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This paper proposes different methods of estimating the scale parameter in the inverse Weibull distribution (IWD). Specifically,
the maximum likelihood estimator of the scale parameter in IWD is introduced. We then derived the Bayes estimators for the
scale parameter in IWD by considering quasi, gamma, and uniform priors distributions under the square error, entropy, and
precautionary loss functions. Finally, the different proposed estimators have been compared by the extensive simulation studies
in corresponding the mean square errors and the evolution of risk functions.

1. Introduction

It is well known that the Weibull distribution is one of the
most popular distributions in the lifetime data analyzing.
The main reason is that one can create a wide variety of
shapeswith varying levels of its parameters.Therefore, during
the past decades, extensive work has been done on this
distribution in both the frequentist and Bayesian points of
view; see, for example, the excellent reviews by Johnson et
al. [1] and Kundu [2]. However, the Weibull distribution has
two parameters, and in many practical applications, one or
both of them might be unknown. To estimate them, we may
use common approaches (see, e.g., Nordman and Meeker
[3]). Moreover, it is clear through the distribution of Weibull
that the Weibull probability density function (PDF) can be
decreasing (or increasing) or unimodal, depending on the
shape of distribution parameters. Due to the flexibility of
the Weibull PDF, the inverse Weibull distribution (IWD) has
been extensively employed in situation where a monotone
data set is available (REF). Furthermore, if the empirical
studies indicate that the Weibull PDF might be unimodal,
then the inverse Weibull distribution (IWD) may be an
appropriate model (Kundu [2]).

As a definition, if a positive random variable 𝑌 > 0 has
the Weibull distribution with the following PDF:

𝑓
𝑌
(𝑦; 𝛼, 𝛽) = 𝛼𝛽𝑦

𝛽−1
𝑒
−𝛼𝑦
𝛽

, (1)

then the random variable𝑋 = 1/𝑌 has the IWDwith the PDF
of the following form:

𝑓
𝑋

(𝑥; 𝛼, 𝛽) =
𝛼𝛽

𝑥𝛽+1
𝑒
−𝛼𝑥
−𝛽

, (2)

where 𝛼 > 0 is called scale parameter and 𝛽 > 0 is called
shape parameter of this family. It also follows from (2) that
the cumulative distribution function of 𝑋 can be obtained:

𝐹
𝑋

(𝑥; 𝛼, 𝛽) = 𝑒
−𝛼𝑥
−𝛽

. (3)

IWD plays an important role in many applications, including
the dynamic components of diesel engines and several data
sets such as the times to breakdown of an insulating fluid
subject to the action of a constant tension (see Drapella
[4], Jiang et al. [5], and Nelson [6] for more practical
applications). For instance, Calabria and Pulcini [7] provide
an interpretation of the IWD in the context of the load-
strength relationship for a component. Maswadah [8] has
fitted IWD to the flood data reported in Dumonceaux and
Antle [9] (for more details see, e.g., Murthy et al. [10]).

The aim of this paper is to propose the different methods
of estimation of the scale parameter for the inverse Weibull
distribution (IWD). In the next section, we obtain the
maximum likelihood estimator of the 𝛼 scale parameter in
IWD, when the shape parameter 𝛽 > 0 is known. We
also discuss the procedures to obtain the Bayes estimators
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for the quasi prior, gamma prior, and for uniform prior
under square error, entropy, and precautionary loss functions
for the scale parameter in IWD. In Section 3, we compare
the maximum likelihood estimator and the Bayes estimators
which are obtained in Section 2 based on their considered risk
functions.The last section of the paper includes a discussion.

2. Estimation of the Scale Parameter 𝛼

In a situation where the shape parameter 𝛽 > 0 is known in
IWD,we can obtain themaximum likelihood estimator of the
scale parameter 𝛼 > 0. Suppose that 𝑋

1
, . . . , 𝑋

𝑟
is a random

sample of size 𝑟, extracted from the density function defined
in (2); then the likelihood function of 𝛼 for fixed value of 𝛽 is
given by

𝐿 (𝛼) =
(𝛼𝛽)
𝑟

∏
𝑟

𝑖=1
𝑥
𝛽+1

𝑖

𝑒
−𝛼∑
𝑟
𝑖=1 𝑥
−𝛽
𝑖 . (4)

By taking the natural logarithm on (4), we will obtain

𝑙 (𝛼) = 𝑟 ln (𝛼𝛽) − (𝛽 + 1)

𝑟

∑

𝑖=1

ln𝑥
𝑖
− 𝛼

𝑟

∑

𝑖=1

𝑥
−𝛽

𝑖
, (5)

and by taking derivative on (5) and setting with zero,
the maximum likelihood estimator can be obtained as the
following form:

�̂�mle =
𝑟

∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖

. (6)

2.1. The Bayes Estimator. We now derive the Bayes estimator
of the scale parameter 𝛼 in IWDwhen the shape parameter 𝛽
is known. We consider three different prior distributions and
three different loss functions.

