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In the area of stress-strength models there has been a large amount of work as regards
estimation of the reliability R = Pr(X2 < X1) when X1 and X2 are independent random
variables belonging to the same univariate family of distributions. The algebraic form for
R= Pr(X2 < X1) has been worked out for the majority of the well-known distributions in
the standard forms. However, there are still many other distributions (including general-
izations of the well-known distributions) for which the form of R has not been derived. In
this paper, we consider several Laplace distributions and derive the corresponding forms
for the reliability R. The calculations involve the use of special functions.

1. Introduction

Laplace distributions arise as tractable “lifetime” models in many areas, including life
testing and telecommunications. In the context of reliability, the stress-strength model
describes the life of a component which has a random strength X1 and is subjected to
random stress X2. The component fails at the instant that the stress applied to it exceeds
the strength, and the component will function satisfactorily whenever X1 > X2. Thus,
R= Pr(X2 < X1) is a measure of component reliability. It has many applications especially
in engineering concepts such as structures, deterioration of rocket motors, static fatigue
of ceramic components, fatigue failure of aircraft structures, and the aging of concrete
pressure vessels. Some examples are the following.

(1) If X2 represents the maximum chamber pressure generated by ignition of a solid
propellant and X1 represents the strength of the rocket chamber, then R is the probability
of successful firing of the engine.

(2) If X2 represents the diameter of a shaft and X1 represents the diameter of a bearing
that is to be mounted on the shaft, then R is the probability that the bearing fits without
interference.

(3) Let X1 and X2 be the remission times of two chemicals when they are adminis-
tered to two kinds of mechanical systems. Inferences about R present a comparison of the
effectiveness of the two chemicals.
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(4) The receptor of a communication system operates only if it is stimulated by a
source where magnitude X1 is greater than a random lower threshold X2 for the system.
In this case, R is the probability that the receptor operates.

(5) If X1 and X2 are future observations on the stability of an engineering design,
then R would be the predictive probability that X2 is less than X1. Similarly, if X1 and X2

represent lifetimes of two electronic devices, then R is the probability that one fails before
the other.

(6) If X1 represents the distance of a pyrotechnic igniter from its adjacent pellet and X2

represents its ignition distance, then R is the probability that the igniter succeeds to bridge
the gap in the pyrotechnic chain.

Because of these applications, the calculation and the estimation of R = Pr(X2 < X1)
are important for the class of Laplace distributions. The calculation of R has been exten-
sively investigated in the literature when X1 and X2 are independent random variables
belonging to the same univariate family of distributions. The algebraic form for R has
been worked out for the majority of the well-known distributions in their standard forms.
These include normal, uniform, exponential, gamma, Weibull, and the Pareto distribu-
tions. However, we have identified many other distributions including extensions of the
above distributions for which the form of R is not known. Nadarajah [18, 19, 20, 21] and
Nadarajah and Kotz [22] have provided comprehensive collections of the forms for R for
generalizations of the exponential, gamma, beta, extreme value, logistic, and the Pareto
distributions. In this paper, we attempt to do the same for the class of Laplace distribu-
tions.

We will assume throughout this paper that X1 and X2 are continuous and independent
random variables. Let fi and Fi denote, respectively, the probability density function (pdf)
and the cumulative distribution function (cdf) of Xi. With this notation, one can write

R= Pr
(
X2 < X1

)=
∫∞
−∞

F2(z) f1(z)dz. (1.1)

We will not provide details of the calculations of (1.1) in this paper (they can be obtained
from the author). Our calculations make use of a number of special functions. They are
the gamma function defined by

Γ(a)=
∫∞

0
za−1 exp(−z)dz, (1.2)

the incomplete gamma function defined by

γ(a,x)=
∫ x

0
ta−1 exp(−t)dt, (1.3)

the complementary incomplete gamma function defined by

Γ(a,x)=
∫∞
x
ta−1 exp(−t)dt, (1.4)
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and the Gauss hypergeometric function defined by

2F1(a,b;c;x)=
∞∑
k=0

(a)k(b)k
(c)k

xk

k!
, (1.5)

where (a)k = a(a+ 1)···(a+ k− 1). The properties of these special functions being used
can be found in [9, 24, 25, 26].

