MPE — Volume 1, pp. 41-57 ©1995 OPA (Overseas Publishers Association)
Reprints available directly from the publisher Amsterdam B.V. Published under license by
Photocopying permitted by license only Gordon and Breach Science Publishers SA

Printed in Singapore

A NESTED DECOMPOSITION ALGORITHM FOR
PARALLEL COMPUTATIONS OF VERY LARGE
SPARSE SYSTEMS*

D. D. SILJAK and A. I. ZECEVIC
School of Engineering, Santa Clara University, Santa Clara CA 95053 USA

(Received 15 June 1994)

In this paper we present a generalization of the balanced border block diagonal (BBD) decomposition algorithm,
which was developed for the parallel computation of sparse systems of linear equations. The efficiency of the
new procedure is substantially higher, and it extends the applicability of the BBD decomposition to extremely
large problems. Examples of the decomposition are provided for matrices as large as 250,000 x 250,000, and its
performance is compared to other sparse decompositions. Applications to the parallel solution of sparse systems
are discussed for a variety of engineering problems.

AMS No.: 65F, 65W
keyworps: Linear equations, sparsity, balanced decompositions, parallel computations

1. INTRODUCTION

Large systems of sparse linear equations arise in a wide variety of engineering problems,
ranging from electric circuit simulation to solving partial differential equations by finite
element and finite difference methods. Linear equations are also a central issue in many
nonlinear problems, such as those that require the Newton iterative method or numerical
integration of nonlinear differential equations. The need for solving these equations
efficiently is particularly apparent for problems that have reached a level of complexity
which cannot be handled adequately by a single processor. In such cases parallel
computation becomes a necessity, and this paper describes a decomposition algorithm that
enables us to perform the parallelization very effectively.

Two classes of engineering problems are of fundamental interest from the standpoint of
parallel computing. One type are extremely large problems such as VLSI circuit
simulation or finite element solutions to three dimensional partial differential equations,
where it is necessary to solve anywhere between 20,000 and several million equations.
Moderately sized problems (involving 5,000-10,000 equations) are also of interest if they
need to be solved repeatedly, as is the case in the transient stability analysis of electric

*The authors would like to thank Professor Fernando Alvardo, University of Wisconsin, for providing some
of the test matrices. The research reported herein was supported by the National Science Foundation under
Grant ECS-9114872.

41

42 D. D. SILJAK AND A. I. ZECEVIC

power systems or in iterative procedures for solving nonlinear equations. For both classes,
parallel computing is really the only effective way of producing a solution.

In the following we will present a generalized and improved version of the decomposi-
tion algorithm described in ([1]), which removes any restrictions on the matrix size. The
main objective of this decomposition is to permute the matrix into a balanced BBD form
like the one shown in Fig. 1. Such a structure is characterized by a balance in size between
the diagonal blocks and the border, as well as a BBD structure within the border block.
These features allow for the implementation of several levels of parallelism in the LU
factorization, and result in good load balancing and low interprocessor communications.
Significant computational speedups can be achieved based on this structure, particularly
on massively parallel SIMD (Single Instruction Multiple Data) architectures with several
thousand processors.

2. THE ORIGINAL BALANCED BBD DECOMPOSITION ALGORITHM

The bordered block diagonal form has long been recognized as a desirable matrix structure
in parallel solutions of linear equations (e.g., [2]). The principle advantage of this
approach lies in the fact that the BBD structure can be utilized to implement the
parallelism off-line, thus avoiding the inevitable overhead associated with other methods
(such as those based on elimination trees, for example). In addition, a balance in the sizes
of the diagonal blocks secures an optimal distribution of the work load across the set of
processors, as well as low interprocessor communications.

The main obstacle in applying this type of parallelization has been the decomposition
itself. Numerous algorithms have been developed, including node clustering ([5]), graph
dissection ([4]), and diakoptics ([S], [6]). Nevertheless, the success of these methods has
been mainly limited to matrices with a very regular structure. In the general case, these
algorithms did not perform as well; in applications to electric circuits they actually

\

Figure 1 A balanced bordered block diagonal structure.