(a)TheQuasi Prior.When there is nomore information about
the distribution parameter, one may use the quasi density as
given by

𝜋
1 (𝛼) =

1

𝛼𝑑
; 𝛼 > 0, 𝑑 > 0. (7)

The quasi-prior leads to a diffuse prior for a case where 𝑑 = 0

and to a noninformative prior for a case where 𝑑 = 1.

(b) The Gamma Prior. It is assumed that the scale parameter
has a gamma prior distribution with the shape and scale
parameters as 𝑐 and 𝑑, respectively, when it has the following
PDF:

𝜋
2 (𝛼) =

𝑑
𝑐

Γ (𝑐)
𝛼
𝑐−1

𝑒
−𝑑𝛼

, 𝛼 > 0, 𝑐, 𝑑 > 0. (8)

Note that the gamma prior is one of the most considerable
priors, which researchers often use. Note also that the gamma
prior is a conjugate prior family.

(c) The Uniform Prior. It is assumed that the scale parameter
has a uniform distribution over a finite range [0, 𝑘], when it
has the following form

𝜋
3 (𝛼) =

{

{

{

1

𝑘
0 < 𝛼 < 𝑘

0 otherwise
(9)

for all 𝑘 > 0. Bayesian estimators are optimal decisions and
are often obtained under a specific prior distribution and loss
function. Suppose that �̂� is an estimate of �̂�.

(i) The Square Error Loss Function. A commonly used loss
function is the square error loss function (SLF)

𝐿 (�̂�, 𝛼) = (�̂� − 𝛼)
2
, (10)

which is a symmetric loss function that assigns equal losses to
overestimation and underestimation. The SLF is often used
because it does not need extensive numerical computation.
However, several authors have recognized the inappropri-
ateness of using an SLF in several applications (Calabria
and Pulcini [11], Basu and Ebrahimi [12], Berger [13], and
Norström [14]). For instance, Basu and Ebrahimi [12] derive
Bayes estimators of the mean lifetime and the reliability
function in the exponential life testing model. Instead, the
loss functions that they used are asymmetric to reflect
that, in most situations of interest, overestimating is more
harmful than underestimating. Due to this, we use various
asymmetric loss functions as follows.

(ii) The Entropy Loss Function. In many practical situations, it
appears to be more realistic to express the loss in terms of the
ratio �̂�/𝛼. In this case, Calabria and Pulcini [7] point out that
a useful asymmetric loss function is the entropy loss function
(ELS):

𝐿 (𝛿) ∝ [𝛿
𝑝
− 𝑝 ln (𝛿) − 1] , (11)

where 𝛿 = �̂�/𝛼 and 𝑝 > 0, whose minimum occurs at �̂� = 𝛼.
Also, the loss function 𝐿(𝛿) has been used in Dey et al. [15]
andDey and Liu [16], in the original formhaving𝑝 = 1.Thus,
𝐿(𝛿) can be written as

𝐿 (𝛿) = 𝑏 [𝛿 − ln (𝛿) − 1] , 𝑏 > 0. (12)

(iii) The Precautionary Loss Function. Norström [14] intro-
duced an alternative asymmetric loss function and also
presented a general class of precautionary loss functions
as a special case. These loss functions approach infinitely
near the origin to prevent underestimation, thus giving
conservative estimators, especially when low failure rates
are being estimated. These estimators are very useful when
underestimation may lead to serious consequences. A very
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useful and simple asymmetric precautionary loss function
(PLF) is

𝐿 (�̂�, 𝛼) =
(�̂� − 𝛼)

2

�̂�
. (13)

2.2. The Bayes Estimator under 𝜋
1
(𝛼). Now, we obtain the

Bayes estimators for parameter 𝛼 for the quasi-prior density
under square error, entropy, andprecautionary loss functions.
The posterior PDF of 𝛼 is obtained as

𝜋
1 (𝛼 | 𝑥) =

(∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖
)
𝑟−𝑑+1

Γ (𝑟 − 𝑑 + 1)
𝛼
𝑟−𝑑

𝑒
−𝛼∑
𝑟
𝑖=1 𝑥
−𝛽
𝑖 ,

𝛼 > 0, 𝑟 > 𝑑 − 1,

(14)

which is a gamma familywith parameters (𝑟−𝑑+1, ∑
𝑖=1

𝑟
𝑥
−𝛽

𝑖
).

