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This paper develops a result on the design of robust steady-state estimator for a class of
uncertain discrete-time systems with Markovian jump parameters. This result extends the
steady-state Kalman filter to the case of norm-bounded time-varying uncertainties in the
state and measurement equations as well as jumping parameters. We derive a linear state
estimator such that the estimation-error covariance is guaranteed to lie within a certain
bound for all admissible uncertainties. The solution is given in terms of a family of linear
matrix inequalities (LMIs). A numerical example is included to illustrate the theory.

1. Introduction

Perhaps the problem of optimal (state and/or parameter) estimation is the oldest problem
in systems theory and particularly for dynamical systems subject to stationary Gaussian
input and measurement noise processes [1]. For classes of continuous-time and discrete-
time systems with uncertain parameters, the robust state estimation problem arises natu-
rally for which several techniques have been developed (see [3, 17, 20, 22, 26, 30, 31] and
the references cited therein).

Recently, dynamical systems with Markovian jumping parameters have received in-
creasing interests from both control and filtering points of view. For some representative
prior work on this general topic, we refer the reader to [7, 8, 9, 10, 11, 23, 24, 25] and the
references therein. The filtering problem of systems with jumping parameters has been
resolved in [11] and a discrete-time filtering problem for hybrid systems has been studied
in [12]. In these two papers, the state process is observed in white noise and the random
jump process is observed by a point process. The so-called H∞ filter of jump systems has
been designed in [9] via a linear matrix inequality (LMI) approach, which provides mean
square stable error dynamics and a prescribed bound on the �2-induced gain from the
noise signals to the estimation error. The problem of robust Kalman filtering for uncer-
tain linear continuous-time systems with Markovian jump parameters has been studied
in [24] in which a state estimator is designed such that the covariance of the estimation
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error is guaranteed to be within a certain bound for all admissible uncertainties. However,
to date the problem of robust Kalman filtering for uncertain discrete-time linear systems
with Markovian jump parameters, to the best of the authors’ knowledge, has not yet been
fully investigated.

In this paper, the problem of robust state estimation for linear discrete-time systems
with both Markovian jump parameters and norm-bounded parametric uncertainties is
investigated. The state estimator is designed such that the estimation-error covariance is
guaranteed to be upper bounded for all admissible uncertainties. Our study illustrates
that the above problem is solvable if a set of LMIs has a solution. Furthermore, it is
shown that the results obtained in this paper encompass the available results in the lit-
erature. A numerical example is included to demonstrate the potential of the proposed
techniques.

Notations and facts. In the sequel, we denote by Wt, W−1, and λ(W) the transpose, the
inverse, and the eigenvalues of any square matrix W , respectively. Let λm(W) and λM(W)
be the minimum and maximum eigenvalues of matrix W . We use W > 0 (≥,<,≤ 0) to
denote a symmetric positive definite (positive semidefinite, negative, negative semidef-
inite) matrix and I to denote the n× n identity matrix, E[·] stands for mathematical
expectation, tr(·) denotes the matrix trace, and �2[0,∞] is the space of square-summable
vectors defined by

∑∞
k=1 f

t
k fk <∞ for f = ( fk) ∈ �2[0,∞]. The symbol • will be used in

some matrix expressions to induce a symmetric structure, that is, given matrices L = Lt

and R= Rt of appropriate dimensions, then

[
L+M +• •

N R

]
=
[
L+M +Mt Nt

N R

]
. (1.1)

Also, the notation (Ω,�,P) stands for a given probability space, where Ω is the sample
space, � is the algebra of events, and P is the probability measure defined on �.

Sometimes the arguments of a function will be omitted in the analysis when no con-
fusion can arise.