2. Standard Laplace distribution

The standard Laplace distribution has the pdf and the cdf specified by

fi(x)= 1
2φi

exp

(
−
∣∣x− θi∣∣

φi

)
, (2.1)

Fi(x)=




1
2

exp
(
x− θi
φi

)
, if x ≤ θi,

1− 1
2

exp
(
θi− x
φi

)
, if x > θi,

(2.2)

respectively, where −∞ < x <∞, −∞ < θi <∞, and φi > 0. This distribution has been
quite commonly used as an alternative to the normal distribution in robustness studies,
see, for example, [2, 11]. It has also attracted interesting applications in the areas of as-
tronomy, biological and environmental sciences, engineering sciences, finance, inventory
management, and quality control.

Direct integration using (1.1) shows that the reliability R for the standard Laplace
distribution (2.1) and (2.2) is given by

R= φ2
1

2
(
φ2

1−φ2
2

) exp
(
θ1− θ2

φ1

)
− φ2

2

2
(
φ2

1−φ2
2

) exp
(
θ1− θ2

φ2

)
(2.3)

if θ1 ≤ θ2 and by

R= 1 +
φ2

1

2
(
φ2

2−φ2
1

) exp
(
θ2− θ1

φ1

)
− φ2

2

2
(
φ2

2−φ2
1

) exp
(
θ2− θ1

φ2

)
(2.4)

if θ1 > θ2.

3. Skewed Laplace distributions

In the last several decades, various forms of skewed Laplace distributions have sporadi-
cally appeared in the literature. One of the earliest is due to McGill [17], who considered
distributions with the pdf given by

fi(x)=




1
2ψi

exp
(
x− θi
ψi

)
, if x ≤ θi,

1
2φi

exp
(
θi− x
φi

)
, if x > θi,

(3.1)
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where −∞ < x <∞, −∞ < θi <∞, φi > 0, and ψi > 0. The corresponding cdf is

Fi(x)=




1
2

exp
(
x− θi
ψi

)
, if x ≤ θi,

1− 1
2

exp
(
θi− x
φi

)
, if x > θi.

(3.2)

These distributions are also known as the two-piece double exponential. The standard
Laplace distribution arises as the particular case of (3.1) and (3.2) for φi = ψi, i = 1,2.
The reliability R for (3.1) and (3.2) turns out to be

R= 1
4

(
2 +

ψ2

φ1−ψ2
− φ2

φ1 +φ2

)
exp

(
θ1− θ2

φ1

)

+
1
4

(
ψ2

ψ1 +ψ2
− ψ2

φ1−ψ2

)
exp

(
θ1− θ2

ψ2

) (3.3)

when θ1 ≤ θ2 and

R= 1− 1
4

(
2 +

φ2

φ2−ψ1
− ψ2

ψ1 +ψ2

)
exp

(
θ2− θ1

ψ1

)

− 1
4

(
φ2

φ1 +φ2
+

φ2

φ2−ψ1

)
exp

(
θ2− θ1

φ2

) (3.4)

when θ1 > θ2. Note that (3.3) and (3.4) reduce to (2.3) and (2.4), respectively, when
φi = ψi, i= 1,2.

A variation of (3.1) and (3.2) studied by Holla and Bhattacharya [12] has the pdf

fi(x)=

piφi exp

{
φi
(
θi− x

)}
, if x ≤ θi,(

1− pi
)
φi exp

{
φi
(
x− θi

)}
, if x > θi,

(3.5)

where−∞ < x <∞,−∞ < θi <∞, φi > 0, and 0 < pi < 1. Holla and Bhattacharya used this
distribution as the compounding distribution of the expected value of a normal distribu-
tion. The cdf corresponding to (3.5) is

Fi(x)=

pi exp

(− θiφi){exp
(
φix
)− 1

}
, if x ≤ θi,

1− pi exp
(− θiφi)− (1− pi

)
exp

{
φi
(
θi− x

)}
, if x > θi,

(3.6)