The Bayes estimator under the square error loss function
can clearly be obtained as

�̂�
𝑠
=

𝑟 − 𝑑 + 1

∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖

, (15)

the Bayes estimator under the entropy loss function by

�̂�
𝑒
=

𝑟 − 𝑑

∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖

, (16)

and the Bayes estimator under the precautionary loss func-
tion by

�̂�
𝑝

=
[(𝑟 − 𝑑 + 2) (𝑟 − 𝑑 + 1)]

1/2

∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖

. (17)

It is clear that the maximum likelihood estimator �̂�mle is a
special case of the Bayes estimator under square error loss
function by 𝑑 = 1. Therefore, the risk functions of �̂�mle and
�̂�
𝑠
are the same when 𝑑 = 1.

2.2.1.The Risk Functions. The risk functions of the estimators
�̂�
𝑠
, �̂�
𝑒
, and �̂�

𝑝
, relative to SLF, are denoted by 𝑅

𝑠
(�̂�
𝑠
), 𝑅
𝑠
(�̂�
𝑒
),

and 𝑅
𝑠
(�̂�
𝑝
), respectively, and are given by

𝑅
𝑠
(�̂�
𝑠
) = 𝛼
2
[

(𝑟 − 𝑑 + 1)
2

(𝑟 − 1) (𝑟 − 2)
−

2 (𝑟 − 𝑑 + 1)

𝑟 − 1
+ 1] ,

𝑅
𝑠
(�̂�
𝑒
) = 𝛼
2
[

(𝑟 − 𝑑)
2

(𝑟 − 1) (𝑟 − 2)
−

2 (𝑟 − 𝑑)

𝑟 − 1
+ 1] ,

𝑅
𝑠
(�̂�
𝑝
) = 𝛼
2
[
(𝑟 − 𝑑 + 2) (𝑟 − 𝑑 + 1)

(𝑟 − 1) (𝑟 − 2)

−
2[(𝑟 − 𝑑 + 2) (𝑟 − 𝑑 + 1)]

1/2

𝑟 − 1
+ 1] .

(18)

The risk functions of the estimators �̂�
𝑠
, �̂�
𝑒
, and �̂�

𝑝
, relative to

the entropy loss function, are denoted by 𝑅
𝑒
(�̂�
𝑠
), 𝑅
𝑒
(�̂�
𝑒
), and

𝑅
𝑒
(�̂�
𝑝
), respectively, and are given by

𝑅
𝑒
(�̂�
𝑠
) = 𝑏 [

𝑟 − 𝑑 + 1

𝑟 − 1
+ ln𝛼 − 1 − 𝐸

𝑒
(ln �̂�
𝑠
)] ,

𝑅
𝑒
(�̂�
𝑒
) = 𝑏 [

𝑟 − 𝑑

𝑟 − 1
+ ln𝛼 − 1 − 𝐸

𝑒
(ln �̂�
𝑒
)] ,

𝑅
𝑒
(�̂�
𝑝
) = 𝑏 [

(𝑟 − 𝑑 + 2) (𝑟 − 𝑑 + 1)]
1/2

𝑟 − 1

+ ln𝛼 − 1 − 𝐸
𝑒
(ln �̂�
𝑝
) ] .

(19)

The risk functions of the estimators �̂�
𝑠
, �̂�
𝑒
, and �̂�

𝑝
, relative

to the precautionary loss function, are denoted by 𝑅
𝑝
(�̂�
𝑠
),

𝑅
𝑝
(�̂�
𝑒
), and 𝑅

𝑝
(�̂�
𝑝
), respectively, and are given by

𝑅
𝑝
(�̂�
𝑠
) = 𝛼 [

𝑟 − 𝑑 + 1

𝑟 − 1
+

𝑟

𝑟 − 𝑑 + 1
− 2] ,

𝑅
𝑝
(�̂�
𝑒
) = 𝛼 [

𝑟 − 𝑑

𝑟 − 1
+

𝑟

𝑟 − 𝑑
− 2] ,

𝑅
𝑝
(�̂�
𝑝
) = 𝛼[

[(𝑟 − 𝑑 + 2) (𝑟 − 𝑑 + 1)]
1/2

𝑟 − 1

+
𝑟

[(𝑟 − 𝑑 + 2) (𝑟 − 𝑑 + 1)]
1/2

− 2] .

