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Tian et al. (2007) introduced a so-called hidden sensitivity model for evaluating the association of two sensitive questions with
binary outcomes. However, in practice, we sometimes need to assess the association between one sensitive binary variable (e.g.,
whether or not a drug user, the number of sex partner being ⩽1 or >1, and so on) and one nonsensitive binary variable (e.g., good or
poor health status, with or without cervical cancer, and so on). To address this issue, by sufficiently utilizing the information con-
tained in the non-sensitive binary variable, in this paper, we propose a new survey scheme, called combination questionnaire
design/model, which consists of a main questionnaire and a supplemental questionnaire. The introduction of the supplemental
questionnaire which is indeed a design of direct questioning can effectively reduce the noncompliance behavior since more
respondents will not be faced with the sensitive question. Likelihood-based inferences including maximum likelihood estimates
via the expectation-maximization algorithm, asymptotic confidence intervals, and bootstrap confidence intervals of parameters of
interest are derived. A likelihood ratio test is provided to test the association between the two binary random variables. Bayesian
inferences are also discussed. Simulation studies are performed, and a cervical cancer data set in Atlanta is used to illustrate the
proposed methods.

1. Introduction

Warner [1] introduced a randomized response technique to
obtain truthful answers to questions with sensitive attributes.
Using the Warner design, Kraemer [2] derived a bivariate
correlation between an attribute with polytomous responses
and an attribute with normally distributed responses. Fox and
Tracy [3] derived estimation of the Pearson product moment
correlation coefficient between two sensitive questions by
assuming that randomized response observations can be
treated as individual-level scores that are contaminated by
random measurement error. Edgell et al. [4] considered
the correlation between two sensitive questions using the
unrelated question design or the additive constants design.
Christofides [5] presented a randomized response technique
with two randomization devices to estimate the proportion
of individuals having two sensitive characteristics at the
same time. Kim and Warde [6] considered a multinomial

randomized response model which can handle untruthful
responses. They also derived the Pearson product moment
correlation estimator which may be used to quantify the
linear relationship between two variables when multinomial
response data are observed according to a randomized
response procedure. However, all these randomized response
procedures make use of one or two randomizing devices
which (i) entail extra costs in both efficiency and complexity,
(ii) increase the cognitive load of randomized response
techniques, and (iii) allow for new sources of error, such as
misunderstanding the randomized response procedures or
cheating on the procedures [7].

From the perspective of incomplete categorical data
design, Tian et al. [8] proposed a nonrandomized response
model (called the hidden sensitivity model) for assessing the
association of two sensitive questions with binary outcomes.
To protect respondents’ privacy and to avoid the use of any
randomization device, they utilized a non-sensitive question
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in the questionnaire to indirectly obtain respondents’ answers
to the two sensitive questions. In the hidden sensitivity
model, they implicitly assumed that all respondents are
willing to follow the design instructions. In other words, the
noncompliance behavior will not occur. However, in practice,
we sometimes need to assess the association between one
sensitive binary variable (e.g., whether or not a drug user, the
number of sex partner being ⩽1 or >1, and so on) and one
nonsensitive binary variable (e.g., good or poor health status,
with or without cervical cancer, and so on). To our know-
ledge, the survey design for addressing this issue and cor-
responding statistical analysis methods are not available.
Although we could directly adopt the hidden sensitivity
model, the information contained in the nonsensitive binary
variable cannot be utilized in the design. Intuitively, such
information can be used to enhance the degree of privacy pro-
tection, so that more respondents will not be faced with the
sensitive question.Themajor objective of this paper is to pro-
pose a new survey design and to develop corresponding sta-
tistical methods for analyzing sensitive data collected by this
technique.

The rest of the paper is organized as follows. In Section 2,
without using any randomizing device, we propose a survey
scheme, called combination questionnaire design/model,
which consists of a main questionnaire and a supplemental
questionnaire. Likelihood-based inferences including maxi-
mum likelihood estimates via an expectation–maximization
(EM) algorithm, asymptotic confidence intervals, and boot-
strap confidence intervals of parameters of interest are
derived in Section 3. A likelihood ratio test is also provided to
test the association between the two binary random variables.
In Section 4,we discuss Bayesian inferenceswhen prior infor-
mation on parameters is available. In Section 5, two simu-
lation studies are performed to compare the efficiency of
the proposed combination questionnaire model with that of
the existing hidden sensitivity model of Tianet al. [8] (i.e.,
the main questionnaire only). A cervical cancer data set in
Atlanta is used in Section 6 to illustrate the proposed meth-
ods. A discussion and an appendix on the mode of a group
Dirichlet density and a sampling method from it are also
presented.

2. The Survey Design

Assume that 𝑋 is a sensitive binary random variable, 𝑌 is
a non-sensitive binary random variable, and they are corre-
lated. Let {𝑋 = 1} denote the sensitive class (e.g., 𝑋 = 1 if a
respondent is a drug user) and {𝑋 = 0} denote the non-sen-
sitive class (e.g., 𝑋 = 0 if a respondent is not a drug user).
Furthermore, let both {𝑌 = 1} (e.g., 𝑌 = 1 if a respondent
receives at least some college training) and {𝑌 = 0} (e.g.,
𝑌 = 0 if a respondent graduates at most from some high
school) be non-sensitive classes. Define 𝜃 = (𝜃

1
, . . . , 𝜃

4
)
⊤,

where 𝜃
1
= Pr(𝑋 = 0, 𝑌 = 0), 𝜃

2
= Pr(𝑋 = 1, 𝑌 = 0),

𝜃
3
= Pr(𝑋 = 1, 𝑌 = 1), and 𝜃

4
= Pr(𝑋 = 0, 𝑌 = 1), then

𝜃 ∈ T
4
, where

T
𝑛
=̂ {(𝑥

1
, . . . , 𝑥

𝑛
)
⊤

: 𝑥
𝑖
⩾ 0, 𝑖 = 1, . . . , 𝑛,

𝑛

∑

𝑖=1

𝑥
𝑖
= 1} (1)

Table 1: The main questionnaire for the combination questionnaire
model.

Category 𝑊 = 1 𝑊 = 2 𝑊 = 3

I: {𝑋 = 0, 𝑌 = 0} Block 1: — Block 2: — Block 3: —
II: {𝑋 = 1, 𝑌 = 0} Category II: Please put a tick in Block 2
III: {𝑋 = 1, 𝑌 = 1} Category III: Please put a tick in Block 3
IV: {𝑋 = 0, 𝑌 = 1} Block 4: —
Note: Only {𝑋 = 1} is a sensitive class, while {𝑋 = 0}, {𝑌 = 0}, and {𝑌 = 1}
are nonsensitive classes.

Table 2: The supplemental questionnaire for the combination
questionnaire model.

Category

{𝑌 = 0}
Please put a tick in Block 5: — if you belong to

{𝑌 = 0}

{𝑌 = 1}
Please put a tick in Block 6: — if you belong to

{𝑌 = 1}

Note: Both the {𝑌 = 0} and {𝑌 = 1} are nonsensitive classes.

denotes the 𝑛-dimensional closed simplex in R𝑛. The objec-
tive is to make inferences on 𝜃, 𝜃

𝑥
=̂ Pr (𝑋 = 1) = 𝜃

2
+ 𝜃
3
,

𝜃
𝑦
=̂ Pr(𝑌 = 1) = 𝜃

4
+ 𝜃
3
and the odds ratio 𝜓 = 𝜃

1
𝜃
3
/(𝜃
2
𝜃
4
).