and standard calculations using (1.1) show that the reliability R is given by

R= p1 exp
(− θ1φ1

)− p2 exp
(− θ2φ2

)
+
(
1− p1

){
1− p2φ1

φ1−φ2
−
(
1− p2

)
φ1

φ1 +φ2

}
exp

{
φ1
(
θ1− θ2

)}

+ p2φ1

(
p1

φ1 +φ2
+

1− p1

φ1−φ2

)
exp

{
φ2
(
θ1− θ2

)}
− p1p2 exp

{− (θ1φ1 + θ2φ2
)}

(3.7)
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if θ1 ≤ θ2 and by

R= 1 + p1 exp
(− θ1φ1

)− p2 exp
(− θ2φ2

)
+ p1

{
p2φ1

φ1 +φ2
+

(
1− p2

)
φ1

φ1−φ2
− 1

}
exp

{
φ1
(
θ2− θ1

)}

− (1− p2
)
φ1

(
p1

φ1−φ2
+

1− p1

φ1 +φ2

)
exp

{
φ2
(
θ2− θ1

)}
− p1p2 exp

{− (θ1φ1 + θ2φ2
)}

(3.8)

if θ1 > θ2.
Poiraud-Casanova and Thomas-Agnan [23] exploited a skewed Laplace distribution

with the pdf

fi(x)= αi
(
1−αi

)exp
{(

1−αi
)(
x− θi

)}
, if x ≤ θi,

exp
{
αi
(
θi− x

)}
, if x > θi,

(3.9)

(where −∞ < x <∞, −∞ < θi <∞, and 0 < αi < 1) to show the equivalence of certain
quantile estimators. The cdf corresponding to (3.9) is

Fi(x)=

αi exp

{(
1−αi

)(
x− θi

)}
, if x ≤ θi,

1− (1−αi)exp
{
αi
(
θi− x

)}
, if x > θi,

(3.10)

and in this case, the reliability R takes the following forms:

R= (1−α1
){

1 +
α1α2

1−α1−α2
− α1

(
1−α2

)
α1 +α2

}
exp

{
α1
(
θ1− θ2

)}

− α1α2
(
1−α1

)
(
1−α1−α2

)(
2−α1−α2

) exp
{(

1−α2
)(
θ1− θ2

)} (3.11)

if θ1 ≤ θ2 and

R= 1 +α1

{(
1−α1

)(
1−α2

)
1−α1−α2

+

(
1−α1

)
α2

2−α1−α2
− 1

}
exp

{(
1−α1

)(
θ2− θ1

)}

− α1
(
1−α1

)(
1−α2

)
(
α1 +α2

)(
1−α1−α2

) exp
{
α2
(
θ2− θ1

)} (3.12)

if θ1 > θ2.
Another manner of introducing skewness into a symmetric distribution has been pro-

posed by Fernández and Steel [8]. Here the idea is to convert a symmetric pdf into a
skewed one by postulating inverse scale factors in the positive and negative orthants.
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From the standard Laplace pdf (2.1), one obtains the three-parameter family with the
pdf

fi(x)= ki
σi
(
1 + k2

i

)



exp
{
x− θi
σiki

}
, if x ≤ θi,

exp
{
ki
(
θi− x

)
σi

}
, if x > θi,

(3.13)

where −∞ < x <∞, −∞ < θi <∞, σi > 0, and ki > 0. This distribution was originally in-
troduced by Hinkley and Revankar [10] and has shown promise in financial modeling.
The cdf corresponding to (3.13) is

Fi(x)= 1
1 + k2

i



k2
i exp

(
x− θi
σiki

)
, if x ≤ θi,

1 + k2
i − exp

(
ki
(
θi− x

)
σi

)
, if x > θi,

(3.14)

and in this case, the reliability R takes the following forms:

R=
{

1
1 + k2

1
+

σ1σ2k
3
2(

1 + k2
2

)(
σ1− k1k2σ2

) − σ1σ2(
1 + k2

2

)(
σ1k2 + σ2k1

)
}

exp

{
k1
(
θ1− θ2

)
σ1

}

+
σ1σ2k

3
2

1 + k2
2

{
k1

σ1k1 + σ2k2
− 1
σ1− k1k2σ2

}
exp

{
θ1− θ2

σ2k2

}

(3.15)

if θ1 ≤ θ2 and

R= 1 + k1

{
σ1σ2k

3
2(

1 + k2
2

)(
σ1k1 + σ2k2

) +
σ1σ2(

1 + k2
2

)(
σ2− σ1k1k2

) − k1

1 + k2
1

}
exp

{
θ2− θ1

σ1k1

}

− σ1σ2

1 + k2
2

(
k1

σ2− σ1k1k2
+

1
σ2k1 + σ1k2

)
exp

{
k2
(
θ2− θ1

)
σ2

}
(3.16)

if θ1 > θ2.
The most recent skewed Laplace distribution has been studied by Aryal and Nadarajah

