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Luikov’s theory of heat and mass transfer provides a framework to model drying porous
materials. Coupled partial differential equations governing the moisture and heat transfer
can be solved using numerical techniques, and in this paper we solve them analytically in
a setting suitable for industrial drying situations. We discuss the nature of the solutions
using the physical properties of Pinus radiata. It is shown that the temperature gradients
play a significant role in deciding the moisture profiles within the material when thickness
is large and that models based only on moisture potential gradients may not be sufficient
to explain the drying phenomena in moist porous materials.

1. Introduction

Porous materials such as wood, grains, fruit, and dairy products have microscopic capil-
laries and pores which cause a mixture of transfer mechanisms to occur simultaneously
when subjected to heating or cooling. Transfer of noncondensable gases, vapours, and
liquids occurs in porous bodies; inert gases and vapour transfer can take place by molec-
ular means in the form of diffusion and by molar means as a filtration motion of the
steam-gas mixture under a pressure gradient. Transfer of liquids can occur by means of
diffusion, capillary absorption, and filtration motion in the porous medium arising from
the hydrostatic pressure gradient. The complex interactions of various phenomena oc-
curring within a material undergoing heating and cooling make modelling the transient
moisture and temperature within the body a difficult task. Empirical models dealing with
the drying of porous materials ignore temperature variation within the material and for-
mulate the models in terms of a measure of the moisture content of the body and the
equilibrium moisture content of the material [7, 8, 15].

Temperature variations are introduced to the models by relating the coefficients of the
models to external temperature and humidity. These empirical relationships give satis-
factory results in many industrial situations. In modelling drying, the most widely used
mass transport model is Fick’s second law [4] and analytical solutions can be obtained
for isotropic and anisotropic conditions [2, 4]. Similarly heat conduction equation can
be solved analytically [4] and in many cases it is sufficient to solve the governing partial
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differential equations separately without paying attention to the coupling effects, espe-
cially when the drying rates are small (see, e.g., [3]). However, one would expect that
these coupled heat and mass transfer in porous bodies could be expressed mathemati-
cally and hence a mechanistic model can be developed. To this end, we make use of the
theory developed by Luikov [9] to formulate a model of heat and mass transfer within
the material.

Luikov showed the importance of the temperature gradient for moisture migration
in capillary-porous bodies [9]. He developed a system of coupled PDEs using the ther-
modynamics of irreversible processes. Fulford [6] surveyed work on the drying of solids
by Luikov and his colleagues and no attempt will be made here to describe Luikov’s rig-
orous theoretical development. Luikov assumed that both vapour and liquid diffusion
are driven by both the total concentration gradient and the temperature gradient. He
assumed that molecular and molar transfer of air, vapour, and water occurred simulta-
neously within the porous body. Luikov stated that these coupled equations could not be
solved and therefore have to be simplified [9]. When the coupling effects are important,
one can solve the coupled equations using numerical methods such as the finite element
method for a given situation, the accepted practise among scientists and engineers.

1.1. Numerical modelling of coupled (conjugate) heat and mass transfer in drying.
Thomas et al. [14] used the coupled two-dimensional PDEs based on Luikov’s theory
to develop a fully nonlinear finite element formulation to solve a problem of kiln drying
timber having a cross section of 200 mm × 50 mm. Then they simplified the numerical
problem using linear finite element formulation for the same cross section of timber and
concluded that the use of fully nonlinear formulation was not justified because there was
no difference in results from both formulations. Constant stationary initial conditions
through the wood were assumed (initial temperature = 10◦C, and the initial moisture
content = 0.30 (decimal, dry basis)) and constant boundary conditions were also used:
surface temperature and moisture at the surface 60◦ C and 0.12 (decimal, dry basis), re-
spectively. Contextually similar study in solving a conjugate heat and mass transfer model
was given by Olivera and Haghighi [11]. By using adaptive finite element techniques and
incorporating the laminar flow over a solid piece of wood, they solved the governing cou-
pled PDEs for the drying of wood.