The survey scheme consists of a main questionnaire and
a supplemental questionnaire. To design the main question-
naire which is to be assigned to group 1 with 𝑛 respondents
(𝑛 is specified by the investigators), we first introduce a non-
sensitive question (say, 𝑄

𝑊
) with three possible answers.

Assume that 𝑊 is a non-sensitive variate with trichotomous
outcomes associated with the 𝑄

𝑊
and 𝑊 is independent of

both 𝑋 and 𝑌. Define 𝑝
𝑖
= Pr(𝑊 = 𝑖) for 𝑖 = 1, 2, 3. For

example, let𝑊 = 1 (2, 3) denote that a respondent was born
in January–April (May–August, September–December), and
thus we could assume that 𝑝

𝑖
≈ 1/3. The main questionnaire

is shown in Table 1, under which each respondent is asked to
answer the non-sensitive question 𝑄

𝑊
.

On the one hand, since Category I (i.e., {𝑋 = 0, 𝑌 = 0})
and Category IV (i.e., {𝑋 = 0, 𝑌 = 1}) are non-sensitive to
each respondent, it is reasonable to assume that a respondent
is willing to provide his/her truthful answer by putting a tick
in Block 𝑖 (𝑖 = 1, . . . , 4) according to his/her true status.
On the other hand, Category II (i.e., {𝑋 = 1, 𝑌 = 0}) and
Category III (i.e., {𝑋 = 1, 𝑌 = 1}) are usually sensitive to
respondents. In this case, if a respondent belongs to Category
II (III), he/she is designed to put a tick in Block 2 (3).

The supplemental questionnaire is designed as shown in
Table 2, under which 𝑚 respondents (𝑚 is also specified by
the investigators) in group 2 are asked to put a tick in Block
5 or Block 6 depending on their true status; that is, {𝑌 = 0}

or {𝑌 = 1}. Since both the {𝑌 = 0} and {𝑌 = 1} are non-
sensitive classes, the supplemental questionnaire is in fact a
design of direct questioning.Therefore, we call this design the
combination questionnaire model.

Table 3 shows the cell probabilities {𝜃
𝑖
}
4

𝑖=1
, the observed

frequencies {𝑛
𝑖
}
4

𝑖=1
and the unobservable frequencies {𝑍

𝑖
}
3

𝑖=1
,

for the main questionnaire. The observed frequency 𝑛
2
is the

sumof the frequency of respondents belonging to Block 2 and



Journal of Probability and Statistics 3

Table 3: Cell probabilities, observed and unobservable counts for
the main questionnaire.

Category 𝑊 = 1 𝑊 = 2 𝑊 = 3 Total
I: {𝑋 = 0, 𝑌 = 0} 𝑝

1
𝜃
1

𝑝
2
𝜃
1

𝑝
3
𝜃
1

𝜃
1
(𝑍
1
)

II: {𝑋 = 1, 𝑌 = 0} 𝜃
2
(𝑍
2
)

III: {𝑋 = 1, 𝑌 = 1} 𝜃
3
(𝑍
3
)

IV: {𝑋 = 0, 𝑌 = 1} 𝜃
4
(𝑛
4
) 𝜃

4
(𝑛
4
)

Total 𝑝
1
𝜃
1
(𝑛
1
) 𝑝
2
𝜃
1
+ 𝜃
2
(𝑛
2
) 𝑝
3
𝜃
1
+ 𝜃
3
(𝑛
3
) 1(𝑛)

Note: 𝑛 = ∑4
𝑖=1
𝑛𝑖,𝑍1 = 𝑛−(𝑍2 +𝑍3)−𝑛4, where (𝑍2, 𝑍3) are unobservable.

Table 4:Cell probabilities andobserved counts for the supplemental
questionnaire.

Category Total
{𝑌 = 0} Block 5: — 𝜃

1
+ 𝜃
2
(𝑚
0
)

{𝑌 = 1} Block 6: — 𝜃
3
+ 𝜃
4
(𝑚
1
)

Total 1 (𝑚)

Note:𝑚 = 𝑚0 + 𝑚1.

the frequency of those belonging toCategory II.The observed
frequency 𝑛

3
is the sum of the frequency of respondents

belonging to Block 3 and the frequency of those belonging
to Category III. Note that 𝑛 = ∑

4

𝑖=1
𝑛
𝑖
= ∑
3

𝑖=1
𝑍
𝑖
+ 𝑛
4
, we have

𝑍
1
= 𝑛−(𝑍

2
+𝑍
3
)−𝑛
4
.Thus, only𝑍

2
and𝑍

3
are unobservable.

Table 4 shows the cell probabilities and observed counts for
the supplemental questionnaire.

Remark 1. The design of the main questionnaire is similar to
that of the hidden sensitivitymodel of Tian et al. [8], while the
design of the supplemental questionnaire is indeed a design
of direct questioning since both the {𝑌 = 0} and {𝑌 = 1} are
non-sensitive classes. Table 1 shows that Categories II and III
are two sensitive subclasses.Therefore, putting a tick in Block
2 or Block 3 implies that the respondent could be suspected
with the sensitive attribute. Let 𝜃

1
= ⋅ ⋅ ⋅ = 𝜃

4
≈ 0.25

(see Table 3); then around half of the, say, 2𝑛 respondents
will be suspected with the sensitive attribute if only the
main questionnaire is employed. However, besides the main
questionnaire (with 𝑛 respondents), if the supplemental ques-
tionnaire (see Table 2) with 𝑚 = 𝑛 respondents is also used,
then only half of the 𝑛 respondents will be suspected with
the sensitive attribute. In other words, in the proposed com-
bination questionnaire model, the information of the non-
sensitive binary variable 𝑌 can be used to enhance the degree
of privacy protection, so that more respondents will not be
facedwith the sensitive question.This is whywe introduce the
supplemental questionnaire besides the main questionnaire.

Remark 2. In practice, to simplify the design itself, we suggest
that both the sample size 𝑛 in the main questionnaire and
the sample size 𝑚 in the supplemental questionnaire should
be fixed in advance rather than the total sample size 𝑁 =

𝑛 + 𝑚 being fixed. In this way, survey data can be collected
in two independent groups, resulting in a relatively simpler
statistical analysis. In addition, the interviewees are randomly
assigned to either the group 1 or group 2.

3. Likelihood-Based Inferences

In this section, maximum likelihood estimates (MLEs) of the
𝜃 and the odds ratio 𝜓 are derived by using the EM algo-
rithm. In addition, asymptotic confidence intervals and the
bootstrap confidence intervals of an arbitrary function of 𝜃
are also provided. Finally, a likelihood ratio test is presented
for testing the association between the two binary random
variables.

3.1. MLEs via the EM Algorithm. A total of 𝑁 = 𝑛 + 𝑚

respondents are classified into two groups by a randomization
approach such that 𝑛 respondents answer the questions
in the main questionnaire and 𝑚 respondents answer the
questions in the supplemental questionnaire. Let 𝑌obs,M =

{𝑛; 𝑛
1
, . . . , 𝑛

4
} denote the observed counts collected in the

main questionnaire (see Table 3), where ∑
4

𝑖=1
𝑛
𝑖
= 𝑛. The

likelihood function of 𝜃 based on 𝑌obs,𝑀 is

𝐿 (𝜃 | 𝑌obs,𝑀) = (
𝑛

𝑛
1
, 𝑛
2
, 𝑛
3
, 𝑛
4

)

× (𝑝
1
𝜃
1
)
𝑛
1

{

3

∏

𝑖=2

(𝑝
𝑖
𝜃
1
+ 𝜃
𝑖
)
𝑛
𝑖

}𝜃
𝑛
4

4
.

