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The method of multiple scales is so popular that it
is being rediscovered just about every 6 months.

A. H. Nayfeh [37, page 232]

A novel method for solving mixed boundary value problem is presented. A computational
efficiency of the proposed method is illustrated using a few mechanical examples.

1. Introduction

The phrase quoted from Nayfeh’s book applies also to the case of an artificial small pa-
rameter. Note that the introduction of the artificial small parameter is usually motivated
either by a lack of a real physical small parameter or by a rather narrow application zone
for the natural small parameter [1, 2, 11, 14, 24]. In general, the expression “small param-
eter” can be used in a different manner. Namely, the following key question occurs: is it
possible to obtain a useful information directly through either a natural small parameter
or an introduction of an artificial one (or through the application of a useful summation
procedure)? This problem has been addressed in references [1, 12, 13, 26, 35].

In this respect it is worthwhile to speak rather directly on the “methods devoted to the
development using a parameter” than to speak only on a “small parameter” [26].

From this point of view there is no difference between a real and an artificial small
parameter. However, following tradition, the phrase “artificial small parameter” will be
used. It is worth noticing that the idea of introducing a small parameter has been used in
different branches of mathematics. For example, Dorodnitzyn [18] proposed the method
of introduction of the parameter ε into the input equations and the boundary conditions
in the way that for ε = 0 a simplified problem is obtained, whereas for ε = 1 the original
problem is described. In other words, Dorodnitzyn has applied the continuation method
[25, 38, 47, 48] widely known in numerical mathematics. A serious problem occurred due
to divergent series occurrence appearing for ε = 1. In order to overcome the occurring
difficulties, the so-called methods of analytical continuation have been proposed, but
they did not work satisfactorily [33, 34, 40, 41, 42].

Some authors used the artificial parameter approach in a special way. Namely, they
observed that a transition from ε = 0 to ε = 1 represents a homotopy transformation
yielding today’s accepted term the “homotopy perturbation technique” [19, 20, 22, 23,
24, 28, 29, 30, 31]. However, this mentioned technique can be satisfactorily applied only
in connection with an effective method of summation.
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It has been already shown in references [3, 4, 5, 6, 7, 8, 9, 10, 19, 20] (see also [1, 11])
that effective results are expected using the Padé approximations matched with homotopy
perturbation techniques [19, 20].

This work is devoted to the description of the method presented in [3, 4, 5, 6, 7, 8, 9, 10,
19, 20] with an emphasis on its advantages. The paper is organized as follows. In Section 2
an introductory simple example is analyzed. Vibrations of clamped plate are discussed in
detail in Section 3. In Section 4 the asymptotic method is applied to a static problem for a
clamped plate. Here also the problem of solving an infinite system of algebraic equations
is studied. Buckling of a rectangular plate is analyzed in Section 5. In Section 6 the results
which have been obtained are summarized.

2. Simple example

In our first example a problem which has an exact solution, that is, frequencies of the
clamped beam (−0.5l < x < 0.5l), is analyzed. Note that in a static case the Padé approach
yields the exact solution directly. The equation being analyzed reads

EI
d4w

dX4
−ω2ρFw = 0, (2.1)

where E is the Young modulus; F, I are area and statics moment of the beam cross-section;
ρ is density; ω is frequency; w is normal displacement; X is a spatial coordinate.

The following nondimensional equation governs the vibrations of the beam:

d4w

dx4
− λ4w = 0, (2.2)

where x = X/l, λ4 = ω2ρFl4/EI .
The boundary conditions have the following form:

w = 0,
dw

dx
= 0 for x =±0.5. (2.3)

Let us introduce ε in a way to get the following boundary conditions:

w = 0, ε
dw

dx
± (1− ε)d

2w

dx2
= 0 for x =±0.5. (2.4)

Note that for ε = 0 simple support is realized, whereas for ε = 1 rigid clamping (2.3)
occurs. If 0 < ε < 1 elastic clamping appears.