[3]. A random variable X is said to have the skewed Laplace distribution if its pdf is
f (x) = 2g(x)G(λx), λ > 0, where g and G are, respectively, the pdf and the cdf of the
standard Laplace distribution. It follows then that f (x) is given by

fi(x)=




1
2φi

exp
{(

1 + λi
)
x

φi

}
, if x ≤ 0,

1
φi

exp
(
− x

φi

)
exp

{
1− 1

2
exp

(
− λix

φi

)}
, if x > 0,

(3.17)
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where −∞ < x <∞, λi > 0, and φi > 0. The main feature of this distribution is that a new
parameter λi is introduced to control skewness and kurtosis. The cdf corresponding to
(3.17) is

Fi(x)=




1
2
(
1 + λi

) exp
{(

1 + λi
)
x

φi

}
, if x ≤ 0,

1−
{

1− 1
2
(
1 + λi

) exp
(
− λix

φi

)}
exp

(
− x

φi

)
, if x > 0,

(3.18)

and simple calculations using (1.1) show that the reliability R is given by

R= φ1

φ1 +φ2
− 1

2
(
1 + λ1

) +
φ2

2
{
φ1 +

(
1 + λ1

)
φ2
} +

φ2

2
(
1 + λ2

){(
1 + λ2

)
φ1 +φ2

} . (3.19)

Note that if φ1 = φ2, then the above reduces to R= 1/2.

4. Generalized Laplace distribution

Subbotin [28] proposed a generalization of the Laplace distribution with the pdf

fi(x)= 1

2p
1/pi
i σpiΓ

(
1 + 1/pi

) exp

(
−
∣∣x−µi∣∣pi
piσ

pi
pi

)
, (4.1)

where −∞ < x <∞, µi = E(Xi) is the location parameter, σpi = {E(| Xi− µi |pi)}1/pi is the
scale parameter, and pi > 0 is the shape parameter. This generalization is sometimes re-
ferred to as the exponential power function distribution. This distribution is widely used
in Bayesian inference (see, e.g., [6, 30]). Estimation issues related to (4.1) are discussed in
[1, 33].

Using the definition of the incomplete gamma functions, one can write the cdf corre-
sponding to (4.1) as

Fi(x)= 1
2Γ
(
1/pi

)



Γ

(
1
pi

,

(
µi− x

)pi
piσ

pi
pi

)
, if x ≤ µi,

Γ

(
1
pi

)
+ γ

(
1
pi

,

(
x−µi

)pi
piσ

pi
pi

)
, if x > µi.

(4.2)

The form of (1.1) for (4.1) and (4.2) is difficult to calculate. However, in the particular
case µ1 = µ2 = µ, one can write

R= 1
4

+
I1 + I2

4p
1/p1

1 σp1Γ
(
1 + 1/p1

)
Γ
(
1/p2

) , (4.3)
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where I1 and I2 are the integrals

I1 =
∫ µ
−∞

exp

{
− (µ− x)p1

p1σ
p1
p1

}
Γ

(
1
p2

,
(µ− x)p2

p2σ
p2
p2

)
dx,

I2 =
∫∞
µ

exp

{
− (x−µ)p1

p1σ
p1
p1

}
γ

(
1
p2

,
(x−µ)p2

p2σ
p2
p2

)
dx.

(4.4)

On substituting y = (µ− x)p2 /(p2σ
p2
p2 ) and y = (x− µ)p2 /(p2σ

p2
p2 ), the integrals I1 and I2

reduce to the simpler forms

I1 = p
1/p2−1
2 σp2

∫∞
0
y1/p2−1 exp

(− δyp1/p2
)
Γ

(
1
p2

, y

)
dy,

I2 = p
1/p2−1
2 σp2

∫∞
0
y1/p2−1 exp

(− δyp1/p2
)
γ

(
1
p2

, y

)
dy,

(4.5)

respectively, where δ = p
p1/p2

2 σ
p1
p2 /(p1σ

p1
p1 ). When p1 �= p2, these simplified integrals can be

expressed as infinite sums of gamma functions. In fact, the use of [25, equation (2.10.1.5)]
shows that

