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This paper considers the problem of assigning the dynamics of a nonlinear analytic system using nonlinear
generalized sampled-data hold function (GSHF) control, in the neighborhood of an equilibrium point. On every
sampling interval, the control input consists of a nonlinear time-periodic function applied to the sampled value
of the state vector. The nonlinear monodromy map is the state transition map from one sample time to the next.
It is shown that this map is arbitrarily assignable by GSHF feedback if and only if the linear part of the system
is controllable. Two approaches are proposed to construct a GSHF controller that performs the assignment. The
first approach matches the coefficients of the Taylor series expansion of the monodromy map around the
equilibrium. The second approach interpolates an optimal control law at several points in the vicinity of the
equilibrium. These approaches are illustrated on an example.
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1. INTRODUCTION

The first motivation of this paper is the recent work on generalized sampled-data hold
function control (GSHF) of analog systems [1-12]. The basic idea of this method is to let
the hold function (i.e., the digital-to-analog converter) of the sampled-data controller be
a design parameter. In its simplest form, when applied to a LTI plant, on each sampling
interval the control input is obtained by modulating the sampled value of the output by a
periodic function [5]. The advantages and disadvantages of GSHF control in achieving
robust stability and performance compared to LTI compensation have been documented in
the literature [5,9,21,22,23]. Except for [12], this control method has only been applied to
linear plants.

The second motivation of this paper is the recent work on feedback linearization of
analog nonlinear systems using an analog controller [13, 14]. In view of the widespread
use of digital computers to implement feedback control, it is important to analyze the
capability that a digital controller has to linearize, or arbitrarily assign, the dynamics of an
analog plant.
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This paper considers the problem of assigning the dynamics of a nonlinear analytic
system using nonlinear GSHF control, in the neighborhood of an equilibrium point. On
every sampling interval, the control input consists of a nonlinear time-periodic function
applied to the sampled value of the state vector. The nonlinear monodromy map is the state
transition map from one sample time to the next. The original results obtained in this study
are as follows. First it is shown in section 2 that the monodromy map is arbitrarily
assignable by GSHF feedback if and only if the linear part of the system is controllable.
Then in section 3, two approaches are proposed to construct a GSHF controller that
performs the assignment. The first approach matches the coefficients of the Taylor series
expansion of the monodromy map around the equilibrium. This approach is relatively
simple, but it does not guarantee convergence of the formal power series generated for the
hold function. Moreover in our experience, it yields domains of attraction that often tend
to shrink as more terms are retained in the power series. The second approach interpolates
an optimal control law at several points in the vicinity of the equilibrium. It is more
computationally demanding than the first one, but in our experience tends to give better
attraction regions. These features are illustrated on an example in section 4.

When the desired closed loop monodromy map is linear, the problem of monodromy
assignment becomes that of feedback linearization in sampled-data systems. In [15] it was
shown that discretization in general destroys feedback linearizability, but that this property
may be recovered by using a multirate sampling scheme. This paper is related to [15]
because when a nonlinear GSHF controller is implemented using piecewise constant
function, it becomes formally equivalent to a multirate controller. This paper is also a
generalization of [4] where it is shown that when the plant, the GSHF controller and the
desired monodromy are all linear, controllability of the plant is necessary and sufficient for
arbitrary assignability.

2. PROBLEM STATEMENT AND AN EXISTENCE RESULT

We consider nonlinear analog autonomous systems of the form

x(1) = flx(), u()), ey

where x € R" is the state vector, u € R™ is the input vector, and f:R" X R™ — R" is analytic
and satisfies f(0,0) = 0. The control input will be in the form of a nonlinear GSHF static
state feedback, that is,

u(t) = Ftx(kT)), Vt e[kT,(k + DT), k=0,1,2,..,
Ft+T,§8=Ft¢), Vi=0, V&R,
F(t0) =0, Vt =0, 2)