A general solution to (2.2) reads

w = C1shλx+C2chλx+C3 sinλx+C4 cosλx, (2.5)
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and after satisfying the boundary conditions (2.4) it yields the following transcendental
equations for both symmetric and antisymmetric vibrations with respect to the point
x = 0:

ε
(

ch
λ

2
sin

λ

2
+ sh

λ

2
cos

λ

2

)
+ 2(1− ε)λch

λ

2
cos

λ

2
= 0, (2.6)

ε
(

ch
λ

2
sin

λ

2
+ sh

λ

2
cos

λ

2

)
+ 2(1− ε)λsh

λ

2
sin

λ

2
= 0. (2.7)

Let us search for an eigenvalue λ in the following series form:

λ=
∞∑
i=0

λiε
i. (2.8)

Substituting (2.8) into (2.6) (or (2.7)), and applying the classical splitting procedure
with respect to the powers of ε, one gets

λ= πn+
ε

πn
− ε2

2π2n2

(
th
π

2
n− 2πn+

2
πn

)
+ ··· , n= 1,3,5, . . . , (2.9)

λ= πn+
ε

πn
− ε2

2π2n2

(
cth

π

2
n− 2πn− 2

πn

)
+ ··· , n= 2,4,6, . . . . (2.10)

Observe that since the series (2.9), (2.10) are divergent for ε = 1, a summation proce-
dure can be applied in order to receive a useful information. In our case a Padé approxi-
mation is applied [12, 13].

In what follows we are going to briefly describe the Padé approximation [12, 13]. Let

F(ε)=
∞∑
i=0

ciε
i, F[m,n](ε)=

m∑
i=0

aiε
i

( n∑
i=0

biε
i

)−1

, (2.11)

where the coefficients ai and bi are defined through the following condition: the first m+
n+ 1 terms of the McLaurin series of F[m,n](ε) coincide with the first m+n+ 1 terms of
the F(ε) series. Note that the rational function F[m,n](ε) is called the [m,n]th-order Padé
approximation. The set of functions F[m,n](ε) constitute the Padé table for different m
and n. The Padé approximation is unique for given m and n and creates a meromorphic
continuation of the functions. Furthermore, in order to define the coefficients ai and bi,
knowing the series coefficients ci, only a linear system of algebraic equations needs to be
solved.

Padé transformation of the series part (2.9) (or (2.10)) has the form

λ[1,1](ε)=
(
c0 + c1ε

)(
d0 +d1ε

)−1
, (2.12)

where c0 = λ0, d0 = 1, c1 = λ1 +d1λ0, d1 =−λ2/λ1.
We are now going to compare the eigenvalues of the problem (2.2), (2.3), and (2.4)

yielded from the truncated series (2.9) (or (2.10)), and the Padé approximation (2.12)
with a known exact value. A comparison is carried out only for the first eigenvalue, since
the boundary conditions influence significantly only first eigenvalues.
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The first eigenvalue of a clamped beam is equal to λ = 4.712, see [50]. In this case
the series (2.9) with the first three terms (for ε = 1) yields λ = 3.691 (error amount of
27.68%), whereas formula (2.12) gives λ= 4.429 (error of 6.01%).

Consider now the problem where a transition to transcendental equations can be
omitted.

Beam vibrations are sought in the form

w =
∞∑
i=0

wiε
i. (2.13)

After a substitution of the series (2.13) into (2.2) and into the boundary conditions
(2.4), and after a splitting with respect to ε, the following boundary value problems are
obtained:

d4w0

dx4
− λ4

0w0 = 0, w0 = 0,
d2w0

dx2
= 0, x =±0.5, (2.14)

d4w1

dx4
− λ4

0w1− 4λ3
0λ1w0 = 0, w1 = 0,

dw0

dx
± d2w1

dx2
= 0, x =±0.5, (2.15)

cos(nπx) +
A

πn

[
(−1)0.5(n−1)