Murugesan et al. [10] developed a theoretical model of brick drying in two dimen-
sions based on liquid, vapour, and energy balances as well as on Darcy’s law for capillary
liquid mass flux and Fick’s law for diffusive mass flux. The flow field over the solid was
modelled by the Navier-Stokes equations. There are a total of five governing equations
including a pair of conjugate PDEs modelling the behaviour of temperature and mois-
ture variables within the body. These conjugate models however were derived from mass
and energy conservation laws, and the scientific rationale on which these derivations are
based is different from that of Luikov [9]. The governing equations were solved using the
finite element method with triangular elements over a rectangular flow domain within
which a solid (brick) rectangular domain was embedded at the centre of the flow domain.
In contrast to the much involved numerical modelling, a simple graphical method was
proposed by Sahin and Dincer [13] to determine the moisture diffusivity and moisture
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transfer coefficient for solid products. The method is based on the analytical solution of
one-dimensional Fickian equation in a dimensionless form for the moisture transfer for
porous bodies without taking the coupling effects into account. Dolinskiy et al. [5] stud-
ied the problem of heat and mass exchange between a heat-transfer agent and continuous
material pulled through it. The PDEs formulated were solved numerically by a difference
technique which included an implicit difference scheme along with a tridiagonal matrix
algorithm. The study is based on coupled PDEs very similar to Luikov’s equations but
series expansions were assumed a priori for the heat and mass fluxes, and the coefficients
of which were calculated iteratively.

The main advantages of numerical solutions of the conjugate PDEs are (1) any ge-
ometry with irregular boundaries can be used as the spatial domains of the problems,
and (2) tractable models can be developed for real industrial situations. However, there
are many instances where analytical solutions of simplified PDEs could be useful in un-
derstanding the significance of crucial parameters, especially the coupling effects, and in
extending the system behaviour to untested regimes. The simplicity of solutions would be
insightful in understanding the physics of the problem at hand, and the solutions would
be simpler to implement on computer. Further, analytical solutions of PDEs are used to
validate numerical solution procedures and establish their accuracy [12]. The analyti-
cal solutions for simplified boundary and initial conditions can be used to gain insight
into drying behaviour of porous materials and also to develop empirical relationships
in industrial situations, as most empirical drying models have an underlying theoretical
basis.

1.2. Purpose of the study. The main purpose of this study is to provide a brief summary
of the development of a simplified set of Luikov’s equations governing heat and mass
transfer in porous media, and solve them analytically to explore the behaviour of the
model in relation to the coupling parameters and material properties.

2. Modelling heat and mass transfer

Consider a system consisting of a porous body and a bound substance, which can be in
the form of a liquid, vapour, or inert gas under positive temperature regimes but can
be in the form of a solid (ice), a subcooled liquid or vapour, or a gas. Luikov developed
a theory of mass and heat transfer for what he called capillary-porous bodies using the
principles of irreversible thermodynamics [9]. In this paper, we consider cellular solids,
materials consisting of cells, to be of this category, although there are significant differ-
ences between porous solids such as ceramics and cellular solids such as softwood. We
modify Luikov’s equations for positive temperature regimes to more realistically repre-
sented drying situations. Luikov and his coworkers showed that the thermal and moisture
potential gradients within a capillary-porous body cause vapour diffusion and transfer of
liquid water. A porous body above freezing temperatures can be considered a moist dis-
perse system consisting of four different components: a dry porous skeleton (solid), water
vapour, liquid water, and air within capillaries and pores. Using the subscript i to denote
the ith component (i= 0 for bone-dry solid, i= 1 for water vapour, i= 2 for liquid water,
and i= 3 for air), and after neglecting the water vapour and air masses, the mass transfer
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of bound water can be modelled by the following conservation equation assuming that
the moist material can be regarded as a continuum [9]:

∂
(
ρ0m

)
∂t

=−∇· (J1 + J2
)
, (2.1)

where m is the moisture content of the body (dry basis), ρ0 is the density of the bone-dry
solid, Ji denotes the mass flux of component i, and t is time. The heat transfer within the
material can be modelled by the energy conservation equation

cρ0
∂T

∂t
=−∇· q− (H1I1 +H2I2

)
, (2.2)

where c is the weighted specific heat of the moist solid referred to as the unit mass of the
dry solid, T is the temperature of the dispersed system, q is the total heat flux, Hi is the
enthalpy per unit mass, and Ii denotes the mass formation or disappearance rate during
the phase changes.