I1 = p
1/p2

2 σp2




δ−1/p1

p1
Γ
(

1
p1

)
Γ
(

1
p2

)
− p2δ−2/p1

p1

∞∑
k=0

(−1)kδ−p2k/p1

k!
(
1 + p2k

) Γ
(

2 + p2k

p1

)
, if p1> p2,

δ−1/p1

p1
Γ
(

1
p1

)
Γ
(

1
p2

)
+

∞∑
k=0

(−1)kδk

k!
(
1 + p1k

)Γ( 1
p1

+
1 + p1k

p2

)
, if p1< p2,

I2 = p
1/p2

2 σp2




p2

p1δ2/p1

∞∑
k=0

(−1)kδ−p2k/p1

k!
(
1 + p2k

) Γ

(
2 + p2k

p1

)
, if p1 > p2,

−
∞∑
k=0

(−1)kδk

k!
(
1 + p1k

)Γ
(

1
p1

+
1 + p1k

p2

)
, if p1 < p2.

(4.6)

In the particular case p1 = p2 = p, the integrals I1 and I2 can be expressed in terms of the
Gauss hypergeometric function. Application of [25, equation (2.10.3.2)] shows that

I1 = p1/p−1σpδ
−2/p

[
δ1/p

{
Γ
(

1
p

)}2

− pΓ
(

2
p

)
2F1

(
1
p

,
2
p

;1 +
1
p

;−1
δ

)]
,

I2 = p1/pσpδ
−2/pΓ

(
2
p

)
2F1

(
1
p

,
2
p

;1 +
1
p

;−1
δ

)
.

(4.7)

The corresponding expressions for the reliability R follow by substituting (4.6) and (4.7)
into (4.3).
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5. Reflected gamma distribution

Borghi [5] introduced the reflected gamma distribution specified by the pdf

fi(x)= 1
2φiΓ

(
αi
)∣∣∣∣x− θiφi

∣∣∣∣
αi−1

exp
{
−
∣∣∣∣x− θiφi

∣∣∣∣
}

, (5.1)

where −∞ < x <∞, −∞ < θi <∞, αi > 0, and φi > 0. This includes the standard Laplace
distribution as a particular case for αi = 1. Estimation issues related to (5.1) have been
studied by Kantam and Narasimham [15].

Using the definition of the incomplete gamma functions, one can write the cdf corre-
sponding to (5.1) as

Fi(x)= 1
2Γ
(
αi
)


Γ
(
αi,

θi− x
φi

)
, if x ≤ θi,

Γ
(
αi
)

+ γ
(
αi,

x− θi
φi

)
, if x > θi.

(5.2)

Following the approach in Section 4, one writes the associated reliability R as

R= 1
4

+
I1 + I2

4φα1
1 Γ
(
α1
)
Γ
(
α2
) , (5.3)

where

I1 = φα1
2

∫∞
0
yα1−1 exp

(
− φ2y

φ1

)
Γ
(
α2, y

)
dy,

I2 = φα1
2

∫∞
0
yα1−1 exp

(
− φ2y

φ1

)
γ
(
α2, y

)
dy.

(5.4)

Utilizing [25, equation (2.10.3.2)], these integrals can be expressed in terms of the Gauss
hypergeometric function. It follows that

I1 = φα1
1 Γ
(
α1
)
Γ
(
α2
)− φα1+α2

1 Γ
(
α1 +α2

)
α2φ

α2
2

2F1

(
α2,α1 +α2;1 +α2;−φ1

φ2

)
,

I2 = φα1+α2
1 Γ

(
α1 +α2

)
α2φ

α2
2

2F1

(
α2,α1 +α2;1 +α2;−φ1

φ2

)
.

(5.5)

The expression for the reliability R follows by substituting (5.5) into (5.3).

6. Double Weibull distribution

Balakrishnan and Kocherlakota [4] introduced the double Weibull distribution specified
by the pdf

fi(x)= ci
2φi

∣∣∣∣x− θiφi

∣∣∣∣
ci−1

exp

{
−
∣∣∣∣x− θiφi

∣∣∣∣
ci
}

, (6.1)
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where −∞ < x <∞, −∞ < θi <∞, φi > 0, and ci > 0. This includes the standard Laplace
distribution as a particular case for ci = 1. Estimation issues related to (6.1) have been
studied by Balakrishnan and Kocherlakota [4], Dattatreya Rao and Narasimham [7], and
Vasudeva Rao et al. [31].