(20)

2.3. The Bayes Estimator under 𝜋
2
(𝛼). The gamma density is

the natural conjugate prior for the parameter 𝛼 with respect
to IWD. Using (4), the posterior distribution is obtained by

𝜋
2 (𝛼 | 𝑥) =

(𝑑 + ∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖
)
𝑟+𝑐

Γ (𝑟 + 𝑐)
𝛼
𝑟+𝑐−1

𝑒
−𝛼(𝑑+∑

𝑟
𝑖=1 𝑥
−𝛽
𝑖 ),

𝛼 > 0, 𝑟 + 𝑐 > 0,

(21)

which is again a gamma family of parameters (𝑟 + 𝑐, 𝑑 +

∑
𝑖=1

𝑟
𝑥
−𝛽

𝑖
). Thus, the Bayes estimators of 𝛼 under the square

loss function are given by

�̂�
𝑠
=

𝑟 + 𝑐

𝑑 + ∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖

. (22)

The Bayes estimator of 𝛼 under entropy loss function is given
by

�̂�
𝑒
=

𝑟 + 𝑐 − 1

𝑑 + ∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖

(23)

and the Bayes estimator under the precautionary loss func-
tion by

�̂�
𝑝

=
[(𝑟 + 𝑐 + 1) (𝑟 + 𝑐)]

1/2

𝑑 + ∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖

. (24)
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2.3.1.The Risk Functions. The risk functions of the estimators
�̂�
𝑠
, �̂�
𝑒
, and �̂�

𝑝
, relative to SLF, are denoted by 𝑅

𝑠
(�̂�
𝑠
), 𝑅
𝑠
(�̂�
𝑒
),

and 𝑅
𝑠
(�̂�
𝑝
), respectively, and are given by

𝑅
𝑠
(�̂�
𝑠
) = 𝐸(�̂�

𝑠
− 𝛼)
2
= 𝛼
2
− 2𝛼 (𝑟 + 𝑐) 𝐺 (1)

+ (𝑟 + 𝑐)
2
𝐺 (2) ,

𝑅
𝑠
(�̂�
𝑒
) = 𝐸(�̂�

𝑒
− 𝛼)
2
= 𝛼
2
− 2𝛼 (𝑟 + 𝑐 − 1) 𝐺 (1)

+ (𝑟 + 𝑐 − 1)
2
𝐺 (2) ,

𝑅
𝑠
(�̂�
𝑝
) = 𝐸(�̂�

𝑝
− 𝛼)
2

= 𝛼
2
− 2𝛼[(𝑟 + 𝑐 + 1) (𝑟 + 𝑐)]

1/2
𝐺 (1)

+ (𝑟 + 𝑐 + 1) (𝑟 + 𝑐) 𝐺 (2) ,

(25)

where

𝐺 (𝑠) = ∫

∞

𝑜

1

(𝑑 + 𝑧)
𝑠

𝛼
𝑟

Γ (𝑟)
𝑧
𝑟−1

𝑒
−𝛼𝑧

𝑑𝑧, 𝑧 =

𝑟

∑

𝑖=1

𝑥
−𝛽

𝑖
. (26)

Similarly, the risk functions of the estimators �̂�
𝑠
, �̂�
𝑒
, and

�̂�
𝑝
, relative to the entropy loss function, are denoted by

𝑅
𝑒
(�̂�
𝑠
), 𝑅
𝑒
(�̂�
𝑒
), and 𝑅

𝑒
(�̂�
𝑝
), respectively, and are given by

𝑅
𝑒
(�̂�
𝑠
) = 𝑏 [

𝑟 + 𝑐

𝛼
𝐺 (1) + ln𝛼 − 1 − 𝐸

𝑒
(ln �̂�
𝑠
)] ,

𝑅
𝑒
(�̂�
𝑒
) = 𝑏 [

𝑟 + 𝑐 − 1

𝛼
𝐺 (1) + ln𝛼 − 1 − 𝐸

𝑒
(ln �̂�
𝑒
)] ,

𝑅
𝑒
(�̂�
𝑝
) = 𝑏 [

[(𝑟 + 𝑐 + 1) (𝑟 + 𝑐)]
1/2

𝛼
𝐺 (1)

+ ln𝛼 − 1 − 𝐸
𝑒
(ln �̂�
𝑝
) ] .