(2)

Let 𝑌obs,𝑆 = {𝑚;𝑚
0
, 𝑚
1
} denote the observed counts gathered

in the supplemental questionnaire (see Table 4), where 𝑚
0
+

𝑚
1
= 𝑚. The likelihood function of 𝜃 based on 𝑌obs,𝑆 is

𝐿 (𝜃 | 𝑌obs,𝑆) = (
𝑚

𝑚
0

) (𝜃
1
+ 𝜃
2
)
𝑚
0

(𝜃
3
+ 𝜃
4
)
𝑚
1

. (3)

Let 𝑌obs = {𝑌obs,𝑀, 𝑌obs,𝑆}. Since 𝑌obs,𝑀 and 𝑌obs,𝑆 are inde-
pendent, the observed-data likelihood function of 𝜃 ∈ T

4
is

𝐿CQ (𝜃 | 𝑌obs,𝑆) ∝ 𝜃
𝑛
1

1
{

3

∏

𝑖=2

(𝑝
𝑖
𝜃
1
+ 𝜃
𝑖
)
𝑛
𝑖

}𝜃
𝑛
4

4

× (𝜃
1
+ 𝜃
2
)
𝑚
0

(𝜃
3
+ 𝜃
4
)
𝑚
1

,

(4)

where the subscript “CQ”denotes the “combination question-
naire” model.

Since the corresponding cell probabilities to the observed
counts 𝑛

2
and 𝑛
3
in the group 1 are in the form of summation

(i.e., 𝑝
𝑖
𝜃
1
+ 𝜃
𝑖
, 𝑖 = 2, 3), we cannot obtain the explicit

expressions of the MLEs of 𝜃 from the score equations of
(4). By treating the observed counts 𝑛

2
and 𝑛

3
as incomplete

data, we use the EM algorithm [9] to find the MLE �̂� of 𝜃.
The counts {𝑍

𝑖
}
3

𝑖=1
in Table 3 can be viewed as missing data.

Briefly,𝑍
1
,𝑍
2
,𝑍
3
, and 𝑛

4
represent the counts of the respond-

ents belonging to Categories I, II, III, and IV, respectively.
Thus, we denote the latent data by 𝑌mis = {𝑧

2
, 𝑧
3
} and the

complete data by 𝑌com = {𝑌obs, 𝑌mis}. Note that all {𝑝i} are
known. Consequently, the complete-data likelihood function
for 𝜃 is

𝐿CQ (𝜃 | 𝑌COM) ∝ (

3

∏

𝑖=1

𝜃
𝑧
𝑖

𝑖
)𝜃
𝑛
4

4
× (𝜃
1
+ 𝜃
2
)
𝑚
0

(𝜃
3
+ 𝜃
4
)
𝑚
1

,

(5)

where 𝑧
1
= 𝑛 − (𝑧

2
+ 𝑧
3
) − 𝑛
4
.
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By treating {𝜃
𝑖
}
4

𝑖=1
as random variables, we note that

the complete-data likelihood function (5) has the density
form of a grouped Dirichlet distribution [10]. Ng et al. [11]
derived the mode of a grouped Dirichlet density with explicit
expressions (see the appendix). Hence, from (A.4) and (A.5),
the complete-data MLEs for 𝜃 are given by

𝜃
1
= 1 − 𝜃

2
− 𝜃
3
− 𝜃
4
,

𝜃
2
=
𝑧
2

𝑁
(1 +

𝑚
0

𝑛 − 𝑧
3
− 𝑛
4

) ,

𝜃
3
=
𝑧
3

𝑁
(1 +

𝑚
1

𝑧
3
+ 𝑛
4

) ,

𝜃
4
=
𝑛
4

𝑁
(1 +

𝑚
1

𝑧
3
+ 𝑛
4

) .

(6)

Given 𝑌obs and 𝜃, 𝑍𝑖 follows the binomial distribution with
parameters 𝑛i and 𝜃

𝑖
/(𝑝
𝑖
𝜃
1
+ 𝜃
𝑖
); that is,

𝑍
𝑖
| (𝑌obs, 𝜃) ∼ Binomial(𝑛

𝑖
,

𝜃
𝑖

𝑝
𝑖
𝜃
1
+ 𝜃
𝑖

) , 𝑖 = 2, 3. (7)

Therefore, the E-step of the EM algorithm computes the
following conditional expectations:

𝐸 (𝑍
𝑖
| 𝑌obs, 𝜃) =

𝑛
𝑖
𝜃
𝑖

𝑝
𝑖
𝜃
1
+ 𝜃i

, 𝑖 = 2, 3, (8)

and the M-step updates (6) by replacing 𝑧
2
and 𝑧

3
with

previous conditional expectations.

Remark 3. Based on the observed-data likelihood function
(4), we could use the Newton-Raphson algorithm to find
the MLEs of 𝜃. However, it is well known that the Newton-
Raphson algorithm does not necessarily increase the log
likelihood, leading even to divergence sometimes [12, page
172]. In addition, the Newton–Raphson algorithm is sensitive
to the initial values. One advantage of using theEM algorithm
in the current situation is that both the E- and M-step
have closed-form expressions. More importantly, the EM
algorithm and the data augmentation algorithm of Tanner
and Wong [13] share the same data augmentation structure
in the Bayesian settings (see Section 4 for more details).

3.2. Asymptotic Confidence Intervals. Let 𝜃
−4

= (𝜃
1
, 𝜃
2
, 𝜃
3
)
⊤.

The asymptotic variance-covariance matrix of theMLE �̂�
−4

is
then given by I−1obs(�̂�−4), where

Iobs (𝜃−4) = −
𝜕
2
ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
−4
𝜕𝜃
⊤

−4

(9)

denotes the observed information matrix and ℓCQ(𝜃 |

𝑌obs) = log 𝐿CQ(𝜃 | 𝑌obs) is the observed-data log-likelihood
function. From (4), we have

ℓCQ (𝜃 | 𝑌obs) = 𝑛
1
log 𝜃
1
+ 𝑛
2
log (𝑝

2
𝜃
1
+ 𝜃
2
)

+ 𝑛
3
log (𝑝

3
𝜃
1
+ 𝜃
3
)

+ 𝑛
4
log (1 − 𝜃

1
− 𝜃
2
− 𝜃
3
)

+ 𝑚
0
log (𝜃

1
+ 𝜃
2
) + 𝑚
1
log (1 − 𝜃

1
− 𝜃
2
) .