Direct integration shows that the cdf corresponding to (6.1) is given by

Fi(x)=




1
2

exp

{
−
(
θi− x
φi

)ci}
, if x ≤ θi,

1− 1
2

exp

{
−
(
x− θi
φi

)ci}
, if x > θi.

(6.2)

The general form of the reliability R associated with (6.1) and (6.2) is difficult to calculate.
However, in the particular case θ1 = θ2, one can easily show that R= 1/2.

7. Sargan distribution

Sargan distribution arises by summing n + 1 independent and identically distributed
standard Laplace random variables. Its pdf takes the form

fi(x)= αi
2

exp
{−αi∣∣x− θi∣∣}

ni∑
k=0

γ(i)
k α

k
i

∣∣x− θi∣∣k, (7.1)

where −∞ < x <∞, −∞ < θi <∞, αi > 0, and

γ(i)
k =

(
2ni− k

)
!2k−2ni

ni!k!
(
ni− k

)
!
. (7.2)

This distribution is also a particular case of the Bessel function distribution. The cdf cor-
responding to (7.1) can be expressed in terms of the complementary incomplete gamma
function:

Fi(x)=




exp
(−αiθi)

2

ni∑
j=0

γ(i)
j

j∑
k=0


 j
k


(αiθi) j−kΓ(k+ 1,−αix

)
, if x ≤ θi,

F
(
θi
)

+
exp

(
αiθi

)
2

ni∑
j=0

γ(i)
j

j∑
k=0


 j
k


(−αiθi)k

×{Γ( j− k+ 1,αiθi
)−Γ

(
j− k+ 1,αix

)}
, if x > θi.

(7.3)

The reliability R associated with (7.1) and (7.3) cannot be calculated in closed form if
θi �= 0. However, if θ1 = θ2 = 0, then one can easily obtain the following neat expression:

R=
(

1− 1
2

n1∑
j=0

γ(1)
j j!

) n2∑
j=0

γ(2)
j j!. (7.4)
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8. Compound Laplace gamma distribution

One of the most popular compound Laplace distributions is the compound Laplace
gamma distribution given by the pdf

fi(x)= αiβi
2

{
1 +βi

∣∣x− θi∣∣}−(αi+1)
, (8.1)

where −∞ < x <∞, −∞ < θi <∞, αi > 0, and βi > 0. Note that as αi→∞ and βi→ 0 with
αiβi = 1, (8.1) approaches the pdf of the standard Laplace distribution. The cdf corre-
sponding to (8.1) is

Fi(x)=




1
2

{
1 +βi

∣∣x− θi∣∣}−αi , if x ≤ θi,

1− 1
2

{
1 +βi

∣∣x− θi∣∣}−αi , if x > θi,
(8.2)

and using (1.1), one can write the associated reliability R as

R= 1−F1
(
θ2
)

+
α1β1

4

(
I1 + I2− I3

)
, (8.3)

where the integrals I1, I2, and I3 are given by

I1 =
∫min(θ1,θ2)

−∞

{
1 +β1

(
θ1− x

)}−(1+α1){
1 +β2

(
θ2− x

)}−α2dx,

I2 =
∫max(θ1,θ2)

min(θ1,θ2)

{
1 +β1

∣∣x− θ1
∣∣}−(1+α1){

1 +β2
∣∣x− θ2

∣∣}−α2dx,

I3 =
∫∞

max(θ1,θ2)

{
1 +β1

(
x− θ1

)}−(1+α1){
1 +β2

(
x− θ2

)}−α2dx.

(8.4)

The integrals I1 and I3 can be expressed in terms of the Gauss hypergeometric function
by using [9, equation (3.197.1)]. For instance, if θ1 < θ2, then one can show that

I1 = α1β1
{

1 +β2
(
θ2− θ1

)}1−α2

4
(
α1 +α2

)
β2

2F1

(
1 +α1,1;1 +α1 +α2;1− β1

β2
−β1

(
θ2− θ1

))
,

I3 = α1
{

1 +β1
(
θ2− θ1

)}−α1

4
(
α1 +α2

) 2F1

(
α2,1;1 +α1 +α2;1− β2

β1
−β2

(
θ2− θ1

))
.