2ch(0.5πn)
ch(nπx)− x sin(nπx)

]
ε

+
A

2πn

{
(−1)0.5(n+1)

2ch(0.5πn)

[(
1
πn

+ 1
)

th(0.5πn) +
2

π2n2
− 2

]
ch(nπx)

+
[(

1
πn
− 1
π2n2

+ 1
)
x sin(nπx) +

(−1)0.5(n−1)

2ch(0.5πn)
xsh(nπx)

− 1
πn

x2 cos(nπx)
]}

ε2 + ··· , n= 1,3,5, . . . ,

(2.16)

w =Asin(nπx) +
A

πn

[
(−1)0.5n

2sh(0.5πn)
sh(nπx)− xcos(nπx)

]
ε

+
A

2πn

{
(−1)0.5n

2sh(0.5πn)

[(
1
πn

+ 1
)

cth(0.5πn) +
2

π2n2
− 2

]
sh(nπx)

+
[(

1
πn

+
1

π2n2
+ 1
)
xcos(nπx) +

(−1)0.5n

sh(0.5πn)
xch(nπx)

− 1
πn

x2 sin(nπx)
]}

ε2 + ··· , n= 2,4,6, . . . .

(2.17)

Padé approximation of the series (2.16) (or (2.17)) gives

w(ε)= (c0 + c1ε
)(
d0 +d1ε

)−1
, (2.18)

where c0 =w0, d0 = 1, c1 =w1 +d1w0, d1 =−w2/w1.
We compare the amplitude of the first harmonics of the clamped beam governed by

(2.16) (or (2.17)) with the known exact value w0 = 1.133, see [50].
Taking account of the three first terms of the series (2.16) for ε = 1 gives w0 = 1.082

(error 1.77%).
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Observe that an exact bending moment with respect to the middle of the beam is
M(0) = −19.257. Applying series (2.16), one gets M(0) = −12.816 (error 33.44%),
whereas with the Padé approximation (2.18) one gets M(0)=−17.931 (error 6.88%).

Note that the exact value of a bending moment in the clamping area reads M(0.5) =
31.405, see [50]. Using part of the series (1.14) one gets M(0.5)= 23.086, whereas apply-
ing the Padé approximation (1.16) one obtains M(0.5)= 28.671 (error amount 8.70%).

3. Vibrations of a clamped plate

We are going to analyze the free vibrations of a clamped rectangular plate. The governing
equation reads

D
(
∂2

∂x2
+
∂2

∂y2

)2

w−ωρ1hw = 0, (3.1)

where D = Eh3/(12(1− ∂)2) , h is plate thickness; ∂ is Poisson coefficient; ρ1 is density; x,
y are coordinates, |x| ≤ 0.5a, |y| ≤ 0.5b.

The input equation can be transformed to the following equivalent form:

∇4w− λw = 0, (3.2)

where∇4 = (∂2/∂x2 + ∂2/∂y2)2; λ= ω2ρ1hb4/D; x = X/b; y = Y/b.
The following boundary conditions are applied:

w = 0,
∂w

∂x
= 0 for x =±0.5k,

w = 0,
∂w

∂y
= 0 for y =±0.5,

(3.3)

where k = a/b.
Observe that the parameter ε is introduced to modify the boundary conditions (3.3)

in the following way:

w = 0, ε
∂w

∂x
± (1− ε)k ∂

2w

∂x2
= 0, for x =±0.5k,

w = 0, ε
∂w

∂y
± (1− ε)∂

2w

∂y2
= 0, for y =±0.5.

(3.4)

For ε = 0, simply supported boundary conditions are realized, whereas for ε = 1, the
contour of plate is clamped. Finally, for 0 < ε < 1, an elastic clamping of the plate edges is
realized.