Fact 1. For any real matrices Σ1, Σ2, and Σ3 with appropriate dimensions and Σt
3Σ3 ≤ I ,

it follows that

Σ1Σ3Σ2 +Σt
2Σ

t
3Σ

t
1 ≤ αΣ1Σ

t
1 +α−1Σt

2Σ2 ∀α > 0. (1.2)

Fact 2. Let Σ1, Σ2, Σ3, and 0 < R= Rt be real constant matrices of compatible dimensions
and H(t) a real matrix function satisfying Ht(t)H(t) ≤ I . Then, for any ρ > 0 satisfying
ρΣt

2Σ2 < R, the following matrix inequality holds:

(
Σ3 +Σ1H(t)Σ2

)
R−1(Σt

3 +Σt
2H

t(t)Σt
1

)≤ ρ−1Σ1Σ
t
1 +Σ3

(
R− ρΣt

2Σ2
)−1

Σt
3. (1.3)
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2. Discrete-time jumping system

2.1. Model description. We consider the following class of discrete-time systems with
Markovian jump parameters for a given probability space (Ω,�,P):

xk+1 =
[
A
(
ηk
)

+∆A
(
k,ηk

)]
xk +wk, x0 = φ, η0 = i, (2.1a)

zk = C
(
ηk
)
xk + vk, (2.1b)

∆A
(
k,ηk

)=H
(
ηk
)
∆
(
k,ηk

)
E
(
ηk
)
,
∥∥∆(k,ηk

)∥∥≤ 1, k ∈�, (2.1c)

where xk ∈Rn is the system state, zk ∈Rp is the system measurement, and wk ∈Rn and
vk ∈Rp are zero-mean Gaussian white-noise processes with joint covariance

E



[
wk

vk

][
wk

vk

]t

=

[
� 0
0 �

]
> 0. (2.2)

The initial condition xo is assumed to be a zero-mean Gaussian random variable inde-
pendent of the white-noise processes wk and vk.

The matrices A(ηk)∈Rn×n and C(ηk)∈Rp×n are known real-valued matrices. These
matrices are functions of the random process {ηk} which is a discrete-time, discrete-state
Markovian chain taking values in a finite set �= {1,2, . . . ,s} with generator �= (αi j) and
transition probability from mode i at time k to mode j at time j + 1, k ∈�:

pi j = Pr
(
ηk+1 = j | ηk = i

)
(2.3)

with pi j ≥ 0 for i, j ∈ � and
∑s

j=1 pi j = 1. We note that the set � consists of different
operation modes of system (2.1), and for each value ηk = i, i∈�, we denote the matrices
associated with mode i by

A
(
ηk
)= Ai, C

(
ηk
)= Ci, (2.4)

where Ai and Ci are known constant matrices describing the nominal system. For η = i∈
�, ∆A(k,ηk) = ∆Ai(k) are unknown matrices which represent time-varying uncertain-
ties, and are assumed to belong to certain bounded compact sets, where, for ηk = i, i∈�,
H(ηk)=Hi ∈Rn×i and E(ηk)= Ei ∈R j×n are known real constant matrices characteriz-
ing the way the uncertain parameters ∆(k,ηk)= ∆i(k)∈Ri× j affect the nominal matrices
Ai andCi, and∆i(k), i∈�, is an unknown time-varying matrix function satisfying (2.1c).

Remark 2.1. Note that system (2.1) can be used to represent many important physical
systems subject to random failures and structure changes, such as electric-power systems
[28], control systems of a solar thermal central receiver [27], communications systems
[2], aircraft flight control [18], control of nuclear power plants [21], and manufacturing
systems [4, 5].
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2.2. Stochastic quadratic stability. First, we recall the following definition.

Definition 2.2. System (2.1) with vk ≡ 0, wk ≡ 0, and ∆i(k)≡ 0 is said to be stochastically
stable (SS) if for all finite initial state φ ∈Rn and initial mode ηo ∈�, there exists a finite
number �(φ,ηo) > 0 such that

lim
R→∞

E

[ R∑
k=0

xtk
(
φ,ηo

)
xk
(
φ,ηo

) | φ,ηo

]
< �

(
φ,ηo

)
. (2.5)

Remark 2.3. In light of [6, 13], it follows that (2.5) is equivalent to mean square stability
(MSS) in the sense that

lim
k→∞

E
[∥∥xk∥∥ | φ,ηo

]−→ 0, (2.6)

and, in turn, it implies almost sure stability (ASS) in the sense that, for every finite initial
state φ ∈Rn and initial mode ηo ∈�, we have

lim
k→∞

x(k)−→ 0 (2.7)

with probability 1.

