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A sequence 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
is a 𝑐-alternating sequence if any odd term is less than or equal to the next even term −𝑐 and the any

even term is greater than or equal to the next odd term +𝑐, where 𝑐 is a nonnegative constant. In this paper, we present an optimal
on-line procedure to select a 𝑐-alternating subsequence from a symmetric distributed random sample. We also give the optimal
selection rate when the sample size goes to infinity.

1. Introduction

Given a finite (or infinite) sequence 𝑥 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, . . .}

of real numbers, we say that a subsequence 𝑥
𝑖
1

, 𝑥
𝑖
2

, . . . , 𝑥
𝑖
𝑘

, . . .

with 1 ≤ 𝑖
1
< 𝑖
2
< ⋅ ⋅ ⋅ < 𝑖

𝑘
< ⋅ ⋅ ⋅ is 𝑐-alternating if we have

𝑥
𝑖
1

+ 𝑐 < 𝑥
𝑖
2

> 𝑥
𝑖
3

+ 𝑐 < 𝑥
𝑖
4

⋅ ⋅ ⋅, where 𝑐 is a nonnegative
real number. When 𝑐 = 0, 𝑥

𝑖
1

, 𝑥
𝑖
2

, . . . , 𝑥
𝑖
𝑘

, . . . is alternating.
We are mainly concerned with the length 𝛼(𝑥) of the longest
𝑐-alternating subsequence of𝑥. Here, we study the problemof
making on-line selection of a 𝑐-alternating subsequence.That
is now we regard the sequence 𝑥

1
, 𝑥
2
, . . . as being available to

us sequentially, and, at time 𝑖 when 𝑥
𝑖
is available, we must

choose to include 𝑥
𝑖
as a term of our subsequence or reject 𝑥

𝑖

as a member of our subsequence.
We will consider the sequence to be given by indepen-

dent, identically distributed, symmetric random variables
over the interval [0, 1]. In [1], Arlotto et al. studied the case
that the sequence to be given by independent, identically
distributed, uniform random variables over the interval [0, 1]
and 𝑐 = 0. So this paper can be considered as an extension of
their paper.

Now we need to be more explicit about the set 𝐼𝐼 of
feasible strategies for on-line selection. At time 𝑖, when 𝑋

𝑖
is

presented to us, wemust decide to select𝑋
𝑖
based on its value,

the value of earlier members of the sequence, and the actions

we have taken in the past. All of this information can be
captured by saying that 𝑖

𝑘
, the index of the 𝑘th selection, must

be a stopping time with respect to the increasing sequence
of 𝜎-fields, 𝐹

𝑖
= 𝜎{𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑖
}, 𝑖 = 1, 2, . . .. Given any

feasible policy 𝜋 in 𝐼𝐼 the random variable of most interest
here is 𝐴𝑜

𝑛
(𝜋), the number of selections made by the policy

𝜋 up to and including time 𝑛. In other words, 𝐴𝑜
𝑛
(𝜋) is equal

to the largest 𝑘 for which there are stopping times 1 ≤ 𝑖
1
<

𝑖
2
< ⋅ ⋅ ⋅ < 𝑖

𝑘
≤ 𝑛 such that {𝑋

𝑖
1

, 𝑋
𝑖
2

, . . . , 𝑋
𝑖
𝑘

} is a 𝑐-alternating
subsequence of the sequence {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
}. In this paper,

we are interested in the optimal selection and the asymptotic
rate of the optimal selection. That is, we have a selection
policy 𝜋∗

𝑛
in 𝐼𝐼 such that

lim
𝑛→∞

𝐸 [𝐴
𝑜

𝑛
(𝜋
∗

𝑛
)] = lim
𝑛→∞

sup
𝜋∈𝐼𝐼

𝐸 [𝐴
𝑜

𝑛
(𝜋)] . (1)