A natural vibration frequency and an oscillation mode are sought in the following
series forms:

λ=
∞∑
i=0

λiε
i, w =

∞∑
i=0

wiε
i. (3.5)
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Substituting the series (3.5) into (3.2), (3.4), and applying splitting with respect to ε,
the following boundary conditions are obtained:

∇4w0− λ0w0 = 0, (3.6)

w0 = 0,
∂2w0

∂x2
= 0, for x =±0.5k, (3.7)

w0 = 0,
∂2w0

∂y2
= 0, for y =±0.5, (3.8)

∇4w1− λ1w0− λ0w1 = 0, (3.9)

w1 = 0,
∂w0

∂x2
± k ∂

2w1

∂x2
= 0, for x =±0.5k, (3.10)

w1 = 0,
∂w0

∂y2
± ∂2w1

∂y2
= 0, for y =±0.5. (3.11)

Applying a selfadjoint property [37], (3.7), (3.10) yield eigenvalues of the problems
(3.2), (3.4).

As a result, the following perturbation series is obtained:

λ= π4
(
n2ηn +

m2

k2
ηm

)
+

4π2

k3

(
m2ηm + k3n2ηn

)
ε

+ 4

(
m2ηm + k2n2ηn

)
(
knξn +mξm

)3

{
2π2

(
n2ηn +

m2

k2
ηm

)(
nξn +mξm

)− 4
π

k3

(
m2ηm + k3n2ηn

)

×
[

k2
(
nψn +mψm

)
2π
(
m2ηm + k2n2ηn

) − 1
8π

(
k

mξm
+

1
nξm

)]

− m

k3

[
πkγm,n

2
th(−1)m+1

(
πkγm,n

2

)
− 1

]

−n
[
πβm,n

2
th(−1)n+1

(
πβm,n

2

)
− 1

]
+

kn2

mξn+1

+
m2ηn
2nk3

+mn

(
(m/k)ψnξm +nψmξn

)
k2n2ηn +m2ηm

}
ε2 + ··· ,

(3.12)

where ηi = 2.5 + 1.5(−1)i, ξi =−0.5 + 1.5(−1)i+1,

γm,n =
(

2nηn +
m2

k2
ηm

)1/2

, βm,n =
(
n2ηn + 2

m2

k2
ηm

)1/2

,

ψi =

(−1)0.5(i−1), i= 1,3,5, . . . ,

1, i= 2,4,6, . . . .

(3.13)

Note that the Padé transformation of the series (3.12) has the form

λ(ε)= (c0 + c1ε
)(
d0 +d1ε

)−1
, (3.14)

where c0 = λ0, d0 = 1, c1 = λ1 +d1λ0, d2 =−λ2/λ1.
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The numerical simulation [50] yields λ = 5.998 for the squared plate, the series part
(3.12) gives λ= 4.854 for ε = 1 (error is 19.08%), whereas formula (3.14) yields λ= 5.742
(the error obtained is of 4.22%).

4. Static problem

Consider a stress-strain state of a squared plate clamped along its contour (−0.5 ≤ x ≤
0.5, −0.5≤ y ≤ 0.5).

The plate bending equation reads

∇4w = q, (4.1)

where q =Qb4D−1 and Q denotes normal load.
The following boundary conditions are applied:

w = ∂w

∂x
= 0 for x =±0.5, (4.2)

w = ∂w

∂y
= 0 for y =±0.5. (4.3)

The perturbed boundary conditions (4.2) read

w = 0,
ε∂w

∂x
± (1− ε)∂2w

∂x2
= 0 for x =±0.5, (4.4)

w = 0,
ε∂w

∂y
± (1− ε)∂2w

∂y2
= 0 for y =±0.5. (4.5)

An equation governing the behavior of the bended plate is sought in the form

w = 4q
π5

∞∑
i=1,3,5,...

(−1)0.5(m−1)

m5
cos(πmx)

[
1− αmthαm + 2

2chαm
ch(πmx) +

1
2chαm

πmysh(πmy)
]

+
1
π2

∞∑
i=1,3,5,...

