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We obtain all nontrivial conservation laws for a class of (2 + 1) nonlinear evolution partial
differential equations which are related to the soil water equations. It is also pointed out
that nontrivial conservation laws exist for certain classes of equations which admit point
symmetries. Moreover, we associate symmetries with conservation laws for special classes
of these equations.

1. Introduction and theory

A mathematical model was developed to simulate soil water infiltration, redistribution,
and extraction in a bedded soil profile overlaying a shallow water table and irrigated by a
line source drip irrigation system (see [19, 20]). The governing partial differential equa-
tion can be written as

C(ψ)ψt =
(
K(ψ)ψx

)
x +

(
K(ψ)

(
ψz − 1

))
z − S(ψ), (1.1)

where ψ is soil moisture pressure head, C(ψ) is specific water capacity, K(ψ) is unsatu-
rated hydraulic conductivity, S(ψ) is a sink or source term, t is time, x is the horizontal
axis, and z is the vertical axis which is considered positive downward.

Equation (1.1) is an approximation within the context of the theory of mixtures. It
is studied here in the form (1.1) as a first step. An introduction to the general theory of
mixtures can be found in the book by Rajagopal and Tao [17] which contains references
to the earlier papers of Truesdell that have had a great impact on the development of
the theory. This approach is rather general and takes into account a variety of physical
mechanisms and chemical reactions. Also of crucial importance within such a theory is
the choice of boundary conditions and the problems associated with the choice of these
conditions (see [6]). The book also provides numerous references on flow through porous
media and the interested reader can consult the relevant references therein.

Group classification of (1.1) with respect to admitted point transformation groups was
done in [2]. Some exact solutions were also obtained in the paper just cited.
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Equation (1.1) can be rewritten as

ut =
(
k(u)ux

)
x +

(
k(u)uz

)
z + l(u)uz + p(u), (1.2)

where

u=
∫
C(ψ)dψ, k(u)= K(ψ)

C(ψ)
, l(u)= −K

′(ψ)
C(ψ)

, p(u)=−S(ψ). (1.3)

Equation (1.2) has received a fair amount of attention recently. Group classification of
(1.2) with respect to admitted point transformation groups was performed in [1]. Classi-
fication of (1.2) in the case when l(u)= 0 with respect to Lie point symmetries was given
in [3, 4] (see also [5] and [18, Section 10.7]).

Special cases of (1.1) and (1.2) were considered for conservation laws and associated
symmetries in [10].

In this paper, we obtain all nontrivial conservation laws for (1.2). We list all the classes
of (1.2) which admit point symmetries and for which nontrivial conservation laws exist.
Moreover, for special classes of such equations we associate symmetries with conservation
laws. Finally we act, by use of a symmetry, on a known conservation law to produce
another conservation law.

We first briefly present the notation and pertinent results used in this paper. The sum-
mation convention is used where appropriate.

Consider a kth-order (k ≥ 1) system of differential equations of n independent vari-
ables and m dependent variables

Eβ
(
x,u,u(1), . . . ,u(k)

)= 0, β = 1, . . . ,m, (1.4)

where u(p) denotes the various collections of pth-order partial derivatives. The maximal
order of the equations that occur in (1.4) is k.

A conservation law for system (1.4) is a relation

DiT
i = 0, (1.5)

where Ti = Ti(x,u,u(1), . . . ,u(k−1)) are differential functions, which is satisfied on the so-
lutions of (1.4). Here Di = ∂/∂xi +uαi ∂/∂uα + ··· is the total differentiation operator with
respect to xi.

A Lie point symmetry generator has the form (see, e.g., the books [8, 15, 16] for an
account on the symmetry approach to differential equations)

X = ξi ∂
∂xi

+ηα
∂

∂uα
+ ζαi

∂

∂uαi
+ ζαi1i2

∂

∂uαi1i2
+ ··· , (1.6)

where the ξi (i = 1, . . . ,n) and ηα (α = 1, . . . ,m) are functions of the independent and
dependent variables, and the additional coefficients are given by

ζαi =Di
(
ηα
)−uαjDi

(
ξ j
)
,

ζαi1···is =Dis

(
ζαi1···is−1

)−uαji1···is−1
Dis

(
ξ j
)
, s > 1.

(1.7)
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It is well known that Noether’s theorem [14] provides a constructive way for finding
conservation laws for Euler-Lagrange differential equations once their symmetries are
known. In the absence of a Lagrangian for a differential equation one can resort to the
direct method of constructing conservation laws via (1.5). A symmetry condition some-
times helps in fixing some of the arbitrary elements in the differential equation.