Lemma 2.4. System (2.1) with vk ≡ 0, wk ≡ 0, and F(k,ηk) ≡ 0 is SS if and only if there
exists a set of matrices {Wi =Wt

i > 0}, i∈�, satisfying the following set of coupled LMIs:

At
i

[ s∑
j=1

pi jWj

]
Ai−Wi < 0, i= 1, . . . ,s. (2.8)

Proof. Let the modes at times k and k + 1 be ηk = i, ηk+1 = j ∈ �. Take the stochastic
Lyapunov function candidate V(·) to be (see [14])

Vk
(
xk, i

)= xtkW(i)xk. (2.9)

Thus, we have from (2.9), together with (2.8),

E
{
Vk+1

(
xk+1, j

) | xk, i
}−Vk

(
xk, i

)= s∑
j=1

pi jx
t
k+1Wjxk+1− xtkWixk

=
s∑

j=1

pi jx
t
kA

t
iWjAixk − xtkWixk

=−xtkQixk < 0.

(2.10)
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With Qi > 0, we have from (2.10), for xk 	= 0,

E
{
Vk+1

(
xk+1, j

) | xk,ηk
}−Vk

(
xk, i

)
Vk
(
xk, i

) <− −x
t
kQixk

xtkW(i)xk
≤−min

i∈�

{
λm
(−Qi

)
λM
(
Pi
)
}
= β− 1,

(2.11)
where

β = 1−min
i∈�

{
λm
(−Qi

)
λM
(
Pi
)
}
. (2.12)

Since

β >
E
{
Vk+1

(
xk+1, j

) | xk,ηk
}

Vk
(
xk, i

) =
∑s

j=1 p(i j)
(
xtk+1Wjxk+1

)
Vk
(
xk, i

) > 0, (2.13)

and in view of (2.11), it is readily evident that 0 < β < 1, and hence

E
{
Vk+1

(
xk+1, j

) | xk, i
}
< βVk

(
xk, i

)=⇒ E
{
Vk
(
xk, i

) | φ,ηo
}
< βkV0

(
φ,ηo

)
. (2.14)

It follows from (2.14) that

E

[ R∑
k=0

Vk
(
xk,ηk

) | φ,η0

]
<
(
1 +β+ ···+βR

)
V0
(
φ,ηo

)= 1−βR+1

1−β
V0
(
φ,ηo

)
, (2.15)

and hence

lim
R→∞

E

[ R∑
k=0

xtkW
(
ηk
)
xk | φ,ηo

]
<

1
1−β

V0
(
φ,ηo

)
. (2.16)

Introducing

�
(
φ,ηo

) ∆= maxi∈�
{
W−1

i

}
1−β

V0
(
φ,ηo

)
(2.17)

and using Rayleigh quotient, we have

lim
R→∞

E

[ R∑
k=0

xtkxk | φ,ηo

]
= lim

R→∞
E

[ R∑
k=0

∥∥xk∥∥2 | φ,ηo

]
< �

(
φ,ηo

)
, (2.18)

which means that system (2.1) is SS, thus the sufficiency part is proved. The proof of
necessity can be found in [13]. �
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Remark 2.5. Lemma 2.4 establishes an LMI stability test of the input-free nominal jump
system. It is easy to show that (2.8) is equivalent to the fact that there exists a set of
matrices {Zi > 0, i∈�} satisfying

At
i

[ s∑
j=1

pi jZj

]
Ai−Zi = 0, i= 1, . . . ,s. (2.19)

In line with the results of [15] for linear systems, we introduce the following definition
of stochastic quadratic stability.

Definition 2.6. System (2.1) with wk ≡ 0 is said to be stochastically quadratically stable if
there exists a set of matrices {0 <Wi =Wt

i , i∈�} satisfying

[
Ai +∆Ai(k)

]t[ s∑
j=1

pi jWj

][
Ai +∆Ai(k)

]−Wi < 0, i∈�, (2.20)

for all admissible parameter uncertainties ∆Ai(k), i∈�, satisfying (2.1c).