(10)

It is easy to show that

𝜕ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
1

=
𝑛
1

𝜃
1

−
𝑛
4

𝜃
4

+

3

∑

𝑖=2

𝑛i𝑝i
𝑝i𝜃1 + 𝜃i

+
𝑚
0

𝜃
1
+ 𝜃
2

−
𝑚
1

1 − 𝜃
1
− 𝜃
2

,

𝜕ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
2

= −
𝑛
4

𝜃
4

+
𝑛
2

𝑝
2
𝜃
1
+ 𝜃
2

+
𝑚
0

𝜃
1
+ 𝜃
2

−
𝑚
1

1 − 𝜃
1
− 𝜃
2

,

𝜕ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
3

= −
𝑛
4

𝜃
4

+
𝑛
3

𝑝
3
𝜃
1
+ 𝜃
3

,

−
𝜕
2
ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
2

1

=
𝑛
1

𝜃
2

1

+
𝑛
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𝜃
2
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+

3
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𝑖
𝑝
2

𝑖

(𝑝
𝑖
𝜃
1
+ 𝜃
𝑖
)
2
+ 𝜙

−
𝜕
2
ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
2

2

=
𝑛
4

𝜃
2

4

+
𝑛
2

(𝑝
2
𝜃
1
+ 𝜃
2
)
2
+ 𝜙

−
𝜕
2
ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
2

3

=
𝑛
4

𝜃
2

4

+
𝑛
3

(𝑝
3
𝜃
1
+ 𝜃
3
)
2

−
𝜕
2
ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
1
𝜕𝜃
2

=
𝑛
4

𝜃
2

4

+
𝑛
2
𝑝
2

(𝑝
2
𝜃
1
+ 𝜃
2
)
2
+ 𝜙

−
𝜕
2
ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
1
𝜕𝜃
3

=
𝑛
4

𝜃
2

4

+
𝑛
3
𝑝
3

(𝑝
3
𝜃
1
+ 𝜃
3
)
2

−
𝜕
2
ℓCQ (𝜃 | 𝑌obs)

𝜕𝜃
2
𝜕𝜃
3

=
𝑛
4

𝜃
2

4

,

(11)

where

𝜙 =
𝑚
0

(𝜃
1
+ 𝜃
2
)
2
+

𝑚
1

(1 − 𝜃
1
− 𝜃
2
)
2
. (12)

Hence, the observed information matrix can be expressed as

Iobs (𝜃−4) = diag(𝑛
1

𝜃
2

1

, 0, 0) +
𝑛
4

𝜃
2

4

× 1
3
1⊤
3
+ A, (13)
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where
A =

(
(
(
(

(

3

∑

𝑖=2

𝑛
𝑖
𝑝
2

𝑖

(𝑝
𝑖
𝜃
1
+ 𝜃
𝑖
)
2
+𝜙,

𝑛
2
𝑝
2

(𝑝
2
𝜃
1
+ 𝜃
2
)
2
+𝜙,

𝑛
3
𝑝
3

(𝑝
3
𝜃
1
+𝜃
3
)
2

𝑛
2
𝑝
2

(𝑝
2
𝜃
1
+ 𝜃
2
)
2
+𝜙,

𝑛
2

(𝑝
2
𝜃
1
+ 𝜃
2
)
2
+𝜙, 0

𝑛
3
𝑝
3

(𝑝
3
𝜃
1
+ 𝜃
3
)
2
, 0,

𝑛
3

(𝑝
3
𝜃
1
+𝜃
3
)
2

)
)
)
)

)

.

(14)

Let se(𝜃
𝑖
) denote the standard error of 𝜃

𝑖
for 𝑖 = 1, 2, 3.

Note that se(𝜃
𝑖
) can be estimated by the square root of the 𝑖th

diagonal element of I−1obs(�̂�−4). We denote the estimated value
of se(𝜃

𝑖
) by ŝe(𝜃

𝑖
).Thus, a 95%normal-based asymptotic con-

fidence interval for 𝜃i can be constructed as

[𝜃
𝑖
− 1.96 × ŝe (𝜃

𝑖
) , 𝜃
𝑖
+ 1.96 × ŝe (𝜃

𝑖
)] , 𝑖 = 1, 2, 3. (15)

Let 𝜗 = ℎ(𝜃
−4
) be an arbitrary differentiable function of

𝜃
−4
. For example, 𝜃

4
= 1 − ∑

3

𝑖=1
𝜃i and the odds ratio 𝜓 =

𝜃
1
𝜃
3
/(𝜃
2
𝜃
4
).The deltamethod (e.g., [14, page 34]) can be used

to approximate the standard error of 𝜗 = ℎ(�̂�
−4
), and a 95%

normal-based asymptotic confidence interval for 𝜗 is given by

[𝜗 − 1.96 × ŝe (𝜗) , 𝜗 + 1.96 × ŝe (𝜗)] , (16)

where

ŝe (𝜗) = {(
𝜕𝜗

𝜕𝜃
−4

)

⊤

I−1obs (𝜃−4) (
𝜕𝜗

𝜕𝜃
−4

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜃
−4
= �̂�
−4

}

1/2

. (17)

3.3. Bootstrap Confidence Intervals. When the normal-based
asymptotic confidence interval like (15) is beyond the low
bound zero or the upper bound one, the bootstrap approach
[15] can be used to construct the bootstrap confidence inter-
val of 𝜗 = ℎ(𝜃

−4
). Based on the obtained MLE �̂�, we inde-

pendently generate

(𝑛
∗

1
, . . . , 𝑛

∗

4
)
⊤

∼ Multinomial (𝑛; 𝑝
1
𝜃
1
, 𝑝
2
𝜃
1
+ 𝜃
2
, 𝑝
3
𝜃
1
+ 𝜃
3
, 𝜃
4
) ,

(18)

𝑚
∗

0
∼ Binomial (𝑚, 𝜃

1
+ 𝜃
2
) . (19)

Having obtained 𝑌
∗

obs,𝑀 = {𝑛; 𝑛
∗

1
, . . . , 𝑛

∗

4
} and 𝑌

∗

obs,𝑆 =

{𝑚;𝑚
∗

0
, 𝑚
∗

1
}, where 𝑚

∗

1
= 𝑚 − 𝑚

∗

0
, we can calculate the

bootstrap replication 𝜗
∗
= ℎ(𝜃

∗

−4
) based on 𝑌

∗

obs = {𝑌
∗

obs,𝑀,

𝑌
∗

obs,𝑆} via theEM algorithm specified by (6) and (8). Indepen-
dently repeating this process 𝐺 times, we obtain 𝐺 bootstrap
replications {𝜗∗

𝑔
}
𝐺

𝑔=1
. Consequently, a (1 − 𝛼)100% bootstrap

confidence interval for 𝜗 is given by

[𝜗
𝐿
, 𝜗
𝑈
] , (20)

where 𝜗
𝐿
and 𝜗
𝑈
are the 100(𝛼/2) and 100(1−𝛼/2) percentiles

of {𝜗∗
𝑔
}
𝐺

𝑔=1
, respectively.

3.4. The Likelihood Ratio Test for Testing Association. The
likelihood ratio statistic can be used to test whether the
two binary random variables 𝑋 and 𝑌 are independent/cor-
related. The corresponding null and alternative hypotheses
are [16, page 45]

𝐻
0
: 𝜓 = 1 against 𝐻

1
: 𝜓 ̸= 1. (21)

The likelihood ratio statistic is defined by

Λ = −2 {ℓCQ (�̂�
𝑅
| 𝑌obs) − ℓCQ (�̂� | 𝑌obs)} , (22)

where �̂�
𝑅
denotes the restrictedMLE of 𝜃 under𝐻

0
, �̂� denotes

the MLE of 𝜃, which can be obtained by the EM algorithm
specified by (6) and (8), and ℓCQ(𝜃 | 𝑌obs) = log 𝐿CQ(𝜃 | 𝑌obs).