A Lie point symmetry generator X admitted by system (1.4) is said to be associated
with a conservation law with conserved vector T = (T1, . . . ,Tn) of system (1.4) if the re-
lations [11]

X
(
Ti
)

+TiDj
(
ξ j
)−T jDj

(
ξi
)= 0, i= 1, . . . ,n, (1.8)

hold. This also applies for Noether symmetries [9].
It has been shown in [12] that if X is any point symmetry generator of (1.4) and Ti,

i= 1, . . . ,n, are the components of a conserved vector of (1.4), then

Ti
∗ = X

(
Ti
)

+TiDj
(
ξ j
)−T jDj

(
ξi
)
, i= 1, . . . ,n, (1.9)

are components of a conserved vector of (1.4). If in addition [X ,Y]= Z (see [12]), where
Y is associated with the conserved vector T with components Ti and X is admitted by
(1.4), then T∗ defined by (1.9) is trivial if Z = bY for b a constant.

2. Construction of conservation laws for (1.2)

In this section, we construct conservation laws for (1.2), that is, we invoke (1.5), namely,

DtT
1 +DxT

2 +DzT
3 = 0, (2.1)

on the solutions of (1.2). We cannot use Noether’s theorem [14] here as there is no La-
grangian for (1.2).

The separation of the second-order partial derivatives of u in the determining equation
of (2.1) results in the following system of equations:

utt :
∂T1

∂ut
= 0,

uxt :
∂T1

∂ux
+
∂T2

∂ut
= 0,

uzt :
∂T1

∂uz
+
∂T3

∂ut
= 0,

uzx :
∂T2

∂uz
+
∂T3

∂ux
= 0,
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uxx : k(u)
∂T1

∂u
+
∂T2

∂ux
= 0,

uzz : k(u)
∂T1

∂u
+
∂T3

∂uz
= 0,

rest :
∂T1

∂t
+
∂T1

∂u

(
k′u2

x + k′u2
z + l(u)uz + p(u)

)
+
∂T2

∂x
+
∂T2

∂u
ux +

∂T3

∂z
+
∂T3

∂u
uz = 0.

(2.2)

The solution of this system (2) yields the conserved vector components

T1 =−a(t,x,z)ux + b(t,x,z)uz +A(t,x,z)u+B(t,x,z),

T2 = a(t,x,z)ut − k(u)uxA(t,x,z)− c1(t,x,z,u)uz +d(t,x,z,u),

T3 =−b(t,x,z)ut − k(u)uzA(t,x,z) + c1(t,x,z,u)ux + c2(t,x,z,u),

(2.3)

where the functions a to B satisfy

∂a

∂x
− ∂b

∂z
= 0,

∂a

∂t
+ k(u)

∂A

∂x
− ∂d

∂u
− ∂c1

∂z
= 0,

∂b

∂t
+ l(u)A− ∂c1

∂x
− k(u)

∂A

∂z
+
∂c2

∂u
= 0,

∂A

∂t
u+

∂B

∂t
+ p(u)A+

∂d

∂x
+
∂c2

∂z
= 0.

(2.4)

From equations (2.4) it follows that

k(u)

(
∂2A

∂x2
+
∂2A

∂z2

)
− l(u)

∂A

∂z
+ p′(u)A+

∂A

∂t
= 0. (2.5)

The use of (2.5) enables us to classify all cases for which conservation laws for (1.2)
exist. We find the following cases.

(1) For arbitrary k(u), l(u), and p(u) we get trivial conservation laws since A= 0.
Nontrivial conservation laws are obtained in the following cases.
(2) p = p0 + p1u, l = l0, k = k0 �= 0, where p0, p1, l0, and k0 are arbitrary constants. The

function A satisfies

(
Axx +Azz

)
k0− l0Az + p1A+At = 0 (2.6)

together with system (2.4).
(3) p = p0 + p1u, l = l0, k = k(u) with k′(u) �= 0, where p0, p1, and l0 are arbitrary

constants and

A= exp
(− p1t

)
f
(
x,z+ l0t

)
, (2.7)

where f solves fxx + fττ = 0, τ = z+ l0t. System (2.4) also must be satisfied.
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(4) p = p0 + p1u, l = l(u) with l′(u) �= 0, k = Nl(u) +M, where p0, p1, N , and M are
arbitrary constants and

A= exp
(− p1t

)
f (x,Nz−Mt), (2.8)

where f solves fxx +N2 fττ − fτ = 0, τ = Nz−Mt. System (2.4) needs to be satisfied as
well.