where T > 0 is the sampling period, and the T-periodic hold function F is analytic on
[0, T) X B,, where B, is an open neighborhood of the origin. We want to assign the state
transition map from one sample time to the next—that is, the closed loop monodromy
map—resulting from using the feedback law (2) on system (1). We introduce the
following.
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DeriniTioN 2.1, System (1) is said to be locally nonlinear monodromy assignable if for
every T > 0, for every W:R" — R" that is analytic around the origin and satisfies ¥(0) =
0, there exists B, an open neighborhood of the origin, and a hold function (2) that is
analytic on [0, T) X B,, such that whenever x(kT) € B, (1)-(2) yield

x((k + D) = ¥(x(KT)). 3

Remark 2.1. The requirement that the hold function be analytic is motivated by the fact
that in practice the control law will often be implemented with finite precision—typically
with piecewise polynomial functions. Recall that the Stone-Weierstrass Theorem [18]
guarantees that every continuous function (hence every analytic function) can be
approximated to arbitrary accuracy by piecewise polynomial functions. Hence, this
requirement could be relaxed to simple continuity with an increased sophistication of the
theory.
We can now state the following existence result.

J J
A= [—f] , B= [—f] , “4)
0X ] (4 uy = (0.0) 0 (=00

characterize the linearized version of (1). System (1) is locally nonlinear monodromy
assignable if and only if the pair (A, B) is controllable.

Proposition 2.1. Let

Proof. Controllability of (A,B) is necessary because the operations of linearization and
GSHF feedback commute. In other words, the linear part of the closed-loop monodromy
map is obtained by applying the linear part of the GSHF feedback (2) to the linear part of
the plant (1). If (A,B) has an uncontrollable eigenvalue A\, then under any GSHF feedback
(2), the linear part of the closed loop monodromy map will have an eigenvalue 7, hence
this map is not arbitrarily assignable.

To prove sufficiency, we use the following idea: For a given sampling period 7 > 0, and
a desired monodromy W, we define an optimal control problem for system (1) with
boundary conditions

x(0) = §, (52)

x(T) = ¥(§), (5b)

where £ € R" is a parameter. This optimal control problem yields a two-point boundary

value problem (TPBVP) whose solution is shown to exist and depend analytically on §

around £ = 0. This, in turn, produces a control law that solves the assignment problem.
To develop this idea, consider the optimal control problem

T

min, J(&,u(-)) =% f u(t)" u(tdt, subject to (1), (5). (6)
0
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For p € R”, define the Hamiltonian function

T 1
H(x,p,u) = p fix,u) — Eu u. @)
Also define
w(x,p) = arg max, H(x,p,u). ®)

Obviously, w(0,0) = 0. Moreover, since

oH [of\" o’H
il ol I A w2 =1 (€))
u u U/ wp)=00)

which is nonsingular, the implicit functions theorem [19] guarantees that w(x,p) exists in
a neighborhood of (x,p) = (0,0), is analytic in that neighborhood, and satisfies

ow ow T
= =0, (— =B (10)
0X / (ep) = 00) P / (ep) = 0.0)

The optimal control problem (6) yields the TPBVP [17]

) T
x = flxw(x,p)), p=— (ﬁ) ps subject to (5). (11)
(x,w(x,p))

At £ = 0, (11) admits the obvious trivial solution x(f) = 0, p() = 0, ¢ € [0, T]. We claim
that this solution depends analytically on & around £ = 0. To prove this, we will show
that the initial conditions of (11) depend analytically on &, then use the standard result on
analytic dependence of the solution of an initial value problem with respect to the initial
conditions [19].

The system of differential equations (11) together with the initial conditions x(0) = 0,
p(0) = 0, admit the unique trivial solution x(¢) = 0, p(¢) = 0, t = 0. Therefore x(7) depends
analytically on p(0) [19]. We will show that this dependence is analytically invertible by
showing that the Jacobian matrix (dx(7)/dp(0)) is nonsingular. This Jacobian is evaluated
as follows. Linearize (11) around the nominal solution x(¢) = 0, p(f) = 0 to obtain

5x| [A BB" |[ax
][]

Integrate (12) on [0, T] to obtain

3x(T) AT w 8x(0) 7
x = X _ AT [ -arppT A"t
I:SP(T)] - I: 0 ¢ ATT][BP(O)]’ W=e fe BB'e " 'dt, (13)