2. Main Results

For each 0 ≤ 𝑐 < 1 and each 0 ≤ 𝜆 ≤ (1 − 𝑐)/2, we define a
threshold function𝑓∗ as follows:𝑓∗(𝑦) = max{𝑐+𝜆, 𝑐+𝑦} for
all 0 ≤ 𝑦 ≤ 1−𝑐. We now recursively define random variables
{𝑌
𝑖
: 𝑖 = 1, 2, . . .} by setting 𝑌

0
= 𝑦 and taking 𝑌

𝑖
= 𝑌
𝑖−1

if
𝑋
𝑖
< 𝑓
∗
(𝑌
𝑖−1
), 𝑌
𝑖
= 1−𝑋

𝑖
if𝑋
𝑖
≥ 𝑓
∗
(𝑌
𝑖−1
). Introduce a value

function 𝑉(𝜆, 𝑦, 𝜌) = 𝐸{∑
∞

𝑖=1
𝜌
𝑖−1
𝐼[𝑋
𝑖
≥ 𝑓
∗
(𝑌
𝑖−1
)] | 𝑌
0
= 𝑦},
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where 0 < 𝜌 < 1 is a constant and 𝐼[𝑋
𝑖
≥ 𝑓
∗
(𝑌
𝑖−1
)] is the

indicator function of the event [𝑋
𝑖
≥ 𝑓
∗
(𝑌
𝑖−1
)].

Let 𝐺 be the distribution function and 𝑔 the probability
density function of𝑋

𝑖
. If𝑋
𝑖
is not a uniform random variable

over the interval [0, 1], then we will assume that 𝑔󸀠 exists
and is nonzero. Since𝑋

𝑖
is symmetric over the interval [0, 1],

𝐺(1 − 𝑥) = 1 − 𝐺(𝑥) and 𝑔(𝑥) = 𝑔(1 − 𝑥) for all 0 ≤ 𝑥 ≤ 1.
It is easy to see that

𝑉 (𝜆, 𝑦, 𝜌) = 𝜌𝐺 [max (𝜆, 𝑦) + 𝑐]𝑉 (𝜆, 𝑦, 𝜌)

+ ∫

1

max(𝜆,𝑦)+𝑐
[1 + 𝜌𝑉 (𝜆, 1 − 𝑥, 𝜌)] 𝑔 (𝑥) 𝑑𝑥

= 𝜌𝐺 [max (𝜆, 𝑦) + 𝑐]𝑉 (𝜆, 𝑦, 𝜌)

+ ∫

1−max(𝜆,𝑦)−𝑐

0

[1 + 𝜌𝑉 (𝜆, 𝑥, 𝜌)] 𝑔 (𝑥) 𝑑𝑥

(2)

since 𝑔(𝑥) = 𝑔(1 − 𝑥) for all 0 ≤ 𝑥 ≤ 1. For simplicity, we will
let𝑉(𝑦) denote𝑉(𝜆, 𝑦, 𝜌) for fixed 𝜆 and 𝜌. It is easy to check
that for all 0 ≤ 𝑦 ≤ 𝜆, 𝑉(𝑦) = 𝜌𝐺(𝜆 + 𝑐)𝑉(𝑦) + ∫

1−𝜆−𝑐

0
[1 +

𝜌𝑉(𝑥)]𝑔(𝑥)𝑑𝑥, for all 𝜆 < 𝑦 ≤ 1− 𝑐,𝑉(𝑦) = 𝜌𝐺(𝑦 + 𝑐)𝑉(𝑦) +

∫
1−𝑦−𝑐

0
[1 + 𝜌𝑉(𝑥)]𝑔(𝑥)𝑑𝑥, and for all 1 − 𝑐 < 𝑦 ≤ 1,𝑉(𝑦) = 0.