(8.5)

However, the integral I2 cannot be simplified further unless of course θ1 = θ2. In this
particular case, one gets R= 1/2.
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9. Laplace normal mixture distribution

Kanji [14] and Jones and McLachlan [13] introduced the Laplace normal mixture distri-
bution with the pdf

fi(x)= pi
2φi

exp

(
−
∣∣x− θi∣∣

φi

)
+

1− pi√
2πσi

exp

{
−
(
x− θi

)2

2σ2
i

}
, (9.1)

where −∞ < x <∞, −∞ < θi <∞, φi > 0, σi > 0, and 0 < pi < 1. This distribution has
been successfully applied to fit wind shear data. Maximum likelihood estimation of the
parameters of (9.1) has been discussed by Kapoor and Kanji [16] and Scallan [27].

The cdf and the reliability R corresponding to (9.1) can also be expressed in the mix-
ture forms

Fi(x)=




pi
2

exp
(
x− θi
φi

)
+
(
1− pi

)
Φ
(
x− θi
σi

)
, if x ≤ θi,

pi− pi
2

exp
(
θi− x
φi

)
+
(
1− pi

)
Φ
(
x− θi
σi

)
, if x > θi,

(9.2)

R= p1p2R11 + p1
(
1− p2

)
R12 +

(
1− p1

)
p2R21 +

(
1− p1

)(
1− p2

)
R22, (9.3)

where Φ(·) denotes the cdf of the standard normal distribution, R11 and R22 denote the
reliability R for the standard Laplace and normal distributions, respectively, and R12 and
R21 are given by

R12 = 1
2φ1

∫∞
−∞

exp

(
−
∣∣x− θ1

∣∣
φ1

)
Φ
(
x− θ2

σ2

)
dx,

R21 = 1
2
√

2πσ1

∫ θ2

−∞
exp

{
x− θ2

φ2
−
(
x− θ1

)2

2σ2
1

}
dx

+
1√

2πσ1

∫∞
θ2

{
1− 1

2
exp

(
θ2− x
φ2

)}
exp

{
−
(
x− θ1

)2

2σ2
1

}
dx,

(9.4)

respectively. The expression for R11 is already calculated in (2.3) and (2.4). Expressions
for R22 are widely available in the literature (see, e.g., [32]). It is known, for instance, that
if σ1 = σ2 = σ , then

R22 = 1
2

+
1
2

{
Φ2
(
θ2− θ1√

2σ

)
+Φ2

(
θ1− θ2√

2σ

)}
. (9.5)

Also, if θ1 = θ2, then it is known that R22 = 1/2. An expression for R12 can be evaluated
by an easy application of [25, equation (2.8.9.1)]. It turns out that

R12 = 1
2

+
1
2

exp

{
σ2

2 − 2φ1
(
θ1− θ2

)
2
(
θ1− θ2

)2

}
Φ
(

σ2

θ2− θ1
+
φ1

σ2

)

+
1
2

exp

{
σ2

2 + 2φ1
(
θ1− θ2

)
2
(
θ1− θ2

)2

}
Φ
(

σ2

θ2− θ1
− φ1

σ2

)
.

(9.6)
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Direct integration yields an expression for R21 given by

R21 = 1−Φ
(
θ2− θ1

σ1

)
+

1
2

exp

{
σ2

1 + 2φ2
(
θ1− θ2

)
2φ2

2

}
Φ
(
θ2− θ1

σ1
− σ1

φ2

)

− 1
2

exp

{
σ2

1 + 2φ2
(
θ2− θ1

)
2φ2

2

}{
1−Φ

(
θ2− θ1

σ1
+
σ1

φ2

)}
.

(9.7)

Substituting (9.6), (9.7), and the known expressions for R11 and R22 into (9.3), one ob-
tains an expression for R.

10. Translated Laplace distributions

Tadikamalla and Johnson [29] proposed three translated families of Laplace distributions.
If Y has the standard Laplace distribution, then the three distributions can be specified
by the following translations:

(1) Y = logβ + α logX for α > 0 and β > 0, then X is said to have the log-Laplace
distribution,

(2) Y = logβ+α log(X∗/(1−X∗)) for α > 0 and β > 0, then X∗ is said to have the LB
system distribution,

(3) Y = logβ + αarcsinhX∗∗ for α > 0 and β > 0, then X∗∗ is said to have the LU
system distribution.