NESTED DECOMPOSITION 43

produced rather disappointing results ([7]; [8]). Part of the problem was that standard BBD
decomposition algorithms attempted to identify a minimal border which induces a block
diagonal structure in the rest of the matrix. Such a strategy frequently resulted in only a
few diagonal blocks of varying sizes, which is not a particularly desirable structure for
parallel processing. The balanced BBD decomposition algorithm described in ([1])
alleviated these difficulties by allowing a larger border with an internal BBD structure
(such as the one shown in Fig. 1.). It was found that any type of sparse matrix can be
permuted into this form, regardless of its structural regularity.

The balanced BBD decomposition consists of three stages. In the first stage we initially
select a maximal degree Dm and all vertices with degree = Dm are placed into the border
(this procedure is referred to as Dm decomposition). We then select a maximal allowable
block size Nmax, and additional vertices are moved into the border to achieve this size
(this procedure is referred to as Nmax decomposition). The Nmax decomposition removes
vertices indiscriminately, and typically results in a structure like the one shown in Fig. 2,
where the border is much larger than any of the diagonal blocks.

In the second stage of the decomposition, the border is recursively decreased until a
balance in size is achieved between the border and the largest diagonal block. In each step
of this procedure, the next vertex to be removed from the border is the one whose
reconnection results in a minimal increase in the size of the diagonal blocks. Such a
“greedy” strategy can be implemented very effectively by associating data structures like
the ones shown in Fig. 2. with every border vertex.

The example in Fig. 3 has the following interpretation:

Figure 2 The decomposition after stage 1.

44 D. D. SILJAK AND A. I. ZECEVIC

S N [S B S
'_‘|?—'!?
!

q;—qil s
: k L J]
Si —

(b)

Figure 3 a) Data structures corresponding to border vertex x; b) Schematic interpretation of (a).

a) Lower list. Vertex x; is connected to blocks 1 and 5, of size k and j, respectively.
Reconnecting x; requires merging blocks 1 and 5, which produces a new block of size S;
=k + j

b) Upper list. Vertex x; is also incident to border vertices r and s, so g; = 2.
Reconnecting x; to block 1 would add this block to the lower list of vertices x, and x, (if
it is not there already).

In any step of the second stage, the next border vertex to be reconnected will be the one
with the minimal ;. If there is a tie between several vertices, the one with the smallest g;
is chosen.

The final result of the second stage is a BBD structure in which the largest diagonal
block and the border have approximately the same size. However, at this point other
diagonal blocks may be much smaller, so a balancing procedure is additionally executed,
in order to achieve the structure shown in Fig. 4.

The third and final stage of the decomposition amounts to reordering the border vertices
in order to secure a BBD structure within the border block. In this procedure, symbolic
fill-in is added to the border block to include the effects of LU factorization. The border

NESTED DECOMPOSITION 45

Figure 4 The decomposition after stage 2.

block is then decomposed following the first and second stages, and the resulting matrix
has the form indicated in Fig. 1. A flowchart for the overall decomposition is shown in Fig.
5; additional details can be found in ([9]).

3. THE IMPROVED BALANCED BBD DECOMPOSITION

The decomposition algorithm described in the previous section is very effective for sparse
matrices of size up to 5,000 x 5,000. Particularly good results were obtained in
applications to large electric power systems such as the one shown in Fig. 13, which
represents a model of the entire U.S. power network. However, with increasing system
size and more nonzero elements, the second and third stages of the decomposition were
found to be very time consuming. This was primarily due to the large amount of symbolic
fill-in which required an unacceptable amount of memory for the data structures as well
as long list searches. We now present a generalized and improved balanced BBD
algorithm which can be effectively applied to matrices as large as 250,000 x 250,000 (such
an example is shown in Fig. 16).

The strategy of the improved version significantly differs from the earlier one in the
second and third stages of the algorithm. The idea of this new decomposition is to utilize
a nested procedure in which the reconnection would continue until exactly two large
blocks remain. This algorithm is initially executed on the entire matrix and is subsequently
repeated on individual blocks at each level of the decomposition.

