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It was reported in the literature that the coefficients of variation of uptime and down-
time of manufacturing equipment are often less than 1. This technical paper is intended
to provide an analytical explanation of this phenomenon. Specifically, it shows that the
distributions of uptime and downtime have the coefficients of variation less than 1 if the
breakdown and repair rates are increasing functions of time.

1. Introduction

The coefficients of variation of uptime and downtime (CVup and CVdown) of the equip-
ment on the factory floor have a significant effect on the design of lean production sys-
tems. Indeed, as has been shown in [2], lean buffering (i.e., the buffering necessary and
sufficient to achieve a desired production rate of a manufacturing system) is an increasing
function of CVup and CVdown, and therefore smaller CVs lead to leaner systems.

In designing lean systems, it is often assumed that the uptime and downtime (tup and
tdown) are distributed exponentially and, thus, CVup = CVdown = 1. Since in reality tup and
tdown may not be exponential, it is important to determine if lean buffering, based on the
exponential assumption, overestimates or underestimates the real lean buffering. If CVup

and CVdown are less than 1, the lean buffers, designed using the exponential assumption,
are too large; otherwise, they are too small.

The empirical evidence [3] indicates that CVup is very often less than 1; this is also true
for CVdown although to a lesser extent. As follows from the above, this is an important
fact since it ensures that lean buffering, designed using the exponential assumption, will
ensure the desired throughput (however, without the maximum leanness).

A question arises: what are “natural” causes which lead to CVup and CVdown being
less than 1? The purpose of this technical paper is to discuss this question and, thereby,
characterize practical situations that lead to small CVup and CVdown.

To accomplish this, Section 2 describes the model of machines under consideration,
Section 3 discusses a special case, in Section 4 a general scenario is considered, and in
Section 5 conclusions are formulated.
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2. Model

We consider machines, which could be in two states, up and down. When up, parts are
produced; when down, no production takes place and the machine is under repair. Tran-
sition rates from up to down and from down to up are p(t) and r(t), respectively, where
t is the time the machine spent in the respective state. In other words, if the machine
went up at t = 0, it goes down during the infinitesimal interval (t, t+ δt) with probability
p(t)δt. Similarly, transition from down to up occurs during (t, t + δt) with probability
r(t)δt.

Obviously, the uptime and downtime defined by this model are random variables with
probability density functions (pdf ’s) induced by p(t) and r(t). If both p(t) and r(t) are
constant, that is, p(t)= p0 and r(t)= r0, t ≥ 0, the resulting random variables are expo-
nential, and CVup = CVdown = 1. What happens when p(t) and r(t) are not constant is
discussed next.

3. Special case

We analyze below the pdf and the coefficient or variation of the uptime; the downtime is
treated similarly.

Assume that p(t) is given by

p(t)= p0t
a, p0 = const, a >−1, t ≥ 0. (3.1)

This implies that the breakdown rate is strictly monotonically increasing in time when
a > 0, constant when a= 0 (the exponential case), and strictly monotonically decreasing
when −1 < a < 0. The values of a < −1 are not included since they do not lead to valid
pdf ’s (in the sense that the integrals of these functions are not finite).

The pdf and the CV of the uptime, induced by assumption (3.1), can be calculated as
follows.

By the total probability formula, the probability that the machine is up at time t + δt
is given by

P
[
α(t+ δt)= 1

]= P
[
α(t+ δt)= 1 | α(t)= 1

]
P
[
α(t)= 1

]
, (3.2)

where α(t) represents the state of the machine, that is,

α(t)=

1 if the machine is up at time t,

0 if the machine is down at time t.
(3.3)

As follows from the machine model of Section 2 and (3.1), the conditional probability
that the machine is up at t+ δt, given that it is up at t, is

P
[
α(t+ δt)= 1 | α(t)= 1

]= 1− p0t
aδt. (3.4)
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Substituting this into (3.2) and rearranging terms, we obtain

P
[
α(t+ δt)= 1

]−P
[
α(t)= 1

]
δt

=−p0t
aP
[
α(t)= 1

]
. (3.5)

When δt→ 0, this becomes a first-order linear differential equation

dP
[
α(t)= 1

]
dt

=−p0t
aP
[
α(t)= 1

]
, (3.6)

with initial condition

P
[
α(0)= 1

]= 1. (3.7)

Solving this initial value problem, we obtain the probability that the machine is up at time
t assuming that it was up at time 0

P
[
α(t)= 1

]= e−
∫ t

0 p0tadt = e−p0ta+1/(a+1). (3.8)

To determine the pdf of tup, we calculate the joint probability that the machine is up at
time t and down at time t + δt. Using the formula for the probability of the intersection
of two events and (3.8), we obtain

P
[{
α(t)= 1

}∩ {α(t+ δt)= 0
}]

= P
[
α(t+ δt)= 0 | α(t)= 1

]
P
[
α(t)= 1

]
= (p0t

aδt
)(
e−p0ta+1/(a+1))

= p0t
ae−p0ta+1/(a+1)δt.

(3.9)

This implies that the pdf of tup is

ftup (t)= p0t
ae−(p0/(a+1))ta+1

, a >−1, t ≥ 0. (3.10)

To verify that this is a valid pdf, we integrate it over [0,∞). Using the substitution
x = ta+1, we obtain

∫∞
0

ftup (t)dt =
∫∞

0
p0t

ae−(p0/(a+1))ta+1
dt

=
∫∞

0

p0

a+ 1
e−(p0/(a+1))xdx = 1.