Now, we show that for system (2.1), stochastic quadratic stability implies stochastic
stability.

Theorem 2.7. System (2.1) with wk ≡ 0 is SS for all admissible parameter uncertainties
∆Ai(k), i∈�, if it is stochastically quadratically stable.

Proof. Since system (2.1) with wk ≡ 0 is stochastically quadratically stable, by Definition
2.6, there exists a set of matrices {0 <Wi =Wt

i , i∈�} satisfying (2.20) for all admissible
parameter uncertainties ∆Ai(k), i∈�; thus (2.1a) is SS. �

By direct application of Fact 2 and rearranging terms, we have the following corollary.

Corollary 2.8. System (2.1) with wk ≡ 0 is SS for all admissible parameter uncertainties
∆Ai(k), i ∈ �, if there exist a set of matrices {Wi =Wt

i > 0}, i ∈ �, and a set of scalars
ρi > 0, i∈�, satisfying the following set of coupled LMIs:

ρ−1
i HiH

t
i +Ai

[
W̄−1

i − ρiE
t
iEi
]−1

At
i −Wi < 0, (2.21)

where

W̄i =
s∑

j=1

pi jWj , i∈�. (2.22)

2.3. State estimator. Our purpose in this paper is to design a state estimator of the form

x̂k+1 = Fix̂k +Gizk, (2.23)
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for i ∈ �, where x̂k ∈ Rn is the state estimate and x̂ko is the estimator initial condition
which is assumed to be a zero-mean Gaussian random vector. The matrices Gi and Ki,
i∈�, are the estimator gain to be determined in order that the estimation error dynamics
be stochastically asymptotically stable. When such an estimator is applied to the uncertain
system (2.1), the corresponding estimation error vector is defined by ek = xk − x̂k. From
(2.1) and estimator (2.23), for ηk = i, one has

ek+1 = Fiek +
[
Ai−Fi−GiCi

]
xk +∆A(k, i)xk +wk −Givk. (2.24)

In terms of the state variables ek and x̂k, the state equations describing the augmented
system obtained from (2.1) and (2.24) are as follows:

ξk+1 =
[
Āi + H̄i∆i(k)Ēi

]
ξk + B̄iσk, ξko = ξ0, (2.25)

where

ξk =
[
ek
x̂k

]
, ξko =

[
xko − x̂ko

x̂ko

]
, σk =

[
�−1/2wk

�−1/2vk

]
,

Āi =
[
Ai−GiCi Ai−Fi−GiCi

GiCi Fi +GiCi

]
, H̄i =

[
Hi

0

]
,

Ēi =
[
Ei Ei

]
, B̄i =

[
�1/2 −Gi�1/2

0 Gi�1/2

]
.

(2.26)

We introduce the following definition.

Definition 2.9. The state estimator (2.23) is said to be an SS quadratic guaranteed cost
(SSQGC) state estimator with associated set of cost matrices {0 < Xi = Xt

i , i ∈ �} for
system (2.1) if for the estimator gain matrix F, |λ(F)| < 1, and there exist matrices �i,
i∈�, satisfying

�i =
[
Xi Πi

Πt
i Yi

]
(2.27)

such that the inequality

[
Āi + H̄i∆(k, i)Ēi

]
�̄i
[
Āi + H̄i∆(k, i)Ēi

]t −�i + B̄iB̄
t
i < 0 (2.28)

holds for all uncertainties ‖∆(k, i)‖ ≤ 1, where �̄i =
∑s

j=1 pi jXj , i∈�.