46 D. D. SILJAK AND A. I. ZECEVIC

\

Read imput matrix
from ASCII file

|
Y

|
\J

Dm decomposition

|
Y

Initdalize Nmax decomposition A
incidence list

7y Y

Reconnection

yes

Recompute?

Construct border
block list
Add LU fill-in

A

yes

Figure 5 A flowchart for the algorithm.

NESTED DECOMPOSITION

Figure 6 The decomposition graph after three levels of decomposition.

Figure 7 The decomposed matrix after local borders are moved.

47

48 D. D. SILJAK AND A. I. ZECEVIC

Ii

7

/

0%, 7//
n

N\

7

Figure 8 The internal structure of the border block after 3 levels of decomposition.

The overall procedure is controlled by a decomposition graph which contains the
necessary information about all border and block sizes. An illustration of this graph after
three levels of decomposition is shown in Fig. 6, for an 8,000 x 8,000 matrix A. In Fig.
6 A, B;;, and C;; represent diagonal blocks associated with different decomposition levels,
and b; represents corresponding local borders. By removing the local borders and placing
them into the overall border, we can now obtain a matrix with the generic structure shown
in Fig. 7.

The sequence in which individual local borders are removed is defined by a Depth First
Search of the decomposition graph. In the graph of Fig. 6, the borders have been
enumerated in the order in which they were visited; the corresponding internal structure
of the border block is shown in Fig. 8. It should be observed that the border block is now
even more structured than in Fig. 1, which results in better sparsity preservation

NESTED DECOMPOSITION 49

Bs3
(2.500)

NEZ

Css
(2.500)

Figure 9 A possible scenario for the decomposed graph.

(particularly for very large matrices). The actual number of decomposition levels in the
graph is determined by the sizes of the diagonal blocks and the corresponding borders. In
general, different branches of the graph may have different levels, as illustrated in Fig. 9.
The decomposition procedure checks the sizes after each level, and continues until the
border and maximal block size become approximately equal. It should also be observed
that significant portions of the nested BBD decomposition can be performed in parallel.
Specifically, each block in a given decomposition level can be decomposed by a different
processor. The number of such blocks could roughly double in each level, so the overall
effect of parallelization will increase with a larger number of processors.

4. APPLICATIONS OF THE IMPROVED BBD DECOMPOSITION: PARALLEL
LU FACTORIZATION OF SPARSE MATRICES

Large systems of sparse linear equations require special solution techniques, which are
typically based on LU factorization (e.g., [10]). In all problems of this nature, a key
objective is to order the rows and columns in such a way that the L and U factors retain
as much of the original sparsity as possible. The critical importance of ordering is
illustrated by the following example.

50 D. D. SILJAK AND A. I. ZECEVIC

1 2 3 45

1/ « « « = «|
21 = =

3 = *

4| = *
5_* * |

Figure 10 Matrix A.

EXAMPLE Consider the matrix shown in Fig. 10, in which* denotes the nonzero
elements. The L and U factors for this matrix are shown in Fig. 11a, where © denotes
additional nonzero elements generated by the factorization; these elements are generally
referred to as fill-in elements. Clearly, in this case both L and U are dense matrices. On
the other hand, permuting matrix A in the manner shown in Fig. 11b will completely
eliminate the fill-in.

Fill-in minimization is a fundamental requirement for efficient computation with sparse
matrices—it can decrease the number of floating point operations needed for factorization
from O(n®) to as low as O(n) (e. g, [10]). Numerous ordering algorithms have been
developed for reducing fill-in in the factorization process. Undoubtedly the most general

1 2 3 45 52 3 41

1-*****‘ 51 = *
2| *x x 0 0 0 2 * =
3| * @ * 0 0 3 * x
4] x 0 0 * o 4 .
S|l * @ 0 0 * | 1 = = * *x =

(a) (b)

Figure 11 a) L and U factors of A without reordering. b) L and U factors with reordering.