(3.11)
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The expected value and the variance of distribution (3.10) can be expressed as follows:

E
[
tup
]=

∫∞
0
tp0t

ae−(p0/(a+1))ta+1
dt

=
[
− te−(p0/(a+1))ta+1 −

(
p0

a+ 1
ta+1

)−1/(a+1)

Γ
(

1
a+ 1

,
p0

a+ 1
ta+1

)]∣∣∣∣
∞

0

= 1
a+ 1

(
a+ 1
p0

)1/(a+1)

Γ
(

1
a+ 1

)
,

Var[tup]=
∫∞

0
t2p0t

ae−(p0/(a+1))ta+1
dt− (E[tup

])2

=
[
− t2e−(p0/(a+1))ta+1 − 2

a+ 1

(
p0

a+ 1

)−2/(a+1)

Γ
(

2
a+ 1

,
p0

a+ 1
ta+1

)]∣∣∣∣
∞

0

− 1
(a+ 1)2

(
a+ 1
p0

)2/(a+1)[
Γ
(

1
a+ 1

)]2

= 2
a+ 1

(
a+ 1
p0

)2/(a+1)

Γ
(

2
a+ 1

)
− 1

(a+ 1)2

(
a+ 1
p0

)2/(a+1)[
Γ
(

1
a+ 1

)]2

,

(3.12)

where Γ(·) is the gamma function defined by

Γ(x)=
∫∞

0
tx−1e−tdt. (3.13)

Thus, the coefficient of variation is

CVup =
[

2(a+ 1)Γ
(
2/(a+ 1)

)
[
Γ
(
1/(a+ 1)

)]2 − 1

]1/2

. (3.14)

The values of CVup for various a’s are given in Table 3.1. Clearly, positive a’s, that is,
increasing breakdown rates, lead to CVup < 1, while decreasing breakdown rates result in
CVup greater than 1. Thus, increasing (resp., decreasing) breakdown rates are responsible
for having CVup < 1 (resp., CVup > 1).

Remark 3.1. Note that when a = 1, that is, the breakdown rate is linearly increasing in
time, the pdf of tup (3.10) reduces to the well-known Rayleigh pdf. Also note that for any
a >−1, pdf (3.10) is similar to the Weibull distribution widely used in reliability theory.

4. General case

Consider a machine with breakdown rate satisfying the following inequality:

p
(
t1
)
< p
(
t2
)
, 0≤ t1 < t2 <∞. (4.1)

Unlike (3.1), this assumption implies a general monotonic growth of the breakdown rate
on the infinite time interval. Machines satisfying (4.1) may be referred to as aging on the
infinite time interval. Without exploring particular pdf ’s induced by (4.1), it has been
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Table 3.1. CVup as a function of a.

(a) a > 0.

a 0.5 1 1.5 2 2.5 3 5 10 100

CVup 0.6790 0.5227 0.4279 0.3634 0.3165 0.2805 0.1938 0.1099 0.0126

(b) −1 < a < 0.

a −0.05 −0.1 −0.15 −0.25 −0.5 −0.75 −0.9 −0.98

CVup 1.0530 1.1130 1.1815 1.3529 2.2361 8.3066 429.8314 3.1763E+ 14

shown in [1] that the uptime of such machines has the following property:

Var
[
tup
]
<
(
E
[
tup
])2

. (4.2)

This implies that

CVup < 1. (4.3)

Thus, the conclusion of Section 3 also holds for a more general type of monotonically
increasing breakdown rates.

In reality, however, when preventative maintenance (PM) programs are implemented,
assumption (4.1) might not take place on the infinite time interval but only between each
pair of successive PM operations, that is,

p
(
t1
)
< p
(
t2
)
, for Ti≤ t1 < t2 ≤ T(i+ 1), i= 0,1,2, . . . , (4.4)

where T is the period of PM operations. Under this condition, (4.2) may or may not take
place. Assume, however, that the PM period, T , is much larger than the expected value of
tup between any two consecutive PM operations, that is,

E
[
tup|Ti≤ t ≤ T(i+ 1)

]
T

� 1, i= 0,1,2, . . . . (4.5)

The machine satisfying (4.4), (4.5) can be called aging on large PM periods. When the ratio
in the left-hand side of (4.5) is sufficiently small, inequality (4.2) can again be established.

Thus, a general reason for having CVup < 1 is that the equipment is aging, either on
the infinite time interval or on large PM periods.

5. Conclusions

In many situations, manufacturing equipment on the factory floor is aging in both casual
and technical senses (3.1) with a > 0, or (4.1), or (4.4), (4.5). Similarly, it is reasonable to
assume that many repair operations (excluding PM and tool change downtime) are also
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“aging” in the sense that either

r(t)= r0t
aδt, r0 = const, a > 0, t ≥ 0, (5.1)

or, more generally,

r
(
t1
)
< r
(
t2
)
, 0≤ t1 < t2 <∞. (5.2)

In all these cases, as the above analysis shows,

CVup < 1, CVdown < 1. (5.3)

On the other hand, if p(t) and r(t) are decreasing in time, the resulting CVs are greater
than 1. Thus, increasing transition rates appear to be the reason for the empirical evidence
reported in [3].
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