Since for all 0 ≤ 𝑦 ≤ 𝜆,𝑉(𝑦) = 𝑉(𝜆),𝑉(𝑦) = 𝜌𝐺(𝑦+𝑐)𝑉(𝑦)+

[1 + 𝜌𝑉(𝜆)]𝐺(1 − 𝑦 − 𝑐) for all 1 − 𝜆 − 𝑐 ≤ 𝑦 ≤ 1 − 𝑐. Since
𝐺(1 − 𝑦 − 𝑐) = 1 − 𝐺(𝑦 + 𝑐), 𝑉(𝑦) = 𝜌𝐺(𝑦 + 𝑐)𝑉(𝑦) + [1 +

𝜌𝑉(𝜆)][1−𝐺(𝑦+𝑐)] for all 1−𝜆−𝑐 ≤ 𝑦 ≤ 1−𝑐. From now on,
we will let𝑉󸀠(𝜆) denote the right derivative of the function𝑉
at 𝜆 and 𝑉󸀠(1 − 𝑐) denote the left derivative of the function 𝑉
at 1 − 𝑐.

For 𝜆 < 𝑦 < 1−𝑐, when we differentiate𝑉(𝑦)we have the
following differential equation:

𝑉
󸀠
(𝑦) {1 − 𝜌𝐺 (𝑦 + 𝑐)}

= 𝜌𝑔 (𝑦 + 𝑐)𝑉 (𝑦)

− [1 + 𝜌𝑉 (1 − 𝑦 − 𝑐)] 𝑔 (1 − 𝑦 − 𝑐) .

(3)

Since 𝑔(1 − 𝑦 − 𝑐) = 𝑔(𝑦 + 𝑐) and 𝑔(1 − 𝑦) = 𝑔(𝑦). Now we
have the following differential equations:

𝑉
󸀠
(𝑦) {1 − 𝜌𝐺 (𝑦 + 𝑐)}

= 𝜌𝑔 (𝑦 + 𝑐)𝑉 (𝑦) − [1 + 𝜌𝑉 (1 − 𝑦 − 𝑐)] 𝑔 (𝑦 + 𝑐)

= 𝑔 (𝑦 + 𝑐) {𝜌 [𝑉 (𝑦) − 𝑉 (1 − 𝑦 − 𝑐)] − 1} ,

(4)

𝑉
󸀠
(1 − 𝑦 − 𝑐) {1 − 𝜌𝐺 (1 − 𝑦)}

= 𝜌𝑔 (𝑦)𝑉 (1 − 𝑦 − 𝑐) − [1 + 𝜌𝑉 (𝑦)] 𝑔 (𝑦)

= 𝑔 (𝑦) {𝜌 [𝑉 (1 − 𝑦 − 𝑐) − 𝑉 (𝑦)] − 1} .

(5)

Add (3) and (4) together, we have

𝑉
󸀠
(1 − 𝑦 − 𝑐)

1 − 𝜌𝐺 (1 − 𝑦)

𝑔 (𝑦)
= −𝑉
󸀠
(𝑦)

1 − 𝜌𝐺 (𝑦 + 𝑐)

𝑔 (𝑦 + 𝑐)
− 2.

(6)

In summary, we have the following equations:

𝑉 (1 − 𝜆 − 𝑐) [1 − 𝜌 + 𝜌𝐺 (𝜆)] = [1 + 𝜌𝑉 (𝜆)] 𝐺 (𝜆) ,

𝑉
󸀠
(𝜆) [1 − 𝜌𝐺 (𝜆 + 𝑐)]

= 𝑔 (𝜆 + 𝑐) {𝜌 [𝑉 (𝜆) − 𝑉 (1 − 𝜆 − 𝑐)] − 1} ,

𝑉
󸀠
(1 − 𝜆 − 𝑐) [1 − 𝜌 + 𝜌𝐺 (𝜆)]

= 𝑔 (𝜆) {𝜌 [𝑉 (1 − 𝜆 − 𝑐) − 𝑉 (𝜆)] − 1} .

(7)

For all 𝜆 ≤ 𝑦 ≤ 1 − 𝑐, let us define

ℎ (𝑦) =
[1 − 𝜌𝐺 (𝑦 + 𝑐)]

2

(1 − 𝜌 + 𝜌𝐺 (𝑦))

𝑔 (𝑦 + 𝑐)
. (8)

Then we have the following equation:

𝑉
󸀠
(1 − 𝜆 − 𝑐)

= 𝑉
󸀠
(𝜆)

ℎ (𝜆)

ℎ (1 − 𝜆 − 𝑐)

−
2𝜌

ℎ (1 − 𝜆 − 𝑐)
∫

1−𝜆−𝑐

𝜆

(1 − 𝜌 + 𝜌𝐺 (𝑥 − 𝑐)) 𝑔 (𝑥) 𝑑𝑥.