Em
(−1)0.5(m−1)

m2chαm
cos(πmx)

[
πmysh(πmy)−αmthαmch(πmy)

]
,

(4.6)

where αm = πm/2, Em are unknown coefficients.
The boundary conditions (4.4) yield the following system of linear algebraic equations:

Ei + εAiEi + εγi
∑

m=1,3,5,...

βimEm = εBi, i= 1,3,5, . . . , (4.7)

where

Ai = 1
2πi

(
thαi +

αi
ch2αi

)
− 1, αi = 0.5πi, γi = 4i

π2
,

βim =
(

1 +
i2

m2

)−2

, Bi = 2q
π4i4

(
αi

ch2αi
− th2αi

)
.

(4.8)
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Applying

Ei =
∞∑
n=1

E(n)
i εn, i= 1,3,5, . . . , (4.9)

and substituting (4.9) into (4.7), one gets

E(1)
i = Bi, E(n+1)

i = AiE(n)
i − γi

∑
m=1,3,5,...

βimE
(n)
m , i= 1,3,5, . . . . (4.10)

Note that the Padé transformation of the perturbation series (4.9) for Ei has the form

Ei = c0 + c1ε+ c2ε2

d0 +d1ε+d2ε2
ε, (4.11)

where c0 = E(1)
i , d0 = 1, c1 = E(2)

i +d1E
(1)
i , c2 = E(3)

i +d1E
(2)
i +d2E

(1)
i ,

d1 =
(
E(2)
i E(5)

i −E(3)
i E(4)

i

)[
E(2)
i E(4)

i −
(
E(3)
i

)2]−1
,

d2 =
[(
E(2)
i

)2−E(3)
i E(5)

i

][
E(2)
i E(4)

i −
(
E(3)
i

)2]−1
.

(4.12)

A deflection of the plate center computed through formula (4.6) with the applica-
tion of Ei represented by the five terms of the series (4.9) gives 1.797 · 10−3q for ε = 1
(error of 42.60%). A deflection computed with the use of Ei through the Padé transfor-
mation (4.11) yields 1.275 · 10−3q (error of 1.20%). A deflection obtained numerically
yields 1.260 · 10−3q, see [49].

The moment acting on the plate edges center reads

Mx(±0.5,0) =My(0,±0.5) =
∞∑

i=1,3,5,...

(−1)0.5(i−1)Ei cos(πix). (4.13)

The moment value obtained numerically is equal to −5.130 · 10−2q. An application
of the coefficients Ei in the form of the perturbation series (4.9) gives the moment value
−3.888 · 10−2q (error of 24.20%). Applying the coefficients Ei obtained through Padé
transformation yields −5.173 · 10−2q (error of 0.83%). The moment in the plate center
is found through the formula Mx(0,0) =My(0,0). The numerical solution [49] for ν = 0.3
yields 2.310 · 10−2q. On the other hand, the moment values computed through applica-
tion of the coefficients Ei from the series (4.9) give 2.941 · 10−2q (error is of 27.32%).
Applying the coefficients Ei obtained via Padé transformation, one gets 2.500 · 10−2q
(error of 6.02%).

The solution obtained emphasizes an important role of the introduction of an artificial
small parameter while solving an infinite system of linear algebraic equations. Observe
that the often used classical truncation method does not allow us to obtain a solution
structure for complex mixed boundary value problems [36]. Although one may expect
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estimations of the solution coefficient asymptotics, this belongs rather to a separate task
(see [36]). A method of introduction of the artificial small parameter allows us to account
often for all system coefficients x. It plays an alternative role to the method of reduction
and can be applied in order to estimate its accuracy.

It is worth noticing that in a similar application (see [17, 32]) the number of oper-
ations required to obtain a solution of the system of equations with a finite number of
unknowns dramatically decreases.

Finally, note that the artificial method of perturbation is effective also in the case of
solution to the system of nonlinear equations [3, 4, 5].

