓ𝛾 𝑓 𝑛𝑛ℓ𝑓𝑓Pr𝛾𝐥𝐥 𝛾 ℓ𝛾󶀱󶀱

𝑓
𝑠𝑠
󵠈󵠈
ℓ𝑓𝑓
𝑛𝑛ℓ 𝑓Pr𝛾𝐥𝐥 ≤ ℓ𝛾 𝑓 Pr𝛾𝐥𝐥 𝛾 ℓ𝛾𝑓

+
𝑠𝑠
󵠈󵠈
ℓ𝑓𝑓
󶀡󶀡𝑛𝑛ℓ 𝑓 𝑛𝑛ℓ𝑓𝑓󶀱󶀱Pr𝛾𝐥𝐥 𝛾 ℓ𝛾

𝑓
𝑠𝑠
󵠈󵠈
ℓ𝑓𝑓
𝑛𝑛ℓPr𝛾𝐥𝐥 𝑓 ℓ𝛾

+
𝑠𝑠𝑓𝑓
󵠈󵠈
ℓ𝑓𝑓
󶀡󶀡𝑛𝑛ℓ+𝑓 𝑓 𝑛𝑛ℓ󶀱󶀱Pr𝛾𝐥𝐥 ≤ ℓ𝛾 𝑥

(D.1)
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we have 𝑛𝑛𝑠𝑠 − ∑
𝑠𝑠
ℓ=1 𝑛𝑛ℓPr{𝐥𝐥 = ℓ𝐥 = ∑𝑠𝑠−1

ℓ=1 (𝑛𝑛ℓ+1 − 𝑛𝑛ℓ)Pr{𝐥𝐥 𝐥 ℓ𝐥.
Making use of this result and the fact 𝑛𝑛𝑠𝑠 = 𝑛𝑛1+∑

𝑠𝑠−1
ℓ=1(𝑛𝑛ℓ+1−𝑛𝑛ℓ),

we have

𝔼𝔼[𝐧𝐧] =
𝑠𝑠
󵠈󵠈
ℓ=1
𝑛𝑛ℓPr{𝐥𝐥 = ℓ𝐥 = 𝑛𝑛𝑠𝑠 − 󶀧󶀧𝑛𝑛𝑠𝑠 −

𝑠𝑠
󵠈󵠈
ℓ=1
𝑛𝑛ℓPr{𝐥𝐥 = ℓ𝐥󶀷󶀷

= 𝑛𝑛1 +
𝑠𝑠−1
󵠈󵠈
ℓ=1

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱 −
𝑠𝑠−1
󵠈󵠈
ℓ=1

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 ℓ𝐥

= 𝑛𝑛1 +
𝜏𝜏−1
󵠈󵠈
ℓ=1

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 ℓ𝐥

+
𝑠𝑠−1
󵠈󵠈
ℓ=𝜏𝜏

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 ℓ𝐥 .

(D.2)

By the de�nition of the stopping rule, we have

{𝐥𝐥 𝐥 ℓ𝐥 ⊆ 󶁆󶁆󶁆󶁆󶁆󶁆󵰃󵰃𝐩𝐩ℓ −
1
2
󶁆󶁆 − 𝜌𝜌𝜌𝜌󶀴󶀴

2
<
1
4
+

𝜌𝜌2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

󶁖󶁖

=
󶀂󶀂
󶀊󶀊
󶀚󶀚
𝜌𝜌𝜌𝜌 − 󵀌󵀌

1
4
+

𝜌𝜌2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

< 󶁆󶁆󵰃󵰃𝐩𝐩ℓ −
1
2
󶁆󶁆

< 𝜌𝜌𝜌𝜌 + 󵀌󵀌
1
4
+

𝜌𝜌2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

󶀃󶀃
󶀋󶀋
󶀛󶀛

=
󶀂󶀂
󶀊󶀊
󶀚󶀚
𝜌𝜌𝜌𝜌 − 󵀌󵀌

1
4
+

𝜌𝜌2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

<
1
2
−󵰃󵰃𝐩𝐩ℓ

< 𝜌𝜌𝜌𝜌 + 󵀌󵀌
1
4
+

𝜌𝜌2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

, 󵰃󵰃𝐩𝐩ℓ 𝐥
1
2
󶀃󶀃
󶀋󶀋
󶀛󶀛

∪
󶀂󶀂
󶀊󶀊
󶀚󶀚
𝜌𝜌𝜌𝜌 − 󵀌󵀌

1
4
+

𝜌𝜌2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

<󵰃󵰃𝐩𝐩ℓ −
1
2

< 𝜌𝜌𝜌𝜌 + 󵀌󵀌
1
4
+

𝜌𝜌2𝑛𝑛ℓ
2 ln(𝜁𝜁𝜁𝜁)