(9)

Proof of (9). Differentiate (4). Again, we have

𝑉
󸀠󸀠
(𝑦) [1 − 𝜌𝐺 (𝑦 + 𝑐)]

= 𝜌𝑔 (𝑦 + 𝑐) [2𝑉
󸀠
(𝑦) + 𝑉

󸀠
(1 − 𝑦 − 𝑐)]

+ 𝑔
󸀠
(𝑦 + 𝑐) {𝜌 [𝑉 (𝑦) − 𝑉 (1 − 𝑦 − 𝑐)] − 1} .

(10)

Replace 𝜌[𝑉(𝑦) − 𝑉(1 − 𝑦 − 𝑐)] − 1 by 𝑉󸀠(𝑦)((1 − 𝜌𝐺(𝑦 +

𝑐))/𝑔(𝑦 + 𝑐)) and replace 𝑉󸀠(1 − 𝑦 − 𝑐) by {−2 − 𝑉
󸀠
(𝑦)((1 −

𝜌𝐺(𝑦 + 𝑐))/𝑔(𝑦 + 𝑐))}{𝑔(𝑦)/(1 − 𝜌 + 𝜌𝐺(𝑦))}. And after the
simplification, we have the following equation:

𝑉
󸀠󸀠
(𝑦) [1 − 𝜌𝐺 (𝑦 + 𝑐)]

= 𝜌𝑔 (𝑦 + 𝑐)
−2𝑔 (𝑦)

1 − 𝜌 + 𝜌𝐺 (𝑦)
+ 𝑉
󸀠
(𝑦)

× {𝑔
󸀠
(𝑦 + 𝑐)

1 − 𝜌𝐺 (𝑦 + 𝑐)

𝑔 (𝑦 + 𝑐)

+𝜌𝑔 (𝑦 + 𝑐) [2 −
𝑔 (𝑦) [1 − 𝜌𝐺 (𝑦 + 𝑐)]

𝑔 (𝑦 + 𝑐) [1 − 𝜌 + 𝜌𝐺 (𝑦)]
]}

+ 𝜌𝑔 (𝑦 + 𝑐) .

(11)
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Multiplying both sides of (11) by [1 − 𝜌 + 𝜌𝐺(𝑦)][1 − 𝜌𝐺(𝑦 +
𝑐)]/𝑔(𝑦 + 𝑐), we obtain the following equation:

𝑉
󸀠󸀠
(𝑦)

[1 − 𝜌𝐺 (𝑦 + 𝑐)]
2

[1 − 𝜌 + 𝜌𝐺 (𝑦)]

𝑔 (𝑦 + 𝑐)

= −2𝜌𝑔 (𝑦) [1 − 𝜌𝐺 (𝑦 + 𝑐)]

+ 𝑉
󸀠
(𝑦) 𝑔
󸀠
(𝑦 + 𝑐) [

1 − 𝜌𝐺 (𝑦 + 𝑐)

𝑔 (𝑦 + 𝑐)
]

2

[1 − 𝜌 + 𝜌𝐺 (𝑦)]

+ 𝑉
󸀠
(𝑦) 𝜌𝑔 (𝑦 + 𝑐) {2

[1 − 𝜌 + 𝜌𝐺 (𝑦)] [1 − 𝜌𝐺 (𝑦 + 𝑐)]

𝑔󸀠 (𝑦 + 𝑐)

−𝑔 (𝑦) [
1 − 𝜌𝐺 (𝑦 + 𝑐)

𝑔 (𝑦 + 𝑐)
]

2

} .