In the discussions to follow, we restrict attention to the class of quadratic guaranteed
cost state estimators. The next result shows that if estimator (2.23) is an SSQGC for sys-
tem (2.1) with cost matrix Xi, i∈�, then Xi provides an upper bound on the steady-state
error covariance matrix at time k:

Xic(k)= lim
ko→∞

E
{
etkek

}
. (2.29)
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Theorem 2.10. Suppose that (2.23) is an SSQGC state estimator with cost matrix Xi, i∈�,
for system (2.1). Then the augmented system (2.25) will be stochastically quadratically stable
and the steady-state error covariance matrix at time k satisfies the bound

Xic(k)≤ Xi(k), i∈�, (2.30)

for all admissible uncertainties ∆(k, i).
Conversely, any state estimator of type (2.23) with |λ(F)| < 1 will be an SSQGC state

estimator for system (2.1) with some cost matrix X̃i > 0.

Proof
Necessity. Suppose that (2.23) is an SSQGC state estimator for system (2.1) with cost
matrix Xi > 0. Since for the matrix F, |λ(F)| < 1, and (2.1) is stochastically quadratically
stable, it follows that the augmented system (2.25) will be stochastically quadratically
stable. This can be easily verified on selecting a Lyapunov matrix of the form

Ωi =
[
ωiΩis 0

0 Ωi f

]
(2.31)

with ωi > 0 being a sufficiently large constant and the matrices Ωis and Ωi f quadratic
Lyapunov functions for system (2.1) and (2.23), respectively. Let E{ξkoξtko} = Ξi ≥ 0. Since
σk is a Gaussian white-noise process with identity covariance, it follows for any admissible
uncertainty ∆(k, i)≤ 1 that the state covariance matrix for system (2.25) is given by

X̂ic
(
k,ko

) ∆= E
{
ξkξ

t
k

}=Φ
(
k,ko

)
ΞiΦ

t
(
k,ko

)
+

k∑
j=ko

Φ(k, j)B̄iB̄
t
iΦ

t(k, j), (2.32)

where Φ(k, j) is the state transition matrix associated with system (2.25). Moreover, using
the fact that system (2.25) is stochastically quadratically stable, it follows that

Φ
(
k,ko

)= lim
ko→∞

= 0, (2.33)

which in turn implies that

X̂ic(k)
∆= lim

ko→∞
X̂ic
(
k,ko

)= k∑
j=ko

Φ(k, j)B̄iB̄
t
iΦ

t(k, j). (2.34)

Introducing

Υi(k)
∆=�i−

[
Āi + H̄i∆(k, i)Ēi

]
�̄i
[
Āi + H̄i∆(k, i)Ēi

]t − B̄iB̄
t
i > 0,

Λi
(
k,ko

)= �̄i− X̂ic
(
k,ko

)
,

(2.35)

it is readily evident that Λi(k,ko) satisfies the Lyapunov difference equation

Λi
(
k+ 1,ko

)= [Āi + H̄i∆(k, i)Ēi
]
Λi
(
k,ko

)[
Āi + H̄i∆(k, i)Ēi

]t
+Υi(k), (2.36)
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and hence, in view of the stochastic quadratic stability of system (2.25),

lim
ko→∞

Λi
(
k,ko

)= �̄i− X̂ic(k) > 0, i∈�, (2.37)

holds independently of the initial conditionΛi(ko,ko). Thus, X̂ic(k)≤ �̄i for all admissible
uncertainties ‖∆(k, i)‖ ≤ 1. In view of the matrix structure of (2.27), it follows that

Xic(k)≤ Xi (2.38)

for all admissible uncertainties ∆(k, i)≤ 1 and for all i∈�.
Sufficiency. Now, consider any state estimator of the form (2.23) with F, |λ(F)| < 1.
Again, since system (2.1) is stochastically quadratically stable, it easily follows that the
augmented system (2.25) will be stochastically quadratically stable. Therefore, there ex-
ists a matrix

�̃i =
[
X̃i Π̃i

Π̃t
i Ỹi

]
(2.39)

such that

[
Āi + H̄i∆(k, i)Ēi

] ˜̄�i
[
Āi + H̄i∆(k, i)Ēi

]t − �̃i < 0 ∀∥∥∆(k, i)
∥∥≤ 1. (2.40)

Hence, there exist constants εi > 0, i∈�, such that

[
Āi + H̄i∆(k, i)Ēi

]
ε−1
i

˜̄�i
[
Āi + H̄i∆(k, i)Ēi

]t − ε−1
i �̃i + B̄iB̄

t
i < 0 ∀∥∥∆(k, i)