(27)

The risk functions of the estimators �̂�
𝑠
, �̂�
𝑒
, and �̂�

𝑝
, relative

to the precautionary loss function, are denoted by 𝑅
𝑝
(�̂�
𝑠
),

𝑅
𝑝
(�̂�
𝑒
), and 𝑅

𝑝
(�̂�
𝑝
), respectively, and are given by

𝑅
𝑝
(�̂�
𝑠
) = (𝑟 + 𝑐) 𝐺 (1) +

𝛼
2

𝑟 + 𝑐
(𝑑 +

𝑟

𝛼
) − 2𝛼,

𝑅
𝑝
(�̂�
𝑒
) = (𝑟 + 𝑐 − 1) 𝐺 (1) +

𝛼
2

𝑟 + 𝑐 − 1
(𝑑 +

𝑟

𝛼
) − 2𝛼,

𝑅
𝑝
(�̂�
𝑝
) = [(𝑟 + 𝑐 + 1) (𝑟 + 𝑐)]

1/2
𝐺 (1)

+
𝛼
2

[(𝑟 + 𝑐 + 1) (𝑟 + 𝑐)]
1/2

(𝑑 +
𝑟

𝛼
) − 2𝛼.

(28)

2.4.The Bayes Estimator under𝜋
3
(𝛼). Under𝜋

3
(𝛼), using (4),

the posterior distribution is obtained by

𝜋
3 (𝛼 | 𝑥) =

1

𝑘𝐵
𝛼
𝑟
𝑒
−𝛼∑
𝑟
𝑖=1 𝑥
−𝛽
𝑖 , 0 < 𝛼 < 𝑘, (29)

where

𝐵 (𝑘) =
1

𝑘
∫

𝑘

0

𝛼
𝑟
𝑒
−𝛼∑
𝑟
𝑖=1 𝑥
−𝛽
𝑖 𝑑𝛼. (30)

The Bayes estimators of 𝛼 under the square loss function are
given by

�̂�
𝑠
=

1

∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖

[(𝑟 + 1) −
𝑘
𝑟

𝐵 (𝑘)
𝑒
−𝑘∑
𝑟
𝑖=1 𝑥
−𝛽
𝑖 ] , (31)

the Bayes estimator under the entropy loss function by

�̂�
𝑒
=

𝑟𝐵 (𝑘)

𝑘𝑟−1𝑒
−𝑘∑
𝑟
𝑖=1 𝑥
−𝛽
𝑖 + 𝐵 (𝑘)∑

𝑟

𝑖=1
𝑥
−𝛽

𝑖

, (32)

and the Bayes estimator under the precautionary loss func-
tion by

�̂�
𝑝

=
1

∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖

[ (𝑟 + 2) (𝑟 + 1) −
𝑘
𝑟
𝑒
−𝑘∑
𝑟
𝑖=1 𝑥
−𝛽
𝑖

𝐵 (𝑘)

× (𝑘

𝑟

∑

𝑖=1

𝑥
−𝛽

𝑖
+ (𝑟 + 2))]

1/2

.

(33)

In this case, there is no closed-form solution to obtain the risk
functions of the latter estimators. Therefore, we employ the
importance sampling technique for constructing the Bayes
estimators and obtaining risk functions which is presented in
next section.

3. Comparisons

This section presents the comparison of the various estima-
tors obtained by the use of different methods in Sections 2
and 3 on the basis of their risks. In the previous section, the
risk function of the estimators is computed under SLF, ELF,
and PLF.

3.1. The Case of Quasi Prior. The Bayes estimators are seen
to depend upon the parameters of prior distributions. In
Figure 1, we have plotted the ratio of the risk functions to 𝛼

2,
that is,

𝐴
1
=

𝑅
𝑠
(�̂�
𝑠
)

𝛼2
, 𝐴

2
=

𝑅
𝑠
(�̂�
𝑒
)

𝛼2
, 𝐴

3
=

𝑅
𝑠
(�̂�
𝑝
)

𝛼2
, (34)

for the Bayes estimators �̂�
𝑠
, �̂�
𝑒
, and �̂�

𝑝
, respectively, under the

square error loss function, as given in (18), for 𝑟 = 5(5)20 and
𝑑 = 0.5(0.5)4.5.