(12)

Notice that

−ℎ
󸀠
(𝑦) = 𝑔

󸀠
(𝑦 + 𝑐) [

1 − 𝜌𝐺 (𝑦 + 𝑐)

𝑔 (𝑦 + 𝑐)
]

2

[1 − 𝜌 + 𝜌𝐺 (𝑦)]

+ 𝜌𝑔 (𝑦 + 𝑐) {2
[1 − 𝜌 + 𝜌𝐺 (𝑦)] [1 − 𝜌𝐺 (𝑦 + 𝑐)]

𝑔󸀠 (𝑦 + 𝑐)

−𝑔 (𝑦) [
1 − 𝜌𝐺 (𝑦 + 𝑐)

𝑔 (𝑦 + 𝑐)
]

2

} .

(13)

Equation (12) can be rewritten as

𝑉
󸀠󸀠
(𝑦) ℎ (𝑦) + 𝑉

󸀠
(𝑦) ℎ
󸀠
(𝑦) = −2𝜌 [1 − 𝜌𝐺 (𝑦 + 𝑐)] 𝑔 (𝑦) .

(14)

By integrating both sides of (14), we have

𝑉
󸀠
(𝑦) = 𝑉

󸀠
(𝜆)

ℎ (𝜆)

ℎ (𝑦)
−

2𝜌

ℎ (𝑦)
∫

𝑦

𝜆

[1 − 𝜌𝐺 (𝑧 + 𝑐)] 𝑔 (𝑧) 𝑑𝑧.

(15)

Therefore, we have the following theorem.

Theorem 1.

(i) 𝑉 (1 − 𝜆 − 𝑐) [1 − 𝜌 + 𝜌𝐺 (𝜆)] = [1 + 𝜌𝑉 (𝜆)] 𝐺 (𝜆) ,

(ii) 𝑉󸀠 (𝜆) [1 − 𝜌𝐺 (𝜆 + 𝑐)]

= 𝑔 (𝜆 + 𝑐) {𝜌 [𝑉 (𝜆) − 𝑉 (1 − 𝜆 − 𝑐)] − 1} ,

(iii) 𝑉󸀠 (1 − 𝜆 − 𝑐) [1 − 𝜌 + 𝜌𝐺 (𝜆)]

= 𝑔 (𝜆) {𝜌 [𝑉 (1 − 𝜆 − 𝑐) − 𝑉 (𝜆)] − 1} ,

(iv) 𝑉󸀠 (1 − 𝜆 − 𝑐)

= 𝑉
󸀠
(𝜆)

ℎ (𝜆)

ℎ (1 − 𝜆 − 𝑐)
−

2𝜌

ℎ (1 − 𝜆 − 𝑐)

× ∫

1−𝜆

𝜆+𝑐

[1 − 𝜌 + 𝜌𝐺 (𝑥 − 𝑐)] 𝑔 (𝑥) 𝑑𝑥.

(16)

Now we have four unknown variables 𝑉(𝜆), 𝑉(1 − 𝜆 − 𝑐),
and 𝑉󸀠(𝜆), 𝑉󸀠(1 − 𝜆 − 𝑐) and also have four linear equations
involving these four unknown variables. We solve these four
linear equations and obtain the following solutions.

Theorem 2.

(i) 𝑉 (𝜆) = (𝜌𝐺 (𝜆) [1 − 𝜌𝐺 (𝜆 + 𝑐)]

+𝜌∫

1−𝜆

𝜆+𝑐

[1 − 𝜌 + 𝜌𝐺 (𝑥 − 𝑐)] 𝑔 (𝑥) 𝑑𝑥)

× (𝜌 (1 − 𝜌) [1 − 𝜌𝐺 (𝜆 + 𝑐)])
−1

,

(ii) 𝑉󸀠 (𝜆) = (𝑔 (𝜆 + 𝑐)

× {𝜌∫

1−𝜆

𝜆+𝑐

[1 − 𝜌 + 𝜌𝐺 (𝑥 − 𝑐)] 𝑔 (𝑥) 𝑑𝑥

− [1 − 𝜌𝐺 (𝜆 + 𝑐)]

× [1 − 𝜌 + 𝜌𝐺 (𝜆)] })