To find the restricted MLE �̂�
𝑅
, we also employ the 𝐸𝑀

algorithm. Under𝐻
0
: 𝜃
1
𝜃
3
= 𝜃
2
𝜃
4
, we have

𝜃
1
= (1 − 𝜃

𝑥
) (1 − 𝜃

𝑦
) ,

𝜃
2
= 𝜃
𝑥
(1 − 𝜃

𝑦
) ,

𝜃
3
= 𝜃
𝑥
𝜃
𝑦
,

𝜃
4
= (1 − 𝜃

𝑥
) 𝜃
𝑦
.

(23)

In otherwords, under𝐻
0
we only have two free parameters 𝜃

𝑥

and 𝜃
𝑦
. Having obtained the restrictedMLEs 𝜃

𝑥,𝑅
and 𝜃
𝑦,𝑅

, we
can compute the restricted MLE �̂�

𝑅
= (𝜃
1,𝑅

, . . . , 𝜃
4,𝑅

)
⊤ from

(23) by

𝜃
1,𝑅

= (1 − 𝜃
𝑥,𝑅

) (1 − 𝜃
𝑦,𝑅

) ,

𝜃
2,𝑅

= 𝜃
𝑥,𝑅

(1 − 𝜃
𝑦,𝑅

) ,

𝜃
3,𝑅

= 𝜃
𝑥,𝑅

𝜃
𝑦,𝑅

,

𝜃
4,𝑅

= (1 − 𝜃
𝑥,𝑅

) 𝜃
𝑦,𝑅

.

(24)

In what follows, we consider the computation of the
restricted MLEs 𝜃

𝑥,𝑅
and 𝜃

𝑦,𝑅
. Now, the complete-data like-

lihood function (5) becomes

𝐿CQ (𝜃
𝑥
, 𝜃
𝑦
| 𝑌com, 𝐻0)

∝ {(1 − 𝜃
𝑥
) (1 − 𝜃

𝑦
)}
𝑧
1

{𝜃
𝑥
(1 − 𝜃

𝑦
)}
𝑧
2

× (𝜃
𝑥
𝜃
𝑦
)
𝑧
3

{(1 − 𝜃
𝑥
) 𝜃
𝑦
}
𝑛
4

(1 − 𝜃
𝑦
)
𝑚
0

𝜃
𝑚
1

𝑦

= 𝜃
𝑧
2
+𝑧
3

𝑥
(1 − 𝜃

𝑥
)
𝑧
1
+𝑛
4

𝜃
𝑧
3
+𝑛
4
+𝑚
1

𝑦
(1 − 𝜃

𝑦
)
𝑧
1
+𝑧
2
+𝑚
0

(25)

so that the restricted MLEs of 𝜃
𝑥
and 𝜃

𝑦
based on the

complete-data are given by

𝜃
𝑥
=
𝑧
2
+ 𝑧
3

𝑛
, 𝜃

𝑦
=
𝑧
3
+ 𝑛
4
+ 𝑚
1

𝑁
, (26)

respectively.Thus, the𝑀-step of the𝐸𝑀 algorithm calculates
(26), and the 𝐸-step computes the conditional expectations
given in (8), where {𝜃

𝑖
} are defined in (23). Finally, under𝐻

0
,

Λ asymptotically follows chi-squared distribution with one
degree of freedom.
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4. Bayesian Inferences

To derive the posterior mode of 𝜃, we employ the EM algo-
rithm again. The latent data 𝑌mis = {𝑧

2
, 𝑧
3
} are the same as

those in Section 3.1. Based on the complete-data likelihood
function (5), if theDirichlet distributionDirichlet (𝑎

1
, . . . , 𝑎

4
)

is adopted as the prior distribution of 𝜃, then the complete-
data posterior distribution is a grouped Dirichlet (GD) distri-
bution with the formal definition given by (A.2); that is,

𝑓 (𝜃 | 𝑌obs, 𝑌mis) = GD
4,2,2

(𝜃
−4

| a, b) , (27)

where a = (𝑎
1
+𝑧
1
, 𝑎
2
+𝑧
2
, 𝑎
3
+𝑧
3
, 𝑎
4
+𝑛
4
)
⊤, b = (𝑚

0
, 𝑚
1
)
⊤,

and 𝑧
1
= 𝑛 − (𝑧

2
+ 𝑧
3
) − 𝑛
4
. The conditional predictive dis-

tribution is

𝑓 (𝑌mis | 𝑌obs, 𝜃) =
3

∏

𝑖=2

Binomial(𝑧
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛
𝑖
,

𝜃
𝑖

𝑝
𝑖
𝜃
1
+ 𝜃
𝑖

) . (28)

Therefore, the𝑀-step of the EM algorithm is to calculate the
complete-data posterior mode:

𝜃
1
= 1 − 𝜃

2
− 𝜃
3
− 𝜃
4
,

𝜃
2
=

𝑎
2
− 1 + 𝑧

2

𝑎
+
− 4 + 𝑁

(1 +
𝑚
0

𝑎
1
+ 𝑎
2
− 2 + 𝑛 − 𝑧

3
− 𝑛
4

) ,

𝜃
3
=

𝑎
3
− 1 + 𝑧

3

𝑎
+
− 4 + 𝑁

(1 +
𝑚
1

𝑎
3
+ 𝑎
4
− 2 + 𝑧

3
+ 𝑛
4

) ,

𝜃
4
=

𝑎
4
− 1 + 𝑛

4

𝑎
+
− 4 + 𝑁

(1 +
𝑚
1

𝑎
3
+ 𝑎
4
− 2 + 𝑧

3
+ 𝑛
4

) ,

(29)

where 𝑎
+
= ∑
4

𝑖=1
𝑎
𝑖
, and the 𝐸-step is to replace {𝑧

𝑖
}
3

𝑖=2
by the

conditional expectations given by (8).
In addition, based on (27) and (28), the data augmen-

tation algorithm of Tanner and Wong [13] can be used to
generate posterior samples of 𝜃. A sampling method from
(27) is given in the appendix.

5. Simulation Studies

In this section, two simulation studies are conducted to com-
pare the efficiency of the proposed combination question-
naire model with that of the hidden sensitivity model of Tian
et al. [8] (i.e., the main questionnaire model only), where
(𝑝
1
, 𝑝
2
, 𝑝
3
) are assumed to be (1/3, 1/3, 1/3) and 𝑝

𝑖
=̂Pr(𝑊 =

𝑖) for 𝑖 = 1, 2, 3. In the first simulated example, let the total
sample size in the combination questionnaire model be the
same as the sample size in the hidden sensitivitymodel. In the
second example, the sample size for themain questionnaire in
the combination questionnaire model is assumed to be equal
to the sample size in the hidden sensitivity model.

In the first simulated example, let a total of𝑁 = 𝑛 + 𝑚 =

50 + 50 = 100 participants be interviewed by using the com-
bination questionnaire model. The true values of {𝜃

𝑖
}
4

𝑖=1
are

listed in the second column of Table 5. We first generate

(𝑛
1
, . . . , 𝑛

4
)
⊤

∼ Multinomial (𝑛; 𝑝
1
𝜃
1
, 𝑝
2
𝜃
1
+ 𝜃
2
, 𝑝
3
𝜃
1
+ 𝜃
3
, 𝜃
4
) ,

(30)

and𝑚
0
∼ Binomial (𝑚, 𝜃

1
+𝜃
2
) so that𝑚

1
= 𝑚−𝑚

0
.The𝐸𝑀

algorithm (6) and (8) is used to calculate the MLEs of {𝜃
𝑖
}
4

𝑖=1
.