(5) p = p0 + p1u, l = l(u) with l′(u) �= 0, k = k(u) with k(u) �= Nl(u) +M, where p0,
p1, N , and M are arbitrary constants, and

A= f0xexp
(− p1t

)
+ g0 exp

(− p1t
)
, (2.9)

in which f0 and g0 are constants. In addition A must satisfy (2.4).
(6) p = p(u) with p′′(u) �= 0, l(u)=Np′(u) +M, and k(u)= Rp′(u) + S, where N , M,

R, and S are arbitrary constants. We have two cases, namely,

A= exp
(
St

R

)
f
(
x, (SN −RM)t−Rz), R �= 0,

R fxx +R3 fττ +NR fτ + f = 0, τ = (SN −RM)t−Rz,
(2.10)

A= exp
(
z

N

)
f (t,x), N �= 0, R= 0,

SN2 fxx + (S−MN) f +N2 ft = 0.
(2.11)

In both cases A is further constrained by system (2.4).
(7) p = p(u) with p′′(u) �= 0, l(u) = Np′(u) +M, k = k(u) with k(u) �= Rp′(u) + S,

where N , M, R, and S are arbitrary constants. Here A is given by

A= exp
(
z+Mt

N

)[
f0 cos

(
x

N

)
+ g0 sin

(
x

N

)]
, N �= 0, (2.12)

where f0 and g0 are constants. These values of A are constrained by (2.4).
(8) p= p(u) with p′′(u) �= 0, l = l(u) with l(u) �=Np′(u) +M, k(u)=Ll(u)+Qp′(u) +

R, where L, Q, R, M, and N are arbitrary constants. The function A has the value

A= f (x)exp
(
Rt−Lz
Q

)
, Q �= 0, (2.13)

where f solves f ′′ + f (L2 +Q)/Q2 = 0. Again A must satisfy (2.4).
In the above, only the cases (5), (7), and (8) give rise to two nontrivial conservation

laws each. The other cases each result in an infinite number of nontrivial conservation
laws. We illustrate this point by considering the following two examples.
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For case (3), the solution of system (2.4) with the choices a= b = c1 = B = 0 yields

T1 = f
(
x,z+ l0t

)
uexp

(− p1t
)
,

T2 =−k(u)ux exp
(− p1t

)
f
(
x,z+ l0t

)
+ exp

(− p1t
)
fx

∫ u
0
k(u′)du′,

T3 =−k(u)uz exp
(− p1t

)
f
(
x,z+ l0t

)
+ exp

(− p1t
)
fτ

∫ u
0
k(u′)du′ − l0u f exp

(− p1t
)
,

(2.14)

where f satisfies fxx + fττ = 0, τ = z+ l0t. Equations (2.14) give rise to an infinite number
of conserved vectors.

Similarly for case (5) with the choices a= b = c1 = B = 0, we obtain

T1 = [ f0xexp
(− p1t

)
+ g0 exp

(− p1t
)]
u,

T2 =−k(u)ux
[
f0xexp

(− p1t
)

+ g0 exp(−p1t
)]

+ f0 exp
(− p1t

)∫ u
0
k(u′)du′ +α(t,x,z),

T3 =−k(u)uz
[
f0xexp

(− p1t
)

+ g0 exp
(− p1t

)]
− [ f0xexp

(− p1t
)

+ g0 exp
(− p1t

)]∫ u
0
l(u′)du′ +β(t,x,z),

(2.15)

where α and β are constrained by

p0
[
f0xexp

(− p1t
)

+ g0 exp
(− p1t

)]
+αx +βz = 0. (2.16)

The components (2.15) result in two conserved vectors.
The conservation laws for the other cases can be constructed in a similar fashion.
The only classes in the symmetry classification (see [7]) which have nontrivial conser-

vation laws are (the notation used in the following corresponds to that of [7])

(I.2) k(u) arbitrary, p(u)= 0, l(u)= 0,
(II) k(u)= eu,

(1) l(u)= Aeu, p(u)= Beu +C (A, B, and C are arbitrary constants, A �= 0),
(4) l(u)= 0, (i) p =±eu + δ, δ =±1, (iii) p(u)= δ, δ± 1, (iv) p(u)= 0,

(III) k(u)= uσ , σ �= 0,−1,
(1) l(u)= Auσ , p(u)= Buσ+1− (C/σ)u (A, B, C, and σ are constants, A �= 0),
(2) l(u)= Cuµ, p(u)= Au1+2µ−σ , µ= 2σ ,
(3) l(u) = 0, (i) p(u) = ±uν, ν �= 0,1, ν = σ + 1, (ii) p(u) = ±uσ+1 + δu, δ = ±1,