Solutions to (2.1) and (2.2) with appropriate boundary and initial conditions give the
moisture and temperature profiles within the material. However, before solving (2.1) and
(2.2) with appropriate boundary and initial conditions, the mass flux Ji and the heat flux
q should be expressed in terms of driving forces (moisture potentials and temperature
gradients). Using the thermodynamics of irreversible processes and experiments, Luikov
[9] proved the existence of two driving forces for mass transfer: the moisture concentra-
tion gradient and the temperature gradient for each of the mass fluxes. This means that
the vapour diffusion and transfer of liquid water within the material can occur due to
moisture concentration gradient and/or temperature gradient (thermodiffusion effect).
Hence, J1 and J2 in (2.1) can be replaced by

J1 =−am1ρ0∇m− aTm1ρ0∇T , (2.3a)

J2 =−am2ρ0∇m− aTm2ρ0∇T , (2.3b)

where am1, am2 are the effective diffusion coefficients for water vapour and liquid, respec-
tively, and aTm1 and aTm2 are the corresponding thermal moisture diffusion coefficients.
Substituting (2.3a) and (2.3b) into (2.1),

∂m

∂t
=∇· [am∇m+ amδ∇T

]
, (2.4)

where am is the total diffusion coefficient, am = am1 + am2, and δ is the thermogradient
coefficient

δ =
(
aTm1 + aTm2

)
(
am1 + am2

) . (2.5)
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The thermo gradient coefficient is a measure of relative significance of the mass transfer
due to the thermal gradient. The total heat flux q in (2.2) is replaced by

q =−k∇T , (2.6)

where k is the thermal conductivity of the moist material and the (H1I1 +H2I2) term is
replaced by

H1I1 +H2I2 =−Rε∂m
∂t

, (2.7)

where R is the specific enthalpy of phase change and ε is the phase change coefficient [6].
The phase change coefficient ε varies from 0 to 1 as the vapour diffusion increases relative
to liquid transfer during drying. After substituting (2.6) and (2.7) into (2.2),

cρ0
∂T

∂t
=∇· (k∇T) +Rε

∂m

∂t
. (2.8)

Luikov compiled experimental values of am, δ, ρ0, k, and c for a large number of porous
materials. For example, values of am for Pinus radiata wood varies from 1.0× 10−6 m2/h
to 6.2× 10−6 m2/h and δ varies from 0.6× 10−2 to 2.0× 10−2 for the same temperature.

For all practical purposes, the heat and mass transfer in a porous body can be simpli-
fied into (2.4) and (2.8). The system of equations given by (2.4) and (2.8) is coupled, and
nonlinear PDEs, whose behaviour can be investigated analytically.

Equations (2.4) and (2.8) can further be simplified by assuming constant values for
the parameters am, c, ρ0, k, and δ along the spatial dimension. Therefore, we seek to solve
the following system of equations:

∂m

∂t
= am∇2m+ amδ∇2T , (2.9)

cρ0
∂T

∂t
= k∇2T +Rε

∂m

∂t
. (2.10)

Equations (2.9) and (2.10) have another complication: the value of ε changes from 0 to
1 depending on the significance of liquid transfer relative to the vapour diffusion within
the material and, in turn, depending on the nature of the material. We expect it to in-
crease with temperature. The effect of the phase change coefficient on the moisture and
temperature regimes can be explored using the model given by (2.9) and (2.10).

3. Analytical solutions

Equations (2.9) and (2.10) form a pair of coupled nonhomogenous second-order PDEs.
The applicability of general methods for solving coupled PDEs is limited by properties of
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the region over which the problem is defined, as well as by boundary and initial condi-
tions. For simplicity, we reduce the problem to a single spatial dimension and substitute
α= k/ρ0c and β = R/ρ0c:

∂

∂t
m(x, t)= am

∂2

∂x2
m(x, t) + amδ

∂2

∂x2
T(x, t), (3.1a)

∂

∂t
T(x, t)= α

∂2

∂x2
T(x, t) + εβ

∂

∂t
m(x, t), 0 < x < l, (3.1b)

with initial and boundary conditions defining the problem over the region [0, l] along the
x axis:

m(x,0)=mi(x)=Mi, T(x,0)= Ti(x)= Ti, (3.2)

m(0, t)=m(l, t)=M∞, T(0, t)= T(l, t)= T∞. (3.3)

One of the widely accepted approaches for solving systems of PDEs is applying integral
transforms to reduce the problem to simple differential equations. We found that Laplace
and Fourier transforms in the time domain were applicable, but did not significantly sim-
plify the problem. Transformations applied in the spatial domain would have done so, but
boundary conditions ruled out both Fourier and Laplace transforms. Fourier transform
did not prove viable because of the finite nature of the spatial domain, while Laplace
transform could not be utilised due to the lack of information on the derivatives of the
solutions at the boundaries. Efforts made using transforms in the spatial domain thus
yielded results satisfying the PDEs, but inconsistent with the boundary and/or initial con-
ditions.