∥∥≤ 1. (2.41)

We conclude that this estimator is an SSQGC state estimator with cost matrix ε−1
i X̃i. �

Remark 2.11. Since our main purpose is to construct a state estimator which minimizes
the upper bound on the error covariance Xi, i∈�, we solve an alternative minimization
problem by looking at the corresponding bound on the steady-state mean square error

lim
ko→∞

E
{
etkek

}= Tr
[
Xic(k)

]≤ Tr
[
Xi
]
. (2.42)

We will be concerned with constructing an SSQGC state estimator which minimizes
Tr[Xi]. In the case of limited-state measurements, it may be required to estimate an out-
put variable yk = Lxk. The solution would be an output estimate of the form ŷk = Lxk
and the corresponding steady-state mean square error bound

lim
ko→∞

E
{[
yk − ŷk

]t[
yk − ŷk

]}= Tr
[
LtXic(k)L

]≤ Tr
[
LtXiL

]
. (2.43)

This means that an SSQGC state estimator would be constructed to minimize the quan-
tity Tr[LtXiL].
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3. Construction of the optimal filter

In this section, we provide an LMI approach to constructing the SSQGC state estimator
for system (2.1), which minimizes the bound in (2.42). We show that the filtering prob-
lem can be solved if a family of coupled LMIs has a feasible solution. For simplicity in
exposition, we assume that the matrix Ai is invertible for all i ∈ �. The following theo-
rem establishes the main result.

Theorem 3.1. Consider system (2.1) and suppose that it is stochastically quadratically sta-
ble. If there exist two sets of matrices {Φi =Φt

i > 0, Ψi =Ψt
i > 0, i∈�} and a set of scalars

{µi > 0, i∈�} such that the LMIs



−Φi +µiI At

iΦ̄i At
iΦ̄i�̄

1/2
i Et

i

• −Φ̄i 0 0
• • −I + �̄1/2

i Φ̄i�̄
1/2
i 0

• • • −εiI


 < 0, (3.1)

[
−Ψi +Mi +Υi ÂiΨ̄i

• −Ψ̄i

]
< 0,

[
Υi ÂiΨ̄iĈ

t
i +Li

• −R̂i− ĈiΨ̄iĈ
t
i

]
> 0 (3.2)

have a feasible solution, where

Φ̄i =
s∑

j=1

pi jΦ j , Ψ̄i =
s∑

j=1

pi jΨ j , (3.3)

�̄i =� + εiH1iH
t
1i, (3.4)

I −�̄1/2
i Φ̄i�̄1/2 > 0, (3.5)

Âi =Ai + δAi = Ai + �̄i
[
Φ̄−1

i −�̄i
]−1

Ai, (3.6)

Ĉi = Ci + δCi = Ci + ε−1
i H2iH

t
1i

[
Φ̄−1

i −�̄i
]−1

Ai, (3.7)

R̂i =� + ε−1
i H2iH

t
2i + ε−2

i H2iH
t
1i

[
Φ−1

i −�̄i
]−1

H1iH
t
2i, (3.8)

Li = ε−1
i

[
I −�̄iΦ̄

−1
i

]−1
H1iH

t
2i, (3.9)

Mi = �̄i + �̄i
[
Φ̄−1

i −�̄i
]−1

�̄i, (3.10)

then the estimator (2.23) is an SSQGC state estimator with gains

Gi =
[
ÂiΨ̄iĈ

t
i +Li

](
R̂i + ĈiΨ̄iĈ

t
i

)−1
, Fi = Âi−GiĈi, (3.11)

with guaranteed cost

E
{[
x(k)− x̂(k)

]t[
x(k)− x̂(k)

]}≤ σi
∆=max

i∈�
tr
(
Ψi
)
. (3.12)
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Proof. The proof essentially follows a line similar to the proof of a result in the work of
Xie et al. [32]. First, in view of the stochastic quadratic stability of system (2.1a), it follows
from the results of [15, 32] that, for each fixed i∈�,