0
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indicating that

ax(T) —w (14)
ap(0)

Since (A,B) is controllable, W is invertible. Therefore by the implicit functions theorem
[19], the dependence of x(7) on p(0) is analytically invertible, hence p(0) depends
analytically on x(7). Now in (5), x(T) depends analytically on & Therefore in (11), all
initial conditions depend analytically on £ in a sufficiently small neighborhood of § = 0,
and so does its solution x(7), p(¢). Based on that solution, we define

F(1,€) = w(x(1), p(1)), t €[0,T),

subject to (5), (11),

F(t + kT.£) = F(t.£), t [0,T), k = 1,2,3,... (15)

which depends analytically on & and t, and performs the monodromy assignment.

Remark 2.2.  Without the requirement that the hold function be analytic, the sufficiency
part of Proposition 2.1 would be a simple consequence of the Axiom of Choice [20].
Indeed, for a given sampling period 7, a given monodromy ¥ and for § € R", define

U = {w:[0,T] = R™: (5a) and (1) imply (5b)}. (16)

When (A,B) is controllable, there exists a neighborhood of the origin B, such that Uy is
not empty whenever & € B,,. The problem of finding a GSHF that performs the monodromy
assignment is then equivalent to finding a choice function for the collection of sets
{Ug, € € B,}, by which we mean a systematic rule which to § associates one particular
element of Uy. Such a choice function is guaranteed to exist by the axiom. However, the
axiom does not guarantee that we can construct a particular choice function that depends
analytically on &. This is precisely what (15) provides.

3. TWO APPROXIMATE ASSIGNMENT METHODS
3.1 Polynomial Assignment
Since the right-hand side of (1) is analytic, we write it in the form
fxw)=2 flxu), flxu) =2 frx" " @u®, a7
i=1 k=0

where f(x,u) is a homogeneous polynomial in (x,u) with degree i, superscript (j) denotes
Kronecker power of order j, and the known matrices f;, have appropriate dimensions.
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Similarly we assume that the GSHF control law (2) has the form

F(tx) = X F()x", t[0,T).

i=1

The desired monodromy map also has the form

V(x) = S 2",

i=1

(18)

(19)

where the known matrices ¥, have appropriate dimensions. The problem is to determine
the unknown analytic functions F(f) in (18) so that the monodromy map resulting from

(1), (2), and (18) coincides with (19). We have the following.

Proposition 3.1.  Let B, be a neighborhood of the origin. Suppose the GSHF control law

(18) converges in [0,7) X B, and yields an analytic closed-loop monodromy map.

Define
t
a) = + [ ABF (. rel0.1),
0
t j t
afr) = f eA(’—T)BFj(T)d'r + > f eA(t_T)KU(T)dT, te[0,T], j=2,
i=2
0 0
where

i1 joktl
Kin=22 X f,-k[( 2 2. 2 q00. ®ap"k_‘(t)>®

k=18=i—k+1 p=1p=1  pyp=l

prtppt et P =0

( PIEDIPEDS Fql(t)®...®Fqk_1(t)>].

7=1¢=1 g¢-,=1
Gtagt ot g =jd

Then the actual closed-loop monodromy map has the form

V,(x) = Za (T)x".

i=l

(20

(21

(22)
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Proof. The proof is a lengthy but straightforward calculation. The idea is to use the
GSHF feedback (2), (18) on system (1), (17), and on the interval [kT, (k + 1)T], let the
intersampling behavior be characterized by

x(kT + 1) = %ai('r)xm(kT), 7€[0,7),

i=1
f(KT + =), u(kT + 7)) = E‘,K,.j(T)xU’(kT), 7€[0,7). (23)
j=1

See [12] for details.
Let v = 1 be integer. To assign the first v coefficients of the Taylor series expansion of
the closed-loop monodromy map, we can specify

aT) =T, 1<i=<v. 4)

Equations (20), (21), and (24) can be considered as linear equations for the unknown
analytic functions F; (f). When the pair (A, B) is controllable, (20), (24) have the obvious
solution