The method finally used to obtain satisfactory results is based on solving the nonho-
mogenous heat conduction problem by means of eigenvalues and eigenfunctions [1]. The
steps for solving the partial differential equation

∂F(x, t)
∂t

= γ
∂2F(x, t)

∂x2
+D(x, t), (3.4)

for F(x, t) with appropriate initial and boundary conditions, is as follows (γ is a constant,
and D(x, t) is the “disturbing” nonhomogenous term):

(1) solve the appropriate homogenous problem (assuming D(x, t) = 0) to find the
eigenvalues and eigenfunctions needed to construct the solution as an infinite
sum;

(2) express all functional terms in the nonhomogenous problem in terms of the ob-
tained eigen functions;

(3) solve the resulting equation of infinite sums for the coefficients needed to con-
struct the solution F(x, t) by exploiting properties of eigenvalues and eigenfunc-
tions.
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To apply this method to the original problem of solving a coupled pair of equations,
the coupling terms in each equation are treated as the nonhomogenous “disturbing”
terms (D(x, t)s). It is assumed that the solutions for m(x, t) and T(x, t) in (3.1) can be
expressed using infinite sums:

m(x, t)= C+
∞∑
n=1

an(t)Φn(x), (3.5a)

T(x, t)=D+
∞∑
n=1

bn(t)Ψn(x), (3.5b)

where Φn(x) and Ψn(x) are eigenfunctions independent of time, coefficients an(t) and
bn(t) are functions of time only, and C and D are translating functions derived from the
initial and boundary conditions. In the special case of (3.2) and (3.3), where boundary
conditions are symmetric (and constant) and the initial functions are constants, C and D
are constants.

The appropriate homogenous problem to (3.1) is

∂

∂t
mH(x, t)= am

∂2

∂x2
mH(x, t), (3.6a)

∂

∂t
TH(x, t)= α

∂2

∂x2
TH(x, t). (3.6b)

Note that the equations in (3.6) are no longer coupled. Also note that both have the same
general form

∂

∂t
f (x, t)= σ

∂2

∂x2
f (x, t). (3.7)

The assumption can be made that mH(x, t) and TH(x, t) have identical eigenvalues and
eigenfunctions. Note that homogenous PDEs with the above form can be solved using
the method of separation of variables. Doing so suggests that the eigenvalues and eigen-
functions for the corresponding boundary conditions (3.3) are

λn = n2π2

l2
, Ψn(x)=Φn(x)= sin(

√
λx)= sin

(
nπ

l
x
)

, n= 1,2, . . . ,∞. (3.8)

From (3.5a) and (3.5b) we thus derive

mn(x, t)= an(t)Φn(x), (3.9a)

Tn(x, t)= bn(t)Φn(x). (3.9b)

Because differential operators are linear, mn(x, t) and Tn(x, t) must satisfy the equations
in (3.1) for all n. Substituting (3.9) into (3.1),

∑
n

a′n(t)Φn(x)= am
∑
n

an(t)Φ′′
n (x) + amδ

∑
n

bn(t)Φ′′
n (x), (3.10a)

∑
n

b′n(t)Φn(x)= α
∑
n

bn(t)Φ′′
n (x) +βε

∑
n

a′n(t)Φn(x). (3.10b)



282 On modelling the drying of porous materials

Substituting the identity that is easy to verify,

Φ′′
n (x)=−λnΦn(x), (3.11)

and rearranging to one summation the equations become

∑
n

[
a′n(t) + amλnan(t) + amδλnbn(t)

]
Φn(x)= 0, (3.12a)

∑
n

[
b′n(t) +αλnbn(t)−βεa′n(t)

]
Φn(x)= 0. (3.12b)

The equations in (3.12) can only hold for all 0 < x < l if the quantities in the square brack-
ets are 0 for all n because the eigenfunctions form an orthogonal set. Thus to find an and
bn, we must solve the coupled pair of first-order differential equations for each value
of n:

a′n(t) + amλnan(t) + amδλnbn(t)= 0, (3.13a)

b′n(t) +αλnbn(t)−βε a′n(t)= 0. (3.13b)

Initial values for an(t) and bn(t) are derived from the original initial and boundary con-
ditions (3.2) and (3.3) through a translation [14]:

an(0)=An = 2
l

∫ l

x=0

(
mi(x)−M∞

)
Φn(x)dx

= −2
(
Mi−M∞

)
nπ

[
cos(nπ)− 1

]
,

(3.14a)

bn(0)= Bn = 2
l

∫ l

x=0

(
Ti(x)−T∞

)
Φn(x)dx

= −2
(
Ti−T∞

)
nπ

[
cos(nπ)− 1

]
.