NESTED DECOMPOSITION 51

0
200
iy
(R o
400} 5 i
i \\h AL
Ay e
N
800}
BA
soo} e Lo E
e . va
L N +
. i
R 3
~ |
.
. ~
& E . +
1000 1 - b L] 1 I s 13
o 200 400 600 600 1000
nz - 8621
0 i ¥ 0] T
B i
') N
wo 5 t et
o :
200 Py i 20034 e H II{L
il . o
k1 K3 T
Y 4. . 4‘! B ::
i _
L ;o L A
400 - C;.- AW0F i 30 om o L
E 21
i e :
H
: L - Lk}
- t b
600 |] 600\ &4
q = b .‘ L
- iy
" bl
o
—A) i
R, 4%,
oo} b It aoo} A M,
: . St
LS 2
o “- 2! o 4 & Py
e R I T PR e S R
L . R e N o el
1000! AR M=t 1000kt A =5 - i i
200 1000 200 0 600 800 1000
nz - 41555

Figure 12 a) A matrix from structural analysis (1,005 x 1,005). b) The LU factors using a balanced BBD
decomposition. ¢) The LU factors using minimal degree.

and effective method to date has been the minimal degree algorithm [11]; its relative
simplicity and applicability to a wide range of matrix structures have made it a standard
part of any sparse matrix software package.

Despite the low level of fill-in, in parallel computations minimal degree and similar
orderings are by no means optimal. The main reason for this is a lack of structure in the
reordered L and U factors, due to element scattering throughout the matrix. As a result, an
effective off-line parallelization is not possible, and techniques such as dynamic load
balancing must be applied [2]. This typically results in significant overhead and a
suboptimal load distribution across the processors.

In contrast, the balanced BBD decomposition automatically produces a highly paral-
lelizable structure. It is well known that in BBD matrices each diagonal block and
corresponding border segment can be independently factorized by a different processor,
and only the factorization of the border block requires interprocessor communication.

52 D. D. SILJAK AND A. 1. ZECEVIC

Table I A fill-in comparison

Nonzeros in LU Factors

Matrix Number of Min. Deg. BBD Dec.

Size Nonzeros (N,) (N,) Ny/N,,
1,005 8,621 41,555 36,301 0.88
1,993 7,443 13,439 14,259 1.06
2,003 83,383 588,887 568,545 0.96
3,466 23,896 186,348 180,680 0.97
8,738 591,904 6,745,312 7,730,880 1.14

In addition, the internal BBD structure within the border block (like the one shown in Fig.
8 allows for a second level of parallelism.

In order to minimize the fill-in associated with balanced BBD decompositions, the
individual diagonal blocks are ordered locally using the minimal degree algorithm. In this
way we combine the structural advantages of BBD decompositions with the fill-in
optimality of the minimal degree ordering. In Fig. 12 we present an example from
structural analysis which demonstrates that the BBD decomposition not only results in a
superior structure but also can produce even less fill-in than the minimal degree (in this
case, 36,081 nonzeros compared to 41,555 nonzeros).

Numerical experiments on a variety of large sparse matrices have shown that the
difference in fill-in between the BBD decomposition and minimal degree is not significant.
As demonstrated in Table I, typically it does not exceed 15%. In light of the superior
parallelizability of the BBD structure, this is more than acceptable.

It is also interesting to point out that in a number of cases the BBD decomposition was
found to be considerably faster than the minimal degree ordering. This is particularly
important for very large matrices, where the ordering itself can require an excessive
amount of time. For some such matrices the BBD decomposition was performed over four
times faster than the minimal degree ordering in Matlab 4.0 (function symmmd()). A
summary of experimental results is given in Table II.

The versatility of the balanced BBD decomposition algorithm is illustrated in Figs.
13-16. These examples, taken from very diverse engineering applications, indicate that
our decomposition can indeed be successfully applied to sparse matrices of any structure
and size.