The pdf and the cdf of the log-Laplace distribution can be easily calculated as

fi(x)=



αiβi

2
xαi−1, if x ≤ β−1/αi

i ,

αi
2βi

x−(αi+1), if x > β−1/αi
i ,

Fi(x)=




βi
2
xαi , if x ≤ β−1/αi

i ,

1− 1
2βi

x−αi , if x > β−1/αi
i ,

(10.1)

respectively, where x > 0. The reliability R can be calculated from (1.1) by simple integra-
tion to yield

R=




α2
2β

α1/α2
2

2β1
(
α2

2−α2
1

) − α2
1β
−α2/α1
1 β2

2
(
α2

2−α2
1

) , if β−1/α1
1 ≤ β−1/α2

2 ,

1− α2
1β

α2/α1
1

2β2
(
α2

1−α2
2

) +
α2

2β1β
−α1/α2
2

2
(
α2

1−α2
2

) , if β−1/α1
1 > β−1/α2

2 .

(10.2)

The reliability R for the random variables X∗ and X∗∗ (having the LB system dis-
tribution and the LU system distribution, resp.) is the same as that for the log-Laplace
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distribution because

Pr
(
X∗1 < X∗2

)= Pr

(
exp

((
Y1− log

(
β1
))
/α1
)

1 + exp
((
Y1− log

(
β1
))
/α1
) < exp

((
Y2− log

(
β2
))
/α2
)

1 + exp
((
Y2− log

(
β2
))
/α2
)
)

= Pr

(
exp

(
Y1− log

(
β1
)

α1

)
< exp

(
Y2− log

(
β2
)

α2

))

= Pr
(
X1 < X2

)
,

Pr
(
X∗∗1 < X∗∗2

)= Pr

(
sinh

(
Y1− log

(
β1
)

α1

)
< sinh

(
Y2− log

(
β2
)

α2

))

= Pr

(
exp

(
Y1− log

(
β1
)

α1

)
− exp

(
− Y1− log

(
β1
)

α1

)

< exp

(
Y2− log

(
β2
)

α2

)
− exp

(
− Y2− log

(
β2
)

α2

))

= Pr

(
exp

(
Y1− log

(
β1
)

α1

)
< exp

(
Y2− log

(
β2
)

α2

))

= Pr
(
X1 < X2

)
.

(10.3)

We have used the fact that both z/(1 + z) and z− 1/z are increasing functions of z.
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estimation, Sankhyā Ser. B 47 (1985), no. 2, 161–178.
[5] O. Borghi, On a distribution of frequencies, Trabajos Estadı́st. 16 (1965), 171–192 (Spanish).
[6] G. E. P. Box and G. C. Tiao, A further look at robustness via Bayes’s theorem, Biometrika 49

(1962), 419–432.
[7] A. V. Dattatreya Rao and V. L. Narasimham, Linear estimation in double Weibull distribution,

Sankhyā Ser. B 51 (1989), no. 1, 24–64.
[8] C. Fernández and M. F. J. Steel, On Bayesian modeling of fat tails and skewness, J. Amer. Statist.

Assoc. 93 (1998), no. 441, 359–371.
[9] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San

Diego, 2000.



Saralees Nadarajah 183

[10] D. V. Hinkley and N. S. Revankar, A further analysis: “on the estimation of the Pareto law from
underreported data”, J. Econometrics 5 (1977), no. 1, 1–11.

[11] D. C. Hoaglin, F. Mosteller, and J. W. Tukey (eds.), Understanding Robust and Exploratory Data
Analysis, John Wiley & Sons, New York, 1983.

[12] M. S. Holla and S. K. Bhattacharya, On a compound Gaussian distribution, Ann. Inst. Statist.
Math. 20 (1968), 331–336.

[13] P. N. Jones and G. J. McLachlan, Laplace-normal mixtures fitted to wind shear data, J. Appl. Stat.
17 (1990), 271–276.

[14] G. K. Kanji, A mixture model for wind shear data, J. Appl. Stat. 12 (1985), 49–58.
[15] R. R. L. Kantam and V. L. Narasimham, Linear estimation in reflected gamma distribution,
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