We repeated this experiment 1000 times. The average MLEs
of {𝜃
𝑖
}
4

𝑖=1
are reported in the third column of Table 5. The

corresponding bias, variance, and mean square error (MSE)
are displayed in the fourth, fifth, and sixth columns of Table
5. Next, let𝑁 = 𝑛 + 𝑚 = 100 + 0 = 100 participants be inter-
viewed by using the hidden sensitivity model (i.e., the main
questionnaire only). The corresponding results are reported
in the last four columns of Table 5.

From Table 5, we can see that both the MLEs of {𝜃
𝑖
}
4

𝑖=1

in the combination questionnaire model and the hidden
sensitivity model are very close to their true values, while
the MSEs of {𝜃

𝑖
}
4

𝑖=1
in the combination questionnaire model

are slightly larger than those in the hidden sensitivity model.
These numerical results are not surprising since in the hidden
sensitivity model, Tian et al. [8] implicitly assumed that all
respondents must strictly follow the design instructions. In
other words, the noncompliance behavior will not occur.
The introduction of the supplemental questionnaire in the
combination questionnaire model can effectively reduce the
non-compliance behavior since more respondents will not be
faced with the sensitive question, while the cost for intro-
ducing such a supplemental questionnaire is thatwe definitely
lose a little of efficiency.

In the second simulated example, we assume that a total of
𝑁 = 𝑛+𝑚 = 100+100 = 200 participants are interviewed by
using the combination questionnaire model, while only𝑁 =

𝑛 + 𝑚 = 100 + 0 = 100 are interviewed by using the hidden
sensitivity model. We repeat this experiment 1000 times. The
corresponding results are reported in Table 6.

From Table 6, we can see that the MSEs of {𝜃
𝑖
}
4

𝑖=1
in the

combination questionnaire model are smaller than those in
the hidden sensitivity model. In addition, by comparing the
fifth columns in Tables 5 and 6, we can see that the precisions
of {𝜃
𝑖
}
4

𝑖=1
for the proposed combination questionnaire model

in the second simulated example are significantly improved
when compared with those in the first simulated example.

6. Analyzing Cervical Cancer Data in Atlanta

Williamson and Haber [17] reported a study which examined
the relationship between disease status of cervical cancer and
the number of sex partners and other risk factors. Cases
were 20–79-year-old women of Fulton or DeKalb county in
Atlanta, Georgia. They were diagnosed and were ascertained
to have invasive cervical cancer. Controls were randomly
chosen from the same counties and the same age ranges.
Table 7 gives the cross-classification of number of sex partners
(“few, 0–3” or “many, ⩾4”, denoted by 𝑋 = 0 or 𝑋 = 1) and
disease status (control or case, denoted by 𝑌 = 0 or 𝑌 = 1).
Generally, a sizable proportion (13.5% in this example) of the
responses would be missing because of the sensitive question
about the number of sex partners in a telephone interview.
The objective is to examine if association exists between the
number of sex partners and disease status of cervical cancer.

For the purpose of illustration, we presume that {𝑋 = 0}

is non-sensitive although the number 0–3 of sex partners
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Table 5: Comparison of the efficiency of the proposed combination questionnaire model with that of the hidden sensitivity model of Tian et
al. [8] (i.e., the main questionnaire model only) with (𝑝

1
, 𝑝
2
, 𝑝
3
) = (1/3, 1/3, 1/3).

Parameter True value
The combination questionnaire model The hidden sensitivity model

(𝑁 = 𝑛 + 𝑚 = 50 + 50) (𝑁 = 𝑛 + 𝑚 = 100 + 0)
MLE Bias Variance MSE MLE Bias Variance MSE

𝜃
1

0.10 0.1013 0.0013 0.0113 0.0113 0.1010 0.0010 0.0064 0.0064
𝜃
2

0.50 0.4985 −0.0015 0.0089 0.0089 0.4975 −0.0025 0.0041 0.0041
𝜃
3

0.20 0.2008 0.0008 0.0037 0.0037 0.2001 0.0001 0.0029 0.0029
𝜃
4

0.20 0.1994 −0.0006 0.0026 0.0026 0.2014 0.0014 0.0016 0.0016
𝜃
1

0.20 0.1957 −0.0043 0.0090 0.0090 0.1985 −0.0015 0.0055 0.0055
𝜃
2

0.30 0.2999 −0.0001 0.0070 0.0070 0.2999 −0.0001 0.0034 0.0034
𝜃
3

0.40 0.4038 0.0038 0.0040 0.0040 0.4025 0.0025 0.0037 0.0037
𝜃
4

0.10 0.1006 0.0006 0.0017 0.0017 0.0991 −0.0009 0.0009 0.0009
𝜃
1

0.30 0.3021 0.0021 0.0107 0.0107 0.3026 0.0026 0.0081 0.0081
𝜃
2

0.25 0.2483 −0.0017 0.0077 0.0077 0.2499 −0.0001 0.0039 0.0039
𝜃
3

0.15 0.1474 −0.0026 0.0042 0.0042 0.1476 −0.0024 0.0032 0.0032
𝜃
4

0.30 0.3021 0.0021 0.0033 0.0033 0.2999 −0.0001 0.0021 0.0021
Note: Bias(𝜃𝑖) = 𝐸(𝜃𝑖) − 𝜃𝑖 and MSE(𝜃𝑖) = [Bias(𝜃𝑖)]

2

+ Var(𝜃𝑖).

Table 6: Comparison of the efficiency of the proposed combination questionnaire model with that of the hidden sensitivity model of Tian et
al. [8] (i.e., the main questionnaire model only) with (𝑝

1
, 𝑝
2
, 𝑝
3
) = (1/3, 1/3, 1/3).

Parameter True value
The combination questionnaire model The hidden sensitivity model

(𝑁 = 𝑛 + 𝑚 = 100 + 100) (𝑁 = 𝑛 + 𝑚 = 100 + 0)
MLE Bias Variance MSE MLE Bias Variance MSE

𝜃
1

0.10 0.1003 0.0003 0.0030 0.0030 0.1013 0.0013 0.0064 0.0064
𝜃
2

0.50 0.5015 0.0015 0.0029 0.0029 0.5019 0.0019 0.0041 0.0041
𝜃
3

0.20 0.1986 −0.0014 0.0017 0.0017 0.1969 −0.0031 0.0028 0.0028
𝜃
4

0.20 0.1995 −0.0005 0.0013 0.0013 0.1999 −0.0001 0.0016 0.0016
𝜃
1

0.20 0.2007 0.0007 0.0041 0.0041 0.2049 0.0049 0.0057 0.0057
𝜃
2

0.30 0.2989 −0.0011 0.0033 0.0033 0.2965 −0.0035 0.0034 0.0034
𝜃
3

0.40 0.4007 0.0007 0.0020 0.0020 0.3992 −0.0008 0.0037 0.0037
𝜃
4

0.10 0.0997 −0.0003 0.0009 0.0009 0.0994 −0.0006 0.0009 0.0009
𝜃
1

0.30 0.3032 0.0032 0.0054 0.0054 0.2965 −0.0036 0.0079 0.0079
𝜃
2

0.25 0.2488 −0.0012 0.0039 0.0039 0.2501 0.0001 0.0038 0.0038
𝜃
3

0.15 0.1481 −0.0019 0.0021 0.0021 0.1531 0.0031 0.0032 0.0032
𝜃
4

0.30 0.3000 0.0000 0.0017 0.0017 0.3003 0.0003 0.0021 0.0021
Note: Bias(𝜃𝑖) = 𝐸(𝜃𝑖) − 𝜃𝑖 and MSE(𝜃𝑖) = [Bias(𝜃𝑖)]

2

+ Var(𝜃𝑖).