Table II A comparison of execution times for BBD decompositions and Symmetric minimal degree ordering
on HP Apollo 700 workstations

Matrix Number of Execution Time (seconds)
Size Nonzeros Min. Deg. (t,,) BBD Dec. (t,) t./t,
2,003 83,883 14.47 1.86 7.79
8,738 591,904 101.93 91.79 1.11
28,924 2,043,492 1,118.6 287.15 3.90
35,588 1,181,416 434.02 105.54 4.11

44,609 2,014,701 1,031.9 241.92 4.26

NESTED DECOMPOSITION

1000}

2000}

3000

4000} :

5000
B 2
0 1000 2000 3000 4000 5000
nz = 21842
0 T T T T L
o
6.
#
? g
1000 \-
L
20001
——
- i q
3000+ : A
i
|- ;t
40001
5000 = T
SR -~ e -
d e T Fon S P A Y A
0 1000 2000 3000 4000 5000
nz = 21842

Figure 13 a) A model of the entire U.S. electric power network (5,300 x 5,300). b) The matrix after balanced
BBD decomposition.

53

54

D. D. SILJAK AND A. I. ZECEVIC

2000

4000

6000

8000

10000

12000

1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000
nz = 619488
0 y T T . T T —
. A
¥
S
d By
2000} - I
g
W =
4000} . fe i
? H
. N
6000} £ : .
L N -,
- e i
8000} : Do
o .
; .
E B
10000} E
. ot
R, T
D R
12000 Y A
TS AR
[Vo vae 4
B T
. tere o S
1 1 1 - Xt 1 M
4000 6000 8000 10000 12000
nz = 619488

Figure 14 a) A buckling model for a Boeing 767 rear bulkhead (13,992 x 13,992). b) The matrix after

balanced BBD decomposition.

NESTED DECOMPOSITION

o5k

PP VI

Nieade.

e - e
i] L ¥

B A

e b R

2 25
nz = 2014701

05f

25

D

wh

T
1

0s

2.5
nz = 2014701

x10*

55

Figure 15 a) A model for an automobile chassis (44,609 x 44,609). b) The matrix after balanced BBD

decomposition.

D. D. SILJAK AND A. I. ZECEVIC

56

T e e .

Lo IS D
15 2
x10

il
nz = 2244004

e —

1
1

Joe tren e

G,
05

P ———

0Sf

151

25

Figure 16 a) Segment of the matrix resulting from a nine-point finite element approximation on a square grid
with n = 500 (the overall matrix is 250,000 x 250,000). b) The matrix after balanced BBD decomposition.

NESTED DECOMPOSITION 57

References

1.

A. L. Zecevic and D. D. Siljak, Balanced Decompositions for Multilevel Parallel Processing, IEEE Trans.
Circuits and Systems, 41, 220-233 (1994).

M. T. Heath, E. Ng, and B. W. Peyton, Parallel Algorithms for Sparse Linear Systems, in K. A. Gallivan
et al. (Eds.), SIAM, Philadelphia, pp. 83-124, (1990).

A. Sangiovanni-Vincentelli, L. K. Chen, and L. O. Chua, An Efficient Heuristic Cluster Algorithm for
Tearing Large Scale Networks, IEEE Trans. Circuits and Systems, vol. CAS-24, 709-717 (1977).

A. George, and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall,
Englewood Cliffs, N. J. (1981).

G. Kron, Diakoptics, McDonald, London, (1963).

H. H. Happ, Diakoptics and Networks, Academic Press, New York (1971).

F. L. Alvarado, Sparsity in Diakoptic Algorithms, IEEE Trans. Power App. and Syst., 96, 1450-1459
(1977).

A. M. Erisman, Sparse Matrix Problems in Electric Power System Analysis, in Sparse Matrices and Their
Uses (1. S, Duff, Ed.), Academic, New York pp. 31-56 (1981).

A. L. Zecevic, New Decomposition Methods for Parallel Computations of Large Systems, Ph. D. Thesis,
Santa Clara University (1993).

I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford: Clarendon Press
(1986).

W. F. Tinney and J. Walker, Direct Solutions of Sparse Equations by Optimally Ordered Triangular
Factorization, Proc. IEEE, 55, 1801-1809 (1967).