(3.14b)

An and Bn are actually the coefficients used to express the original initial functions as
infinite linear combinations ofΦn(x). Note that the cosine term is 1 if n is even and−1 if n
is odd. This cancels all harmonics of Φ(x) that are nonsymmetric on the interval 0 < x < l.
To solve (3.13) the Laplace transform in time ( f (t)→ F(s)) is applied; simplifying the
differential equations to algebraic equations (omitting the indices n),

sA−A+ amλA+ amδλB = 0, (3.15a)

sB−B+αλB−βε(sA−A)= 0. (3.15b)
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Solving for A and B and applying the inverse Laplace transformation to the results we
obtain the solutions for an(t) and bn(t):

an(t)= p1An +Cn

p1− p2
exp

(
p1t
)

+
p2An +Cn

p2− p1
exp

(
p2t
)
,

Cn =−Bnamλnδ +αλnAn +βεAnamλnδ,
(3.16a)

bn(t)= p1Bn +Dn

p1− p2
exp

(
p1t
)

+
p2Bn−Dn

p2− p1
exp

(
p2t
)
,

Dn = Bnamλn−βAnamλnε,
(3.16b)

where

p1 =−1
2

(
βεamδ +α+ am−

√(
βεamδ

)2
+ 2βεδa2

m + 2βεδamα+ a2
m +α2− 2amα

)
,

(3.17)

p2 =−1
2

(
βεamδ +α+ am +

√(
βεamδ

)2
+ 2βεδa2

m + 2βεδamα+ a2
m +α2− 2amα

)
.

(3.18)

(Note that for positive constants poles p1 and p2 are always negative, and the singularity
at p1 = p2 is bounded.) Finally, the solution for m(x, t) and T(x, t) consistent with the
“initial and boundary conditions” can be expressed as

m(x, t)=M∞ +
∞∑
n=1

an(t)Φn(x), (3.19a)

T(x, t)= T∞ +
∞∑
n=1

bn(t)Φn(x). (3.19b)

(Note that since (3.14) was a solution for the translated initial values, we compensate by
defining C and D from (3.5) accordingly.)

The results have also been verified by substituting zeros for coupling parameters and
comparing results with those obtained from solving the noncoupled homogenous pair of
equations (mH(x, t),TH(x, t)).

4. Exploration of analytical solutions

Equations (3.19) provide analytical solutions to the PDEs that describe simultaneous
moisture and heat transfers within a porous body, and the solutions determine the tem-
perature and moisture profiles. It is important to obtain insight into the behaviour of
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Figure 4.1. (a) A 3D moisture content profile for l = 0.1 m. (b) Moisture content at x = 0.05 m versus
time for l = 0.1 m.

the solutions with respect to the coupling parameters (δ and ε) as well as material prop-
erties, for example, to know the conditions under which the moisture and tempera-
ture coupling is important. The reduced dimensionality of the problem makes it easy
to understand the interactions among various factors without unduly complicating the
study.

We assume the following numerical values for the drying of an infinite “panel” of P.
radiata 0.10 m thick, with drying temperature and humidity held constant along both of
its infinite faces: R= 2400 kJ/kg, am = 3.0× 10−6 m2/h, ρ0 = 500 kg/m3, c = 1284 J/kg◦C,
k = 0.12 W/m K, Ti = 10◦C, T∞ = 80◦ C, Mi = 0.5 (dry basis), and M∞ = 0.12 (dry ba-
sis). After experimenting with the number of terms in the solutions to obtain approxi-
mate solutions, we found that, for the parameter regimes tested, 20 terms would be suf-
ficient to obtain convergences to consistent values having differences between successive
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Figure 4.2. (a) A 3D temperature profile for l = 0.1 m. (b) Temperature at x = 0.05 m versus time for
l = 0.1 m.