Table 7: Cervical cancer data fromWilliamson and Haber [17].

Number of sex partners Disease status of cervical cancer
𝑌 = 0 (control) 𝑌 = 1 (case)

𝑋 = 0 (few, 0–3) 165 (𝑟
1
, 𝜃
1
) 103 (𝑟

4
, 𝜃
4
)

𝑋 = 1 (many, ⩾4) 164 (𝑟
2
, 𝜃
2
) 221 (𝑟

3
, 𝜃
3
)

Missing 43 (𝑟
12
, 𝜃
1
+ 𝜃
2
) 59 (𝑟

34
, 𝜃
3
+ 𝜃
4
)

Note: The observed counts and the corresponding cell probabilities are in
parentheses. 𝑋 is a sensitive binary variate and 𝑌 is a non-sensitive binary
variate.

is somewhat sensitive for some respondents. To illustrate
the proposed design and approaches, we let 𝑊 = 1 (2, 3)

if a respondent was born in January–April (May–August,

September–December). It is then reasonable to assume that
𝑝
𝑘
= Pr(𝑊 = 𝑘) ≈ 1/3 for 𝑘 = 1, 2, 3, and𝑊 is independent

of the sensitive binary variate X and the the non-sensitive
binary variate 𝑌. For the ideal situation (i.e., no sampling
errors), the observed counts from the main questionnaire as
shown in Tables 1 and 3 would be 𝑛

1
= 𝑟
1
/3 = 55, 𝑛

2
=

55 + 𝑟
2
= 219, 𝑛

3
= 55 + 𝑟

3
= 276, 𝑛

4
= 𝑟
4
= 103; that is,

𝑌obs,𝑀 = {𝑛; 𝑛
1
, . . . , 𝑛

4
} = {653; 55, 219, 276, 103} . (31)

On the other hand, we can view themissing data in Table 7 as
the observed counts from the supplemental questionnaire as
shown in Table 2. From Table 4, we have 𝑚

0
= 𝑟
12

= 43 and
𝑚
1
= 𝑟
34

= 59; that is, 𝑌obs,𝑆 = {𝑚;𝑚
0
, 𝑚
1
} = {102; 43, 59}.

Therefore, we obtain the observed data 𝑌obs = {𝑌obs,𝑀, 𝑌obs,𝑆}.
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Table 8: MLEs and 95% confidence intervals of 𝜃 and 𝜓.

Parameter MLE std 95% asymptotic 95% bootstrap
CI CI

𝜃
1

0.23793 0.02937 [0.18036, 0.29551] [0.18006, 0.29879]
𝜃
2

0.24916 0.02261 [0.20484, 0.29348] [0.20375, 0.29359]
𝜃
3

0.35196 0.02247 [0.30790, 0.39601] [0.30731, 0.39666]
𝜃
4

0.16095 0.01434 [0.13284, 0.18905] [0.13400, 0.18908]
𝜓 2.08830 0.43971 [1.22646, 2.95011] [1.35361, 3.18593]

6.1. Likelihood-Based Inferences. Using 𝜃(0) = 1
4
/4 as the

initial values, the EM algorithm in (6) and (8) converged in
29 iterations. The resultant MLEs of 𝜃 and 𝜓 are given in the
second column of Table 8. From (13) and (14), the asymptotic
variance-covariance matrix of the MLEs �̂�

−4
is

I−1obs (�̂�−4)

= (

0.00086302 −0.000442447 −0.000384452

−0.00044245 0.000511253 −0.000010026

−0.00038445 −0.000010026 0.000505241

) .

(32)

The estimated standard errors of 𝜃
𝑖
(𝑖 = 1, 2, 3) are square

roots of the main diagonal elements of the above matrix.
From (17), the estimated standard errors of 𝜃

4
= 1−𝜃

1
−𝜃
2
−𝜃
3

and �̂� = 𝜃
1
𝜃
3
/(𝜃
2
𝜃
4
) are given by

ŝe (𝜃
4
) = {1⊤

3
I−1obs(�̂�−4) 13}

1/2

,

ŝe (�̂�) = {𝛼
⊤I−1obs (�̂�−4)𝛼 }

1/2

,

(33)

respectively, where

𝛼 = (

𝜃
3
(1 − 𝜃

2
− 𝜃
3
)

𝜃
2
𝜃
2

4

,

𝜃
1
𝜃
3
(𝜃
2
− 𝜃
4
)

(𝜃
2
𝜃
4
)
2

,

𝜃
1
(1 − 𝜃

1
− 𝜃
2
)

𝜃
2
𝜃
2

4

)

⊤

.

(34)

These estimated standard errors are listed in the third column
of Table 8. From (15) and (16), we can obtain the 95%
asymptotic confidence intervals of 𝜃 and𝜓, which are showed
in the fourth column of Table 8.

Based on (18) and (19), we generate 𝐺 = 10,000 bootstrap
samples. The corresponding 95% bootstrap confidence inter-
vals of 𝜃 and 𝜓 are displayed in the last column of Table 8.

To test the null hypothesis 𝐻
0
: 𝜓 = 1 against 𝐻

1
: 𝜓 ̸= 1,

we need to obtain the restricted MLE �̂�
𝑅
. Using

(𝜃
(0)

𝑥
, 𝜃
(0)

𝑦
)
⊤

= (0.5, 0.5)
⊤
, (35)

as the initial values, the EM algorithm in (26) converged to

𝜃
𝑥,𝑅

= 0.64807, 𝜃
𝑦,𝑅

= 0.52948, (36)

Table 9: Posterior modes and estimates of parameters for the
cervical cancer data.

Parameter Posterior Bayesian Bayesian 95% Bayesian
mode mean std credible interval

𝜃
1

0.23793 0.24025 0.02934 [0.18574, 0.30050]
𝜃
2

0.24916 0.24789 0.02251 [0.20365, 0.29192]
𝜃
3

0.35196 0.35029 0.02246 [0.30621, 0.39432]
𝜃
4

0.16095 0.16155 0.01431 [0.13448, 0.19042]
𝜓 2.08830 2.14538 0.45838 [1.39399, 3.18678]

in 19 iterations. From (24), the restricted MLEs of 𝜃 are
obtained as

�̂�
𝑅
= (0.16559, 0.30493, 0.34314, 0.18634)

⊤
. (37)

The log-likelihood ratio statistic Λ is equal to 12.469 and the
𝑃-value is 0.0004137. Since this 𝑃-value is far less than 0.05,
the 𝐻

0
is rejected at the 0.05 level of significance. Thus, we

can conclude that there is an association between sex partners
and cervical cancer status based on the current data. This
conclusion is identical to that from the two 95% confidence
intervals of the odds ratio as shown in Table 8, where both
confidence intervals exclude the value 1.