, 󵰃󵰃𝐩𝐩ℓ 𝐥
1
2
󶀃󶀃
󶀋󶀋
󶀛󶀛

⊆ 󶁁󶁁𝑎𝑎ℓ <󵰃󵰃𝐩𝐩ℓ < 𝑏𝑏ℓ󶁑󶁑 ∪ 󶁁󶁁1 − 𝑏𝑏ℓ <󵰃󵰃𝐩𝐩ℓ < 1 − 𝑎𝑎ℓ󶁑󶁑 ,

(D.3)

for 1 𝐥 ℓ < 𝑠𝑠, where 𝑏𝑏ℓ = (1/2)−𝜌𝜌𝜌𝜌+󵀆󵀆(1/4) + (𝜌𝜌2𝑛𝑛ℓ/2 ln(𝜁𝜁𝜁𝜁))
for ℓ = 1,… , 𝑠𝑠 − 1. By the assumption that 𝜌𝜌 and 𝜌𝜌 are
nonnegative, we have 1−𝑏𝑏ℓ−𝑎𝑎ℓ = 2𝜌𝜌𝜌𝜌 𝜌 𝜌 for ℓ = 1,… , 𝑠𝑠−1. It
follows from (D.3) that {𝐥𝐥 𝐥 ℓ𝐥 ⊆ {󵰃󵰃𝐩𝐩ℓ 𝐥 𝑎𝑎ℓ𝐥 for ℓ = 1,… , 𝑠𝑠 − 1.
By the de�nition of 𝜏𝜏, we have 𝑝𝑝 < 𝑎𝑎ℓ for 𝜏𝜏 𝐥 ℓ < 𝑠𝑠. Making
use of this fact, the inclusion relationship {𝐥𝐥 𝐥 ℓ𝐥 ⊆ {󵰃󵰃𝐩𝐩ℓ 𝐥
𝑎𝑎ℓ𝐥, ℓ = 1,… , 𝑠𝑠 − 1, and Chernoff-Hoeffding bound [32, 33],
we have

Pr󶁁󶁁𝐧𝐧 𝐥 𝑛𝑛ℓ ∣ 𝑝𝑝󶁑󶁑 = Pr󶁁󶁁𝐥𝐥 𝐥 ℓ ∣ 𝑝𝑝󶁑󶁑

𝐥 Pr󶁁󶁁󵰃󵰃𝐩𝐩ℓ 𝐥 𝑎𝑎ℓ ∣ 𝑝𝑝󶁑󶁑 𝐥 exp󶀡󶀡𝑛𝑛ℓℳ󶀡󶀡𝑎𝑎ℓ, 𝑝𝑝󶀱󶀱󶀱󶀱
(D.4)

for 𝜏𝜏 𝐥 ℓ < 𝑠𝑠. It follows from (D.2) and (D.4) that

𝔼𝔼[𝐧𝐧] 𝐥 𝑛𝑛1 +
𝜏𝜏−1
󵠈󵠈
ℓ=1

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱 +
𝑠𝑠−1
󵠈󵠈
ℓ=𝜏𝜏

󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 ℓ𝐥

= 𝑛𝑛𝜏𝜏 +
𝑠𝑠−1
󵠈󵠈
ℓ=𝜏𝜏
󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱Pr{𝐥𝐥 𝐥 ℓ𝐥

𝐥 𝑛𝑛𝜏𝜏 +
𝑠𝑠−1
󵠈󵠈
ℓ=𝜏𝜏
󶀡󶀡𝑛𝑛ℓ+1 − 𝑛𝑛ℓ󶀱󶀱 exp󶀡󶀡𝑛𝑛ℓℳ󶀡󶀡𝑎𝑎ℓ, 𝑝𝑝󶀱󶀱󶀱󶀱 .

(D.5)

is completes the proof of the theorem.

Acknowledgment

is paper is supported in part by NIH/NCI Grants no. 1 P01
CA116676, P30 CA138292-01 and 5 P50 CA128613.

References

[1] S.-C. Chow, J. Shao, and H. Wang, Sample Size Calculations in
Clinical Research, vol. 20 of Chapman & Hall/CRC Biostatistics
Series, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2nd
edition, 2008.

[2] C. Jennison and B. W. Turnbull, Group Sequential Methods
with Applications to Clinical Trials, Chapman&Hall/CRC, Boca
Raton, Fla, USA, 2000.

[3] Y. S. Chow andH. Robbins, “�n the asymptotic theory of ��ed-
width sequential con�dence intervals for the mean,” Annals of
Mathematical Statistics, vol. 36, pp. 457–462, 1965.

[4] B. K. Ghosh and P. K. Sen,Handbook of Sequential Analysis, vol.
118 of Statistics: Textbooks and Monographs, Marcel Dekker,
New York, NY, USA, 1991.

[5] M. Ghosh, N.Mukhopadhyay, and P. K. Sen, Sequential Estima-
tion, Wiley Series in Probability and Statistics: Probability and
Statistics, John Wiley & Sons, New York, NY, USA, 1997.

[6] T. L. Lai, “Sequential analysis: some classical problems and new
challenges,” Statistica Sinica, vol. 11, no. 2, pp. 303–408, 2001.