In Figure 2, we have plotted the ratio of the risk functions
to 𝛼, that is,

𝐵
1
=

𝑅
𝑝
(�̂�
𝑠
)

𝛼
, 𝐵

2
=

𝑅
𝑝
(�̂�
𝑒
)

𝛼
, 𝐵

3
=

𝑅
𝑝
(�̂�
𝑝
)

𝛼
, (35)

for the Bayes estimators �̂�
𝑠
, �̂�
𝑒
, and �̂�

𝑝
, respectively, under the

precautionary loss function, as given in (20), for 𝑟 = 5(5)20

and 𝑑 = 0.5(0.5)4.5.
It is important to mention here that the scales on 𝑦-

axis of the graphs are not the same and they vary from
figure to figure. From Figures 1 and 2, we see that none of
the estimators uniformly dominates any other. We therefore
recommend that the estimators to be chosen according to
the values of 𝑑 when quasi density is used as the prior
distribution, and this choice in turn depends on the situations
at hand.
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Figure 1: The evolution of risk ratio to 𝛼
2 when 𝑟 = 5, 10, 15, and 20.

3.2. The Case of Gamma Prior. The risk functions under the
gamma prior are dependent on the population parameter 𝛼,
which is not separable. Therefore, a comparison could only
be made by using numerical techniques. Random samples of
different size are generated, and the estimators obtained in
Sections 2 and 3 are compared in the following steps.

Algorithm 1. Consider the following.

Step 1. For given values (𝑐 = 2, 𝑑 = 3, 𝛼 = 4.055), we
generate prior (8).
Step 2. By using the value 𝛼 = 4.055 from Step 1

and true value 𝛽 = 2, we select the sample size 𝑟 =

10, 20, 30, and 40. We then generate the likelihood
function (4).
Step 3. The MLE and different Bayes estimators of 𝛼

are computed through Step 3.

Step 4. Steps 1 to 3 are repeated 1000 times, and
the mean square error (MSE) for each estimator is
computed.

Table 1 given herein shows the mean square error (MSE)
of the different estimators based on 1000 runs ofMonte Carlo
simulation.

From Table 1, we see that the estimators are consistent
in MSE of the all considered cases. As expected, the Bayes
estimators are doing better than the maximum likelihood
estimators. Also, the Bayes estimators under precautionary
loss function are doing better than the all other estimators.

3.3. The Case of Uniform Prior. Since the risk functions of
estimators cannot be obtained in a closed form, we propose
to use the Gibbs sampling technique to generate MCMC
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Figure 2: The evolution of risk ratio to 𝛼 when 𝑟 = 5, 10, 15, and 20.

Table 1: Mean square error (MSE) of the different estimators for 𝛼.

𝑟 �̂�
𝑠

�̂�
𝑒

�̂�
𝑝

�̂�mle

10 0.03605 0.03609 0.03604 0.03612
20 0.02684 0.02686 0.02683 0.02687
30 0.00772 0.00774 0.00771 0.00776
40 0.00049 0.00049 0.00048 0.00052

samples and then use importance sampling technique for
constructing the Bayes estimators.

Now, we provide an algorithm to draw MCMC samples
from the posterior distribution (29). Since

Gamma (𝑟, ∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖
)

𝐵
≥ 𝜋
3 (𝛼 | 𝑥) ,

(36)

where 𝐵 have been defined in (30), it is possible to use the
acceptance rejectionmethod to generate samples from 𝜋

3
(𝛼 |

𝑥), by using gamma generation, and we use Algorithm 2 in
what follows to generate Gibbs sample from the posterior
density function of 𝛼.

Algorithm 2. Consider the following.

Step 1. Generate 𝛼 from the Gamma (𝑟, ∑𝑟
𝑖=1

𝑥
−𝛽

𝑖
) and

𝑈 from the Uniform (0,1).

Step 2. If 𝑈 ≤ (Γ(𝑟)/(∑
𝑟

𝑖=1
𝑥
−𝛽

𝑖
)
𝑟

)(𝛼/𝑘), then accept 𝛼;
otherwise, go back to Step 1.