× ([1 − 𝜌𝐺 (𝜆 + 𝑐)]
2

[1 − 𝜌 + 𝜌𝐺 (𝜆)])
−1

,

(iii) 𝑉 (1 − 𝜆 − 𝑐)

= 𝐺 (𝜆) {( [1 − 𝜌 + 𝜌𝐺 (𝜆)] [1 − 𝜌𝐺 (𝜆 + 𝑐)]

−𝜌∫

1−𝜆

𝜆+𝑐

[1 − 𝜌 + 𝜌𝐺 (𝑥 − 𝑐)] 𝑔 (𝑥) 𝑑𝑥)

× ((1 − 𝜌) [1 − 𝜌𝐺 (𝜆 + 𝑐)]

× [1 − 𝜌 + 𝜌𝐺 (𝜆)])
−1

} .

(17)

ByTheorem 2, 𝑉󸀠(𝜆) = 0 if and only if

𝜌∫

1−𝜆

𝜆+𝑐

[1 − 𝜌 + 𝜌𝐺 (𝑥 − 𝑐)] 𝑔 (𝑥) 𝑑𝑥

= [1 − 𝜌𝐺 (𝜆 + 𝑐)] [1 − 𝜌 + 𝜌𝐺 (𝜆)]

(18)

since 𝑔(𝜆+𝑐) and [1−𝜌𝐺(𝜆+𝑐)]2[1−𝜌+𝜌𝐺(𝜆)] are positive.
For each 0 < 𝜌 < 1, let 𝜆(𝜌) denote a solution of 𝑉󸀠(𝜆) = 0.
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The next theorem indicates that when 𝜌 < 1 but close enough
to 1, 𝜆(𝜌) is unique and 0 ≤ 𝜆(𝜌) < (1 − 𝑐)/2.

Theorem 3. When 𝜌 < 1 but close enough to 1, 𝜆(𝜌) is unique
and 0 ≤ 𝜆(𝜌) < (1 − 𝑐)/2.

Proof. For all 0 ≤ 𝜆 < (1 − 𝑐)/2, let

𝐾 (𝜆) = 𝜌∫

1−𝜆

𝜆+𝑐

[1 − 𝜌 + 𝜌𝐺 (𝑥 − 𝑐)] 𝑔 (𝑥) 𝑑𝑥

− [1 − 𝜌𝐺 (𝜆 + 𝑐)] [1 − 𝜌 + 𝜌𝐺 (𝜆)] .

(19)

Then

𝐾
󸀠
(𝜆) = − 𝜌 {𝑔 (1 − 𝜆) [1 − 𝜌 + 𝜌𝐺 (1 − 𝜆 − 𝑐)]

+𝑔 (𝜆) [1 − 𝜌𝐺 (𝜆 + 𝑐)]} < 0,

𝐾(
1 − 𝑐

2
)

= − [1 − 𝜌 + 𝜌𝐺(
1 − 𝑐

2
)] [1 − 𝜌𝐺(

1 + 𝑐

2
)] < 0,

𝐾 (0) = 𝜌
2
∫

1

𝑐

𝐺 (𝑥 − 𝑐) 𝑔 (𝑥) 𝑑𝑥 − (1 − 𝜌)
2

> 0

(20)

if 𝜌 is close enough to 1. Therefore, 0 ≤ 𝜆(𝜌) < (1 − 𝑐)/2 and
𝜆(𝜌) is unique if 𝜌 is close enough to 1. This completes the
proof of Theorem 3.

A routine calculation is as follows:

𝑉
󸀠󸀠
(𝜆 (𝜌)) =

−2𝜌𝑔 (𝜆 (𝜌)) 𝑔 (𝜆 (𝜌) + 𝑐)

[1 − 𝜌 + 𝜌𝐺 (𝜆 (𝜌))] [1 − 𝜌𝐺 (𝜆 (𝜌) + 𝑐)]
< 0.