σ = const, (iii) p(u)= δu, δ± 1, (iv) p(u)= 0,
(IV) k(u) = u−1, l(u) = 0, (ii) p(u) = δu± 1, δ = ±1 (iii) p(u) = ±1, (iv) p(u) = δu,

δ =±1, (v) p(u)= 0,
(V) k(u)= 1,

(3) l(u)= A lnu, p(u)= u(B lnu+C),
(6) l(u)= Au, p(u)= Bu+C,
(8) l(u)= 0, (i) p(u)= δu, δ =±1, (ii) p(u)=±1, (vi) p(u)= 0.
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3. Symmetries associated with conservation laws

In this section, we give two examples of symmetries associated with conservation laws.
Firstly, we consider the case III.3.(ii) of [7], namely, k(u)= uσ , σ �= 0,−1; p(u)= δuσ+1 +
δu, δ =±1, σ = constant, l(u)= 0.

The point symmetries for this case are (see [7])

X1 = ∂

∂x
, X2 = ∂

∂z
, X3 = ∂

∂t
,

X4 = z ∂
∂x
− x ∂

∂z
, X5 = exp(−δσt)

(
∂

∂t
+ δu

∂

∂u

)
.

(3.1)

We invoke relations (1.8) in order to associate the symmetries (3.1) with the conser-
vation laws given in case (6) for the appropriate values of k, p, and l.

We list the conservation laws associated with the above symmetries.
(1) For X1 we have the associated conserved components by use of (1.8), that is,

X1(Ti)= 0, i= 1,2,3. They are (by the choices a= b = d = c1 = 0 and B = 0)

T1 = f (z)uexp(−δt),

T2 =−uσux f (z)exp(−δt),

T3 =−uσuz f (z)exp(−δt) +
1

1 + σ
u1+σ f ′(z)exp(−δt),

(3.2)

where

f ′′ + δ(1 + σ) f = 0. (3.3)

(2) For X2 we have the associated conserved components (here X2(Ti)= 0, i= 1,2,3)
(the choices are a= b= c1 = c2 = 0 and B = 0)

T1 = f (x)uexp(−δt),

T2 =−uσux f (x)exp(−δt) +
1

1 + σ
u1+σ f ′(x)exp(−δt),

T3 =−uσuz f (x)exp(−δt),

(3.4)

where f satisfies (3.3).
(3) For X3 there is no associated nontrivial conservation law.
(4) For X4, the use of the relations (1.8), namely, X [1]

4 T1 = 0, X [1]
4 T2 − T3 = 0, and

X [1]
4 T3 +T2 = 0, after the simple choices a = b = c1 = 0 and B = 0, results in the associ-

ated conserved components

T1 = f (τ)uexp(−δt),

T2 =−uσux f (τ)exp(−δt) +
2x

1 + σ
u1+σ f ′(τ)exp(−δt),

T3 =−uσuz f (τ)exp(−δt) +
2z

1 + σ
u1+σ f ′(τ)exp(−δt),

(3.5)
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where

4τ f ′′ + 4 f ′ + δ(1 + σ) f = 0, τ = x2 + z2. (3.6)

(5) For X5 there is no associated nontrivial conservation law.
We now act, using (1.9), with a symmetry on a known conservation law to produce

another conservation law.
If one acts with X1 on the conservation law associated with X4, we obtain another

conservation law since [X1,X4]=−X2 [12], namely, the generated conserved components
are

T1
∗ = 2x f ′(τ)uexp(−δt),

T2
∗ = −2xuσux f ′(τ)exp(−δt) +

2
1 + σ

u1+σ f ′(τ)exp(−δt) +
4x2

1 + σ
u1+σ f ′′(τ)exp(−δt),

T3
∗ = −2xuσuz f ′(τ)exp(−δt) +

4xz
1 + σ

u1+σ f ′′(τ)exp(−δt),

(3.7)

where f satisfies (3.6). One can further act with X1 on the above components to obtain
another conserved vector. In this manner one can generate an infinite number of conser-
vation laws by repeated action of X1.

If one now acts with X2 on the conservation law associated with X4, we obtain another
conservation law since [X2,X4]= X1 [12]:

T1
† = 2z f ′(τ)uexp(−δt),

T2
† = −2zuσux f ′(τ)exp(−δt) +

4xz
1 + σ

u1+σ f ′′(τ)exp(−δt),

T3
† = −2zuσuz f ′(τ)exp(−δt) +

2
1 + σ

u1+σ f ′(τ)exp(−δt) +
4z2

1 + σ
u1+σ f ′′(τ)exp(−δt),

(3.8)

where f satisfies (3.6). Again one can further act with X2 on these components to obtain
another conserved vector. In this way one can generate an infinite number of conservation
laws via repeated action of X2.