Step 3. Generate 𝛼
1
, . . . , 𝛼

𝑁
.
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Table 2: Mean (MSEs) of the different estimators for 𝛼.

𝑟
𝛽 = 2 𝛽 = 2.5 𝛽 = 3 𝛽 = 4

�̂�
𝑠

�̂�
𝑝 �̂�

𝑠
�̂�
𝑝 �̂�

𝑠
�̂�
𝑝 �̂�

𝑠
�̂�
𝑝

10 0.4987
(0.0910)

0.5723
(0.1002)

0.5036
(0.0878)

0.5841
(0.0944)

0.4991
(0.0845)

0.5769
(0.0889)

0.4981
(0.0847)

0.5738
(0.0904)

20 0.4961
(0.0863)

0.5746
(0.0932)

0.4946
(0.8610)

0.5751
(0.0925)

0.5047
(0.0843)

0.5745
(0.0891)

0.4995
(0.0838)

0.5781
(0.0897)

30 0.4966
(0.0853)

0.5768
(0.0908)

0.4983
(0.8481)

0.5772
(0.0910)

0.5006
(0.0839)

0.5819
(0.0879)

0.4989
(0.0833)

0.5766
(0.0890)

50 0.5012
(0.0828)

0.5787
(0.0900)

0.4885
(0.0835)

0.5675
(0.0897)

0.4966
(0.0835)

0.5801
(0.0874)

0.5008
(0.0831)

0.5792
(0.0884)

80 0.5046
(0.0826)

0.5741
(0.0880)

0.5048
(0.0821)

0.5805
(0.0878)

0.4982
(0.0827)

0.5738
(0.0869)

0.5006
(0.0827)

0.5786
(0.0883)

Step 4. Obtain the Bayes estimate of 𝛼 under the
square error loss function as the posterior mean, that
is,

�̂�
𝑠
= 𝐸 (𝛼 | 𝑥) =

1

𝑁

𝑁

∑

𝑖=1

𝛼
𝑖
. (37)

Step 5. Obtain the Bayes estimator 𝛼 under the pre-
cautionary loss function as follows:

�̂�
𝑝

= [
1

𝑁

𝑁

∑

𝑖=1

𝛼
2

𝑖
]

1/2

. (38)

Step 6. Obtain the mean square error 𝛼.

In order to compare the proposed Bayes estimators with
the corresponding Bayes estimators, we perform a Monte
Carlo simulation study of 1000 using different sample sizes
𝑟 = 10, 20, 30, 50, and 80. The IWD samples were generated
from (2) for all combinations of 𝛼 = 0.5 and 𝛽 = 2, 2.5, 3,
and 4. For the uniform prior, we have considered 𝑘 = 1.
In this case, we have chosen the hyperparameters in such
a way that the prior mean becomes the expected value of
the corresponding parameter. The averages and mean square
errors (MSE) in parentheses of estimators of �̂�

𝑠
and �̂�

𝑝
are

presented in Table 2.
It is clear from Table 2 that the proposed Bayes estimators

perform very well for 𝑟 and the estimators is consistent in
MSE of the all considered case. Also, the Bayes estimators �̂�

𝑠

under square loss function are doing better than the Bayes
estimators under precautionary loss function, that is, �̂�

𝑝
.

4. Conclusion

In this paper, we have proposed the classical and the
Bayesian approaches to estimate the scale parameter for
inverse Weibull distribution, when the shape parameter was
known [12]. Bayes estimators are often obtained using both
symmetric and asymmetric loss functions ([11, 12]). In view of
this, we have obtained and then compared the different Bayes
estimators corresponding to the different loss functions.
To compare the considered estimators, extensive simulation

studies have been performed. The results show that, in
the case of quasi-prior, none of the estimators uniformly
dominates any other.Therefore, it might recommend that the
estimators be chosen according to the value of 𝑑, when quasi-
density is used as the prior distribution. This choice in turn
depends on the situations at hand. It appears to be clear from
this study that the Bayes method of estimation for gamma
prior is superior to the MLE method. Also, in the case of
gamma prior, the Bayes estimators related to precautionary
loss function have the smallest MSE as compared with the
Bayes estimators related to square error loss function or
the Bayes estimators under entropy loss function or the
MLEs. Furthermore, in the case of uniform prior, the Bayes
estimators under square error loss function are doing better
than the Bayes estimators under precautionary loss function.
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