6.2. Bayesian Inferences. When Dirichlet (1, 1, 1, 1) (i.e., the
uniform distribution on T

4
) is adopted as the prior dis-

tribution of 𝜃, the posterior modes of 𝜃are equal to the
corresponding MLEs. Using 𝜃(0) = 1

4
/4 as the initial values,

we employ the data augmentation algorithm to generate
1,000,000 posterior samples of 𝜃 and discard the first half
of the samples. The Bayesian estimates of 𝜃 and 𝜓 are given
in Table 9. Since the lower bound of the Bayesian credible
interval of the 𝜓 is larger than 1, we believe that there is
an association between the number of sexual partners and
cervical cancer status.

The posterior densities of the {𝜃
𝑖
}
4

𝑖=1
and 𝜓 estimated by a

kernel density smoother are plotted in Figures 1 and 2.

7. Discussion

In this paper, we develop a general framework of design
and analysis for the combination questionnaire model, which
consists of a main questionnaire and a supplemental ques-
tionnaire. In fact, the main questionnaire (see Table 1) is a
generalization of the nonrandomized triangular model [18]
and is then a special case of the multicategory triangular
model [19]. The supplemental questionnaire (see Table 2) is
a design of direct questioning. The introduction of the sup-
plemental questionnaire can effectively reduce the noncom-
pliance behavior since more respondents will not be faced
with the sensitive question, while the cost for introducing
such a supplemental questionnaire is that we definitely lose
a little of efficiency. The combination questionnaire model
can be used to gather information to evaluate the association
between one sensitive binary variable and one non-sensitive
binary variable.

We note that the proposed combination questionnaire
model has one limitation in applications; that is, it cannot be
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Figure 1: The posterior densities of the {𝜃
𝑖
}
4

𝑖=1
estimated by a kernel density smoother based on the second 500,000 posterior samples of

𝜃generated by the data augmentation algorithm when the prior distribution is Dirichlet (1, 1, 1, 1). (a) The posterior density of 𝜃
1
; (b) The

posterior density of 𝜃
2
; (c) The posterior density of 𝜃

3
; (d) The posterior density of 𝜃

4
.
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Figure 2: The posterior density of the odds ratio 𝜓 estimated by a kernel density smoother based on the second 500,000 posterior samples
of 𝜃 generated by the data augmentation algorithm when the prior distribution is Dirichlet (1, 1, 1, 1).
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applied to situationwhere two categories {𝑋 = 0} and {𝑋 = 1}

are sensitive like income. For example, let 𝑋 = 0 if his/her
annual income is $25,000 or less and 𝑋 = 1 if his/her annual
income is more than $25,000. For such cases, it is worthwhile
to develop new designs to address this issue. One way is to
replace the main questionnaire in Table 1 by a four-category
parallel model (see [20, Section 4.1]). The other way is to
employ the parallel model [21] to collect the information on
𝑋 and to employ the design of direct questioning to collect
information on 𝑌 then we could use the logistic regression to
estimate the odds ratio, which is one of our further researches.

Appendix

The Mode of a Group Dirichlet Density and
a Sampling Method from a GDD

Let

V
𝑛−1

= {(𝑥
1
, . . . , 𝑥

𝑛−1
)
⊤

: 𝑥
𝑖
⩾ 0,

𝑖 = 1, . . . , 𝑛 − 1,

𝑛−1

∑

𝑖=1

𝑥
𝑖
⩽ 1}

(A.1)

denote the (𝑛 − 1)-dimensional open simplex in R𝑛−1. A
random vector x = (X

1
, . . . ,X

𝑛
)
⊤

∈ T
𝑛
is said to follow a

group Dirichlet distribution (GDD) with two partitions, if the
density of x

−𝑛
= (𝑋
1
, . . .,𝑋

𝑛−1
)
⊤
∈ V
𝑛−1

is

GD
𝑛,2,𝑠

(𝑥
−𝑛

| a, b)

= 𝑐
−1

GD (

𝑛

∏

𝑖=1

𝑥
𝑎
𝑖
−1

𝑖
)(

𝑠

∑

𝑖=1

𝑥i)

𝑏
1

(

𝑛

∑

𝑖=𝑠+1

𝑥i)

𝑏
2

,

(A.2)

where 𝑥
−𝑛

= (𝑥
1
, . . . , 𝑥

𝑛−1
)
⊤, a = (𝑎

1
, . . . , 𝑎

𝑛
)
⊤ is a positive

parameter vector, b = (𝑏
1
, 𝑏
2
)
⊤ is a nonnegative parameter

vector, 𝑠 is a known positive integer less than 𝑛, and the
normalizing constant is given by

𝑐GD = 𝐵 (𝑎
1
, . . . , 𝑎

𝑠
) 𝐵 (𝑎
𝑠+1

, . . . , 𝑎
𝑛
)

× 𝐵(

𝑠

∑

𝑖=1

𝑎
𝑖
+ 𝑏
1
,

𝑛

∑

𝑖=𝑠+1

𝑎
𝑖
+ 𝑏
2
) .

(A.3)

We write x ∼ GD
𝑛,2,𝑠

(a, b) on T
𝑛
or x
−𝑛

∼ GD
𝑛,2,𝑠

(a, b) on
V
𝑛−1

to distinguish the two equivalent representations.
If 𝑎
𝑖
⩾ 1, then the mode of the grouped Dirichlet density

(A.2) is given by [11, 22]

𝑥
𝑖
=

𝑎
𝑖
− 1

∑
𝑛

𝑗=1
(𝑎
𝑗
− 1) + 𝑏

1
+ 𝑏
2

{

{

{

1 +
𝑏
1

∑
𝑠

𝑗=1
(𝑎
𝑗
− 1)

}

}

}

,

𝑖 = 1, . . . , 𝑠,

(A.4)

𝑥
𝑖
=

𝑎
𝑖
− 1

∑
𝑛

𝑗=1
(𝑎
𝑗
− 1) + 𝑏

1
+ 𝑏
2

{

{

{

1 +
𝑏
2

∑
𝑛

𝑗=𝑠+1
(𝑎
𝑗
− 1)

}

}

}

,

𝑖 = 𝑠 + 1, . . . , 𝑛.

(A.5)

The following procedure can be used to generate i.i.d.
samples from a GDD [11]. Let

(1) y(1) ∼ Dirichlet (𝑎
1
, . . . , 𝑎

𝑠
) on T

𝑠
;

(2) y(2) ∼ Dirichlet (𝑎
𝑠+1

, . . . , 𝑎
𝑛
) on T

𝑛−𝑠
;

(3) 𝑅 ∼ Beta(∑𝑠
𝑖=1

𝑎
𝑖
+ 𝑏
1
, ∑
𝑛

𝑖=𝑠+1
𝑎
𝑖
+ 𝑏
2
); and

(4) y(1), y(2) and 𝑅 are mutually independent.

Define

x(1) = 𝑅 × y(1), x(2) = (1 − 𝑅) × y(2). (A.6)

Then,

x = (
x(1)
x(2)) ∼ GD

𝑛,2,𝑠
(a, b) (A.7)

on T
𝑛
, where a = (𝑎

1
, . . . , 𝑎

𝑛
)
⊤ and b = (𝑏

1
, 𝑏
2
)
⊤.
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