Fl(t) — BTeAT(T—I) Wc—l (‘I’l—eAT),

. T
r J
F()=B"""W'| ¥,-3 f AT (mdr |, j=2,

i=2 0

T
W, = f ATOBBTA Ty, (25)

0

It should also be remarked that (20)-(22) can be solved from low order to high order by
computing sequentially F (1), a,(¢), F,(f), a,(¢), and so on. In other words, the ith order
nonlinearity F(?) is introduced in the GSHF to assign the ith order term in the monodromy,
without destroying the assignment of the lower-order terms. However, as we assign more
terms, we do not guarantee that the formal power series (18) thus generated converges
anywhere else than at the origin. In fact, from our experience, such a procedure tends to
give quite poor attraction regions, apparently due to the occurrence of large excursions
from the origin between sampling times. This leads to the idea of penalizing the
intersampling behavior, which is presented in the next subsection.

3.2. Interpolation

The idea of this method is similar to that in the proof of sufficiency in Proposition
2.1—use a control law that optimizes a subsidiary cost function and performs the
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monodromy assignment through its boundary conditions. In addition here, we assume that

the control input is a linear combination of known functions of time with unknown

coefficients. We determine the values of these coefficients that would yield optimality for

several chosen initial values in the vicinity of the origin in R". Then we construct a

polynomial function of x that interpolates these values. The combination of this

polynomial function of x with the known functions of time yields the GSHF feedback law.
More specifically, we assume that the control input of (21) has the form

N
u(t) = 2v e, = V(t)a, te[kT,(k + 1)T), (26)

i=1

where N >> m X n is a chosen integer, v;R — R™ are known, linearly independent
T-periodic functions of time, and the coefficient vector o € R" is unknown. For the
spanning functions v; we have used piecewise polynomial splines with small support.
Next we choose a subsidiary cost function g:R" X R™ — R:(x,u) — g(x,u) that will
penalize the intersampling behavior. For the cost function g we have effectively used a
quadratic positive definite function. We also choose M points §1,...,§M in the vicinity of the
origin of R". Then for each of these points &, we solve the optimization problem

T
min_ fg(x(t),u(t))dt,

0

subject to

N
X(t) = fx(Ou(),  x(0) =&, x(I)=VE), w)=2vda. Q7

i=1

This is now a constrained parameter optimization problem, which we solve using the
gradient projection technique. See [12, 16] for explicit expressions of the gradient of the
cost function and constraints in (27) with respect to the unknown vector a.

Let o, 1 = k =< M be the optimizers of problem (27). (The existence and uniqueness
of these optimizers can be guaranteed under mild technical conditions on f and g, using
an argument similar to that in the proof of Proposition 2.1 [12]). The next step in the
method is to find a polynomial function m:R” — R" which interpolates the o, that is,
which satisfies

(£ = of, l<k=M. (28)

As expected from an interpolation problem, this step leads to linear algebraic equations for
the coefficients of the polynomial m [12]. Finally, the GSHF is given by

F(tx) = V(t)yw(x), te[0,T), F(t+ kT.,£) = F(s,§), €[0,]), k=1.23,.. 29)
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The resulting control law therefore has the property that whenever x(kT) coincides with
one of the points §’ on the interval [kT, (k + 1)T], the input not only satisfies the boundary
conditions (23), but also optimizes the integral of the cost function g(x,u) subject to the
constraint (26). However, note that the interpolation method does not guarantee local
asymptotic stability of the origin when the linear part of the desired monodromy is
asymptotically stable, whereas the polynomial assignment method does.