(21)

So we have found the maximum of the function 𝑉. After the
simplification,

𝑉 (𝜆 (𝜌) , 𝜆 (𝜌) , 𝜌) =
1 − 𝜌 + 2𝜌𝐺 (𝜆 (𝜌))

𝜌 (1 − 𝜌)
(22)

if 𝜌 is close enough to 1.Therefore, (1−𝜌)𝑉(𝜆(𝜌), 𝜆(𝜌), 𝜌) →
2𝐺(𝜆(1)) as 𝜌 ↑ 1, where

∫

1−𝜆(1)

𝜆(1)+𝑐

𝐺 (𝑥 − 𝑐) 𝑔 (𝑥) 𝑑𝑥 = 𝐺 (𝜆 (1)) [1 − 𝐺 (𝜆 (1) + 𝑐)] .

(23)

Example 4. When 𝑐 = 0, then 2𝐺(𝜆(1)) = 2 − √2.

Example 5. When 𝐺(𝑥) = 𝑥 for all 0 ≤ 𝑥 ≤ 1, then
2𝐺(𝜆(1)) = (1 − 𝑐)(2 − √2).

In [1], the following two strategies are mentioned:
(I) the maximally timid strategy which can be described

as follows: at the start, accept the first observation
which is less than 1/2, then accept the next one which
is greater than 1/2, then accept the next one which is
less than 1/2. Continue this way until we observe 𝑛
observations, then we stop;

(II) the purely greedy strategy which can be described as
follows: at the start, accept the first observation, then
accept the next one which is greater than the first
one, accept the next one which is less than the second
selected one, then accept the next one which is greater
than the third selected one. Continue this way until
we observe 𝑛 observations, then we stop.

Now we define these two strategies for the 𝑐-alternating
subsequence as follows:

(I󸀠) the maximally 𝑐-timid strategy which can be des-
cribed as follows: at the start, accept the first obser-
vation which is less than (1−𝑐)/2, accept the next one
which is greater than (1 + 𝑐)/2, accept the next one
which is less than (1 − 𝑐)/2, then accept the next one
which is greater than (1+𝑐)/2. Continue this way until
we observe 𝑛 observations, then we stop;

(II󸀠) the purely 𝑐-greedy strategy which can be described
as follows: at the start, accept the first observation
which is less than 1 − 𝑐, accept the next one which is
greater than the first selected one +𝑐, accept the next
onewhich is less than the second selected one−𝑐, then
accept the next one which is greater than the third
selected one +𝑐. Continue this way until we observe
𝑛 observations, then we stop.

When 𝑐 = 0, the maximally 𝑐-timid strategy is the maxi-
mally timid strategy and the purely 𝑐-greedy strategy is the
purely greedy strategy. In fact, themaximally 𝑐-timid strategy
is the case when 𝜆 = (1−𝑐)/2 and the purely 𝑐-greedy strategy
is the case when 𝜆 = 0.

The asymptotic selection rate for the maximally 𝑐-timid
strategy is 𝐺((1 − 𝑐)/2) and the asymptotic selection rate for
the purely 𝑐-greedy strategy is ∫1−𝑐

0
𝐺(𝑥)𝑔(𝑥+𝑐)𝑑𝑥/(1−𝐺(𝑐)).

Example 6. When 𝑐 = 0, then the asymptotic selection rate
for both the maximally timid strategy and the purely greedy
strategy is 1/2. These results are the same as those in [1].

Example 7. When 𝐺(𝑥) = 𝑥 for all 0 ≤ 𝑥 ≤ 1, then the
asymptotic selection rate for both the maximally 𝑐-timid
strategy and the purely 𝑐-greedy strategy is (1/2)(1 − 𝑐). It
is easy to see these results are consistent with the result of
Example 5.

If the random variables 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
are independent,

identically distributed symmetric random variables over the
interval [𝑎, 𝑏], where 𝑎 < 𝑏 and 𝑎, 𝑏 are finite, then
we can change 𝑋

𝑖
into 𝑍

𝑖
by 𝑍
𝑖

= (𝑋
𝑖
− 𝑎)/(𝑏 − 𝑎).