Note that these conservation laws may be associated with a linear combination of the
five symmetries of the equation.

We next consider the case k(u) = δ(1 + σ)uσ + δ, p(u) = δuσ+1 + δu, δ = ±1, σ =
constant, l(u)= 0.

The point symmetries admitted by the equation for this case are [7]

X1 = ∂

∂x
, X2 = ∂

∂z
, X3 = ∂

∂t
. (3.9)

We invoke relations (1.8) in order to associate the symmetries (3.1) with the conser-
vation laws given in case (6) for the appropriate values of k, p, and l.

We deduce the conservation laws associated with each of the symmetries (3.9).
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For X3 we have (by the choices a = b = c1 = 0 and B = 0) the associated conserved
components

T1 =Au,

T2 =−[δ(σ + 1)uσ + δ
]
uxA+ δu1+σAx + δuAx,

T3 =−[δ(σ + 1)uσ + δ
]
uzA+ δu1+σAz + δuAz,

(3.10)

where A satisfies

At = 0, Axx +Azz +A= 0. (3.11)

The conserved components (3.10) have associated symmetry X1 if Ax = 0 and X2 pro-
vided Az = 0.

4. Concluding remarks

We have obtained all nontrivial conservation laws for (1.2) which have been extensively
studied in the literature for various other properties such as symmetries and exact solu-
tions. It has been shown that for arbitrary elements these equations possess trivial conser-
vation laws. There are seven cases that arise for which this class of (2 + 1) evolution equa-
tions have nontrivial conserved vectors. Among these, three cases result in each admit-
ting two nontrivial conserved vectors. Each of the other cases yields an infinite number
of nontrivial conservation laws. Notwithstanding, we have also provided all the classes in
the symmetry classification which have nontrivial conserved vectors. Moreover, we have
associated symmetries to conservation laws for special classes of these equations. The
symmetry condition enables one to further constrain the remaining arbitrary elements
that are contained in system (2.4) and also relates symmetry to the conserved vectors.

Further work can be done on the reduction and solutions of (1.2) which admit sym-
metries that preserve the conservation laws. In this regard, the authors of [13] have used
this invariance of a conservation law related to volume to obtain solutions for a problem
in thin films.

Acknowledgment

We thank the referees for providing us with further references.

References

[1] V. A. Baikov, R. K. Gazizov, N. H. Ibragimov, and V. F. Kovalev, Group analysis of soil water
equations, CRC Handbook of Lie Group Analysis of Differential Equations. Vol.2, Appli-
cations in Engineering and Physical Sciences, (N. H. Ibragimov, ed.), CRC Press, Folrida,
1995, pp. 228–237.

[2] , Water redistribution in irrigated soil profiles: invariant solutions of the governing equa-
tion, Nonlinear Dynam. 13 (1997), no. 4, 395–409.

[3] V. A. Dorodnitsyn, I. V. Knyazeva, and S. R. Svirshchevskiı̆, Group properties of the anisotropic
heat equation with source Tt =

∑
i(Ki(T)Txi)xi +Q(T), preprint 134, 1982, Keldysh institute

of Applied Mathematics, Russian Academy of Sciences, Moscow.



150 Conservation laws for soil water equations

[4] , Group properties of the heat equation with source in the two-dimensional and three-
dimensional cases, Differentsial’nye Uravneniya 19 (1983), no. 7, 1215–1223 (Russian).

[5] V. A. Galaktionov, V. A. Dorodnitsyn, G. G. Elenin, S. P. Kurdyumov, and A. A. Samarskii,
A quasilinear heat equation with a source: peaking, localization, symmetry, exact solutions,
asymtotics, structures, Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki.
Noveishie Dostizheniya, vol. 28, VINITI, Moscow, 1986, English translation in J. Sovient
Math. 41 (1988) 1222–1292.

[6] M. Gandhi, K. R. Rajagopal, and A. S. Wineman, A universal relation in torsion for a mixture of
solid and fluid, J. Elasticity 15 (1985), no. 2, 155–165.

[7] R. K. Gazizov, Earth sciences, CRC Handbook of Lie Group Analysis of Differential Equations.
Vol. 2 (N. H. Ibragimov, ed.), CRC Press, 1995.

[8] N. H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Mathematics and Its
Applications (Soviet Series), D. Reidel Publishing, Dordrecht, 1985.

[9] N. H. Ibragimov, A. H. Kara, and F. M. Mahomed, Lie-Bäcklund and Noether symmetries with
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