[7] D. Siegmund, Sequential Analysis, Springer Series in Statistics,
Springer, New York, NY, USA, 1985.

[8] L. Mendo and J. M. Hernando, “Improved sequential stopping
rule for Monte Carlo simulation,” IEEE Transactions on Com-
munications, vol. 56, no. 11, pp. 1761–1764, 2008.

[9] M. Tanaka, “�n a con�dence interval of given length for
the parameter of the binomial and the Poisson distributions,”
Annals of the Institute of Statistical Mathematics, vol. 13, pp.
201–215, 1961.

[10] S. Fran��n, “Fi�ed length sequential con�dence intervals for the
probability of response,” Sequential Analysis, vol. 20, no. 1-2, pp.
45–54, 2001.

[11] S. Fran��n, “SPRT ��ed length con�dence intervals,” Commu-
nications in Statistics. eory and Methods, vol. 33, no. 2, pp.
305–319, 2004.

[12] A.Wald, Sequential Analysis, JohnWiley& Sons, NewYork, NY,
USA, 1947.

[13] J. Frey, “Fi�ed-width sequential con�dence intervals for a pro-
portion,”e American Statistician, vol. 64, no. 3, pp. 242–249,
2010.



24 Journal of Probability and Statistics

[14] X. Chen, “A new framework of multistage estimation,” http://
arxiv.org/abs/0809.1241v1, September 2008.

[15] X. Chen, “A new framework of multistage estimation,” http://
arxiv.org/abs/0809.1241v12, April 2009.

[16] X. Chen, “Multistage estimation of bounded-variable means,”
http://arxiv.org/abs/0809.4679v1, September 2008.

[17] X. Chen, “Estimating the parameters of binomial and Pois-
son distributions via multistage sampling,” http://arxiv.org/abs/
0810.0430v1, October 2008.

[18] X. Chen, “Con�dence interval for the mean of a bounded
random variable and its applications in point estimation,”
http://arxiv.org/abs/0802.3458v2, April 2009.

[19] X. Chen, “A new framework of multistage parametric infer-
ence,” in Sensors, and Command, Control, Communications,
and Intelligence (C3I) Technologies for Homeland Security and
Homeland Defense IX, usa, April 2010.

[20] A. H. Land and A. G. Doig, “An automatic method of solving
discrete programming problems,” Econometrica, vol. 28, pp.
497–520, 1960.

[21] X. Chen, “A new framework of multistage estimation,” http://
arxiv.org/abs/0809.1241v16, November 2009.

[22] X. Chen, “A new framework of multistage estimation,” http://
arxiv.org/abs/0809.1241v4, December 2008.

[23] J. R. Schultz, F. R. Nichol, G. L. Elfring, and S. D. Weed,
“Multiple stage procedures for drug screening,” Biometrics, vol.
29, no. 2, pp. 293–300, 1973.

[24] H. Chen, “e accuracy of approximate intervals for a binomial
parameter,” Journal of the American Statistical Association, vol.
85, no. 410, pp. 514–518, 1990.

[25] E. B. Wilson, “Probable inference, the law of succession,
and statistical inference,” Journal of the American Statistical
Association, vol. 22, pp. 209–212, 1927.

[26] C. J. Clopper and E. S. Pearson, “e use of con�dence or �du-
cial limits illustrated in the case of the binomial,” Biometrika,
vol. 26, pp. 404–413, 1934.

[27] W. Feller, An Introduction to Probability eory and Its Appli-
cations. Vol. I, John Wiley & Sons, New York, NY, USA, 3rd
edition, 1968.

[28] G. S. Fishman, “Con�dence intervals for the mean in the
bounded case,” Statistics & Probability Letters, vol. 12, no. 3, pp.
223–227, 1991.

[29] X. Chen, K. Zhou, and J. L. Aravena, “Explicit formula for
constructing binomial con�dence interval with guaranteed
coverage probability,” Communications in Statistics. eory and
Methods, vol. 37, no. 8–10, pp. 1173–1180, 2008.

[30] X. Chen, “Multistage estimation of bounded-variable means,”
http://arxiv.org/abs/0809.4679v2, October 2008.

[31] P. Massart, “e tight constant in the Dvoretzky-Kiefer-
Wolfowitz inequality,” e Annals of Probability, vol. 18, no. 3,
pp. 1269–1283, 1990.

[32] H. Chernoff, “A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observations,” Annals of
Mathematical Statistics, vol. 23, pp. 493–507, 1952.

[33] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Journal of the American Statistical Associa-
tion, vol. 58, pp. 13–30, 1963.

[34] X. Chen, “Exact computation of minimum sample size for esti-
mation of binomial parameters,” Journal of Statistical Planning
and Inference, vol. 141, no. 8, pp. 2622–2632, 2011.

[35] F. J. Anscombe, “Sequential estimation,” Journal of the Royal
Statistical Society. Series B, vol. 15, pp. 1–21, 1953.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