∥∥Ei(zI −Ai
)−1

H1i
∥∥∞ < 1. (3.13)

For an arbitrary small ν > 0 and a sufficiently small εi > 0, inequality (3.13) implies that

∥∥[Et
iν

1/2I
]t(

zI −Ai
)−1[

H1iε1/2
i �1/2]∥∥∞ < 1. (3.14)

By the discrete bounded real lemma [16, 19], there exists a matrix Ξi = Ξt
i > 0 with Ξ̄i =∑s

j=1 pi jΞ j satisfying Ξ̄−1
i − εi�−H1iH

t
1i > 0 such that

At
i

[
Ξ̄−1
i − εi�−H1iH

t
1i

]−1
Ai−Ξi +Et

iEi + νI < 0. (3.15)

LettingΞ∗i = εiΞi with Ξ̄∗i =
∑s

j=1 pi jΞ
∗
j and µi = εiν, using (3.4) and applying the matrix-

inversion lemma [16], it follows from (3.15) that

At
i Ξ̄
∗
i Ai−Ξ∗i +At

i Ξ̄
∗
i �̄1/2

i

[
I −�̄1/2

i Ξ̄∗i �̄1/2
i

]−1
�i

1/2Ξ̄∗i Ai + εiEt
iEi +µiI < 0. (3.16)

Inequality (3.16) is feasible provided that Âi is a stable matrix and �̄1/2
i Φ̄i�̄

1/2
i < I , where

Φ̄i =
∑s

j=1 pi jΦ j .
Using parallel arguments, it follows from [1] that (3.2) is an LMI for the stationary

standard linear filtering, where Mi and R̂i are the covariance matrices of the process and
measurement noise signals, respectively, and Li is the cross-covariance matrix between
the process and measurement noises.

To establish the stochastic quadratic stability of the estimator (2.23), we define

	i =
[
Φ−1

i 0
0 Ψi

]
, (3.17)

where Φi and Ψi are the feasible solutions to the LMIs (3.1) and (3.2), respectively. In
terms of


t
i
i = Et

iEi + νI , 
̄i =
[

i 0

]
, (3.18)

and (2.26), it can be shown by algebraic manipulations that

Āt
i	̄iĀi−	i + εiĀt

i	̄i
̄t
i

[
I − εi
̄i	̄i
̄i

]−1

̄i	̄iĀi + ε−1

i H̄iH̄
t
i + B̄iB̄

t
i = 0 (3.19)

and I − εi
̄i	̄i
̄i > 0. Observe that 
̄t
i
̄i ≥ Ēt

i Ēi implies that I − εiĒi	̄iĒi > 0 and

Āt
i	̄iĀi−	i + εiĀt

i	̄iĒ
t
i

[
I − εiĒi	̄iĒi

]−1
Ēi	̄iĀi + ε−1

i H̄iH̄
t
i + B̄iB̄

t
i ≤ 0. (3.20)
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For all ∆i(k) : ‖∆i(k)‖ < 1, it follows from [16] and Fact 2 that (3.20) leads to

[
Āi + H̄iFi(k)Ēi

]
	̄i
[
Āi + H̄iFi(k)Ēi

]t −	i + B̄iB̄
t
i ≤ 0, (3.21)

where 	̄i =
∑s

j=1 pi j	 j . It follows from Theorem 2.10 that (2.23) is a stochastic stable
quadratic estimator with a guaranteed cost given by (3.12). �

Remark 3.2. It should be observed that Theorem 3.1 provided an LMI-based feasibility
test which can be conveniently solved by Matlab-LMI solver. The matrix Υi, i∈�, is an
intermediate variable introduced to facilitate the well-posedness of the problem. In this
study, it is assumed that jumping parameter information {ηk, k = 1,2, . . .} is available for
our design. However, if it is not the case, then Wonham filtering technique [29] would be
required to first estimate the Markov chain observed in Gaussian noise, and the approach
presented in this paper can then be employed. Also, it should be noted that the designed
state estimator/filter (2.23) depends upon the system mode i. This is because due to the
existence of the jumping parameters {ηk} in the system, the “complicated” dependence
is unavoidable, otherwise, the filter (independent of i) would be very conservative (using
one operating form for the whole system). Indeed, the dependence is good in the sense
that it gives us more options for designing and choosing the better, if not the best, filter
to better estimate the system state. That is, if the system has more chance to stay in mode
i, then the filter (2.23) would be likely to be chosen at ith form. Similarly, the filter can
be chosen at jth form if the system is likely to jump from i mode to j mode (with high
probability).