4. EXAMPLES

To illustrate briefly the methods of section 3 (see [12] for details), we will perform the
approximate feedback linearization of the second order single input nonlinear system [15]

xl = xz,

% =u+ uxk, (30)

which, according to Proposition 2.1, is locally nonlinear monodromy assignable around
the origin. Let the sampling period T = 1. The desired linear closed-loop monodromy map
has the form (23), (19) where
¥ = 05 1
loo03 ]’

Y, =0, k=2 (31

ExampLE 1 We first use the polynomial assignment method of section 3.1. Using (20),
(21), (24), and (25), the first five terms of the controller are

F\(t) = [6t—3 —4.2t + 1.4],
Fy(t) = [0.771¢ — 0.386 —3.967 + 1.98 7.092t — 3.546 —2.652¢ + 1.001],

Fy(t) = [0.099¢ — 0.05 —0.949¢ + 0.501 3.811z—2.121 —7.678¢ + 4.387
7.276t — 4.095 —1.816¢ + 0.828]

Fy(t) = F,(r) = 0, Vte[0,1], 32)
where, for instance, x**)(f) is defined as x'¥ = [x; xx, x?x% xxs xx3 x3)7, pertaining to
Fs (7). The other Kronecker powers of x(¢) are similarly defined. There are no even-order
terms in this controller. Based on the above results, we define three GSHF controllers
obtained by truncating (18) to order 1,3, and 5, respectively. Thus Controller 1 uses F,(f)
only and is linear, Controller 2 uses F,(f) and F5(f), while Controller 3 uses F (1), F,(?),
and Fy(f). There is no significant difference between the responses of these three
controllers when the initial conditions have norm less than /4. However, if we check the
phase plane for the attraction regions (see Fig. 1), those of Controllers 2 and 3 are much
smaller than that of Controller 1.
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ExampLe 2 We now apply the interpolation approach of section 3.2. The subsidiary cost
function is chosen as

1
glx,u) = E(ﬁ +2x3 + ud). (33)

The input function is assumed to be a continuously differentiable linear combination of
third degree piecewise polynomials on the intervals [0, 1/6], [1/6, 1/3], [1/3, 2/3], [2/3, 1].
Let M = 5. The S initial conditions for which we solve problem (27) form the initial

first order feedback fifth order feedback
xz«) third order_feedback Tt
6 Y

-4 T | T T

-6 -4 =2 0 2 4 6
X1()

Figure 1 Attraction regions of Example 1. Polynomial Assignment using GSHF control. Three controllers are
compared: (1) First-order feedback controller; (2) Third-order feedback controller; (3) Fifth-order feedback
controller.
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The attraction region of the closed-loop sampled-data system is shown in Fig. 2. In that
figure, the attraction region obtained in Example 1 is also shown for comparison. Clearly
for system (30) with desired monodromy (31), the interpolation method of section 3.2
improves dramatically the attraction region compared with the polynomial approach of
section 3.1. The comparative features of Examples 1 and 2 are typical of many
experiments we performed.

condition set

X2(K) (1) nonlinear optimal GSHF controller (2) lincar GSHF controller

60 =
40 -
20 -
0 2
=20 & -«
X, =u+ uxf
) | T: hl 5 b
-40 - withJ = 5| (x;+2x;+u')dl.T=|
2, 2
and with x({(k + DT) = [065 0:} «(kT)
-60 T t T
-100 =50 0 S0 100

X1(K)

Figure 2  Attraction regions of the closed-loop nonlinear system in Example 2. Two controllers are compared:
(1) Nonlinear GSHF controller for approximate monodromy assignment and optimal intersample behavior; (2)
First-order controller in Example 1.
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4. CONCLUSIONS

This paper has considered the problem of assigning the state transition map from one
sample time to the next (i.e., the monodromy map) in a nonlinear analytic system using
GSHF control. The basic premise of this approach is that the hold function (i.e., the
digital-to-analog converter) is the design parameter. It is shown that the monodromy map
is arbitrarily assignable by GSHF feedback if and only if the linear part of the system is
controllable. Two approaches have been proposed to construct a GSHF controller that
performs the assignment. Their features, which we have found typical in many
experiments, have been illustrated on an example.

The main limitation of this work is obviously its emphasis on sample time dynamics.
Even though the interpolation method of section 3.2 provides a way of ensuring
intersampling performance, our experience suggests that it is in general difficult to prevent
large excursions from the origin between sampling times. Another limitation is the
assumption that the system has no disturbance, which may be quite detrimental in GSHF
control. Furthermore, our reliance on an analytic model of the dynamic system raises the
question of robustness of our method against structured and unstructured uncertainties.
These issues will be studied in the future.
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