Then 𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑛
are independent, identically distributed

symmetric random variables over the interval [0, 1]. Let
𝑐
󸀠
= 𝑐/(𝑏 − 𝑎). Then selecting a 𝑐-alternating subsequence

from the random sample 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
is exactly the same

to select a 𝑐
󸀠-alternating subsequence from the random

sample 𝑍
1
, 𝑍
2
, . . . , 𝑍

𝑛
. So the asymptotic selection rate is still
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Table 1: The asymptotic optimal selection rates for various distributions and 𝑐.

𝑐 𝐺
1
(𝑥) 𝐺

2
(𝑥) 𝐺

3
(𝑥) 𝐺

4
(𝑥) 𝐺

5
(𝑥)

0.0 2 − √2 2 − √2 2 − √2 2 − √2 2 − √2

0.1 0.540492 0.545962 0.527208 0.499942 0.481120

0.2 0.509190 0.506516 0.468629 0.414948 0.380891

0.3 0.489881 0.466834 0.410051 0.332852 0.291619

0.4 0.466034 0.426295 0.351472 0.255622 0.214252

0.5 0.424335 0.384147 0.292893 0.185176 0.148786

0.6 0.366680 0.339473 0.234315 0.123399 0.095223

0.7 0.294696 0.290641 0.175736 0.072153 0.053563

0.8 0.209273 0.234738 0.117157 0.033284 0.023806

0.9 0.110936 0.164273 0.058579 0.008624 0.005952

1.0 0 0 0 0 0

the same.Orwe can find𝜆(1) directly by solving the following
equation:

∫

𝑏−𝑎−𝜆(1)

𝑎+𝜆(1)+𝑐

𝐺 (𝑥 − 𝑐) 𝑔 (𝑥) 𝑑𝑥

= 𝐺 (𝑎 + 𝜆 (1)) [1 − 𝐺 (𝑎 + 𝜆 (1) + 𝑐)] .

(24)

For 0 ≤ 𝑐 ≤ (𝑏−𝑎), 𝑎 ≤ 𝑦 ≤ (𝑏−𝑐), and 𝑎 ≤ 𝜆 < 𝑎+(𝑏−𝑎−𝑐)/2

the threshold function𝑓∗ is defined by𝑓∗(𝑦) = max(𝜆, 𝑦)+𝑐
for all 𝑎 ≤ 𝑦 ≤ (𝑏−𝑐).This time, we recursively define random
variables {𝑌

𝑖
: 𝑖 = 1, 2, . . .} by setting 𝑌

0
= 𝑦 and taking 𝑌

𝑖
=

𝑌
𝑖−1

if 𝑋
𝑖
< 𝑓
∗
(𝑌
𝑖−1
), 𝑌
𝑖
= 𝑏 − 𝑋

𝑖
if 𝑋
𝑖
≥ 𝑓
∗
(𝑌
𝑖−1
). Here

𝑎 ≤ 𝑦 ≤ (𝑏 − 𝑐),

𝐺
1
(𝑥) =

{{

{{

{

2𝑥 (1 − 𝑥) if 0 ≤ 𝑥 ≤
1

2
,

1 − 2𝑥 + 2𝑥
2 if 1

2
< 𝑥 ≤ 1,

𝐺
2
(𝑥) =

2

𝜋
sin−1 (√𝑥) ,

𝐺
3
(𝑥) = 𝑥,

𝐺
4
(𝑥) = 3𝑥

2
− 2𝑥
3
,

𝐺
5
(𝑥) =

{{

{{

{

2𝑥
2 if 0 ≤ 𝑥 ≤

1

2
,

−2𝑥
2
+ 4𝑥 − 1 if 1

2
< 𝑥 ≤ 1.

(25)

From Table 1, it seems that when the distribution has
higher chances on the tails, then the asymptotic optimal
selection rate is higher. On the other hand, when the distri-
bution has higher chance near the center, then the asymptotic
optimal selection rate is lower. However, we do not have a
proof for this statement.

We are now considering the case when 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛

have an arbitrary distribution. We have made some progress,
but it is still in the premature state. We hope to be able to find
the asymptotic optimal selection rate in a forth coming paper.
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