summations of less than 0.001◦C and 0.001 (decimal, dry basis) for temperatures and
moisture contents, respectively. Figures 4.1 and 4.2 show the moisture and temperature
profiles, respectively, by assuming the values δ = 0.01◦ C−1, and ε = 0.1 for the coupling
parameters. The moisture and temperature versus time at x = 0.05 m are given in Fig-
ures 4.1b and 4.2b, respectively. While the rise in temperature is sharp, the decrease in
moisture is slow because of the relatively low value of the total diffusion coefficient am,
and the thermal diffusivity α is relatively high. We can expect the coupling effects to be
negligible when the temperature gradients are very small after initial hours of drying.
Moisture is increased slightly at the beginning because of the moisture transfer driven by
the temperature gradient.
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Figure 4.3. Moisture variation with the thermo-gradient coefficient (δ) and the phase change coeffi-
cient (ε) for x = 0.05 m, t = 200 hours, and l = 0.1 m.
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Figure 4.4. The transient moisture content versus the thermo-gradient coefficient and time for x =
0.05 m, l = 0.1 m, and ε = 0.1.

Figure 4.3 shows the variation of the moisture content at x = 0.05 m, t = 200 hours
with δ and ε for the same set of values given above. While the moisture is insensitive to
the changes of ε, the thermo-gradient coefficient δ has a significant effect on moisture.
For a given total diffusion coefficient am, δ indicates the significance of moisture trans-
fer due to temperature gradient. Therefore, within realistic limits, δ can be expected to
influence drying as seen in the transient moisture profiles at the same location as before
(Figure 4.4). For P. radiata, the nature of thermodiffusion effect has an impact on the
moisture content of the material during the first 300 hours.

To illustrate how the thickness of the panel affects the moisture and temperature pro-
files, we have produced Figures 4.5, 4.6, and 4.7 for a thickness (l) of 0.5 m. Temperature
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Figure 4.5. (a) A 3D moisture content profile for l = 0.5 m. (b) Moisture content at x = 0.25 m versus
time for l = 0.5 m.

at x = 0.25 (mid point) takes almost 1500 hours to reach close to the outside temperature
when l = 0.5 (Figure 4.6b), whereas the mid-point temperature reaches the outside tem-
perature within 70 hours when l = 0.1 (Figure 4.2b). The moisture profile at x = 0.25 m
is slow to change (Figure 4.2) as compared to Figure 4.1. The thermo-gradient coefficient
(δ) is significant for a longer period of time (Figures 4.7 and 4.8), and therefore it can
be argued that the drying models purely based on moisture potential gradients without
taking into account dynamic changes in temperature would not give realistic results when
the thickness is large (greater than 0.2 m).

It was found that the values of α and am should be in realistic ranges for moisture
profiles to have meaningful values. This is illustrated in Figure 4.9 where the moisture
content at x = 0.25 m, t = 500 hours is plotted against α and am for ε = 0.1 and δ = 0.1.
The regimes of α and β which would produce realistic moisture contents at x = 0.25 m,
t = 500 hours are given in Figure 4.10, and it is seen that low β (i.e., the density and/or
specific heat of the material is high) has a significant effect on the moisture profile at small
values of α and vice versa.
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Figure 4.6. (a) A 3D temperature profile for l = 0.5 m. (b) Temperature at x = 0.05 m versus time for
l = 0.5 m.
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Figure 4.7. Moisture variation with the thermo-gradient coefficient (δ) and the phase change coeffi-
cient (ε) for x = 0.25 m, t = 500 hours, and l = 0.5 m.
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Figure 4.8. The transient moisture content versus the thermo-gradient coefficient and time for x =
0.25 m, l = 0.5 m, and ε = 0.1.
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Figure 4.9. Moisture as a function of am and α for x = 0.25 m, t = 500 hours, and l = 0.5 m.
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Figure 4.10. Moisture at x = 0.25 m, t = 500 hours as a function of α and β for ε = 0.1, δ = 0.1, and
l = 0.5 m.
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5. Conclusion

Coupled PDEs that govern the drying of porous materials have been solved analytically,
and the solutions were explored to show that thermodiffusion effects cannot be ignored
when drying moist porous materials is concerned. The thermo gradient coefficient is a
significant coupling parameter whereas the influence of the phase change coefficient has
lesser significance in the dynamics of heat and moisture profiles. Therefore, vapour diffu-
sion relative to liquid transfer can be ignored in drying such materials as P. radiata. How-
ever, this should be explored for each material relevant boundary and initial conditions
using the analytical solutions. The solutions enable us to experimentally determine the
coupling parameters in a setting where both the moisture and heat transfers are impor-
tant without resorting to a simplified set of equations that govern heat and mass transfer
separately.
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