Remark 3.3. In effect, the estimation error with minimum covariance of system (2.1) can
be determined by the following minimization problem: minimize σi subject to

εi > 0, Φi > 0, Ψi > 0, i∈�, (3.22)

where Φi and Ψi, i∈�, are the feasible solutions of (3.1) and (3.2).

4. Example

In order to illustrate Theorem 3.1, we consider a pilot-scale multireach water-quality sys-
tem which can fall into the type (2.1a) and (2.1b). Let the Markov process governing the
mode switching have the infinitesimal generator (see [29])

�=


−5 2 3
1 −4 3
4 3 −7


 . (4.1)

For the three operating conditions (modes), the associated dates are as follows:



M. S. Mahmoud and P. Shi 45

Mode 1.

A(1)=



0.3 −0.2 0.1
0.02 0.5 0.1
−0.1 0.1 0.4


 , C(1)=




0 0
0 1
1 0


 ,

H1(1)=



0.1
0.1
0.1


 , Et(1)=




0.5
0.4
0.2


 .

(4.2)

Mode 2.

A(2)=


−0.4 0 0.2
0.2 0.5 0
0 −0.2 0.6


 , C(2)=




1 0
0 1
0 0


 ,

H1(2)=



0.15
0.15
0.15


 , Et(2)=




0.3
0.4
0.3


 .

(4.3)

Mode 3.

A(3)=



0.25 0.15 −0.1
0.2 −0.6 0.1
−0.1 0.3 0.5


 , C(3)=




1 0
0 1
0 0


 ,

H1(3)=



0.1
0.15
0.2


 , Et(3)=




0.2
0.4
0.5


 .

(4.4)

For the three modes, we use � = 1.2I , � = 0.6I , and Ro = 0.15I . Numerical compu-
tations of (3.1) and (3.2) using Matlab-LMI solver are summarized in Table 4.1.

For the purpose of comparison, Table 4.2 gives the associated costs of both the guar-
anteed cost filter designed for the nominal system and the optimal filter developed in this
paper. It is clear that the latter outperforms the standard one in the presence of parametric
uncertainty.
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Table 4.1. Summary of computational results.

Mode Cost Gi× 106 Fi

1 112.731× 10−4

−0.866 −1.322 0.351 −0.107 −0.041

3.611 6.819 −0.707 0.413 0.159

7.682 12.775 −1.582 −1.027 0.961

2 185.236× 10−4

−0.923 2.791 −0.102 −0.196 0.221

5.732 −2.289 −0.112 0.193 −0.536

10.345 12.701 0.245 −0.722 0.651

3 147.246× 10−4

−0.765 1.545 −0.282 0.049 −0.124

2.498 12.763 0.176 −0.411 −0.017

−3.127 4.161 0.484 0.756 −0.621

Table 4.2. A cost comparison between standard and optimal QGC filters.

Filter ∆k =−0.8 ∆k = 0 ∆k = 0.8

Standard 63.732× 10−2 31.194× 10−2 226.572× 10−2

Robust 112.554× 10−4 137.093× 10−4 148.632× 10−4

5. Conclusions

In this paper, the problem of the design of robust steady-state estimator for a class of
uncertain discrete-time systems with Markovian jump parameters has been addressed.
The results obtained here have extended the normal steady-state Kalman filter to the case
of systems with norm-bounded time-varying uncertainties in the state and measurement
equations as well as jumping parameters. A linear state estimator has been constructed
such that the estimation error covariance is guaranteed to lie within a certain bound for
all admissible uncertainties. The solution has been given in terms of a family of linear
matrix inequalities.
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