5. Stability of a rectangular plate with mixed boundary conditions

Consider the plate shown in Figure 5.1. It is assumed that the boundary conditions in the
plate plane secure a homogeneous prebuckling plate state.

The input equation governing plate stability reads

D
(
∂2

∂X2
+

∂2

∂Y 2

)2

w+P
∂2w

∂X2
= 0, (5.1)

where P is a compressed load. The equivalent nondimensional equation reads

∇4w+Nwxx = 0, (5.2)

where x = X/b, y = Y/b, N = Pb2/D.
The boundary conditions have the form

w = 0, wxx = 0 for x =±0.5k,

w = 0, wyy = H̄(x)
(
wyy ∓wy

)
for y =±0.5,

(5.3)

where H̄(x)=H(x− γk) +H(−x− γk), H(x) is the Heaviside function, k = a/b.
We now introduce the parameter ε according to the scheme used earlier, namely,

w = 0, wxx = 0 for x =±0.5k,

w = 0, wyy = H̄(x)
(
wyy ∓wy

)
for y =±0.5.

(5.4)

The critical force N and defection w read

N =
∞∑
i=0

Niε
i, w =

∞∑
i=0

wiε
i. (5.5)
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Substituting (5.5) into (5.2), (5.4), the following series of boundary conditions is ob-
tained:

∇4w0 +N0w0xx = 0,

w0 = 0, w0xx = 0 for x =±0.5k,

w0 = 0, w0yy = 0 for y =±0.5,

∇4wj +N0wjxx =−
j−1∑
i=0

Nj−iwixx,

wj = 0, wjxx = 0 for x =±0.5k,

wj = 0, wjyy =∓H̄(x)
j−1∑
i=0

wiy for y =±0.5.

(5.6)

A solution to the boundary value problems (5.6), for j = 1,2,3, yields

N = π2 k
2

m2

(
n2 +

m2

k2

)2

+ 4k2 n
2

m
γmmε

+
k2

π2m2

{
4π2n2γmm− 2n2(

n2 +m2/k2
)γmm(0.5αth0.5α− 1)

− 4π2n2
∞∑

i=1,3,5,...
i �=m

γ2
im

(
αith0.5αi−

{
βith0.5βi
−γitg0.5γi

})

− n2m(
n2 +m2/k2

)2

(
n2− m2

k2

)
γ2
mm

}
ε2 + ··· ,

{
m(i−m) > n2k2

m(i−m) < n2k2

}
,

α= π
√

2
m2

k2
+n2, αi = π

√
i
(
i+m
k2

+
n2

m

)
, βi = π

√
i
(
i+m
k2

− n2

m

)
,

γi = π
√
i
(
n2

m
− i−m

k2

)
.

(5.7)

Note that the Padé approximation for the series (5.7) has the form

N(ε)= a0 + a1ε

b0 + b1ε
, (5.8)

where a0 =N0, a1 =N1 + b1N0, b0 = 1, b1 =−N2/N1.
In what follows we are going to estimate an error of the solution which is obtained

in a limiting case corresponding to full clamping of the plate sides y = ±0.5. The exact
solution gives (for the squared plate) N = 8.6044π2 [15], for ε = 1 formula (5.8) gives
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Figure 5.1. Comparison of the stability estimation results of the plate with mixed boundary condi-
tions using conditions either from this paper or from those based on R-function application.

N = 8.7136π2 (error of 1.27%); the series (5.7) yields N = 4.7757π2 (error of 44.5%).
Numerical solution of the transcendental equation for m = 2 yields N = 7.6913π2, see
[15]; formula (5.8) for ε = 1 gives N = 7.7156π2 (error of 0.31%), whereas the series
(5.7) gives N = 6.4456π2 (error of 16.13%).

It is worth noticing that in the places where boundary conditions are changing rapidly
one may expect singularities. Since these singularities are known [43, 44], they can be
introduced into a solution using known methods for matching singular solutions and
known asymptotic solutions [39].

The critical force N versus geometrical ratios of the types of mixed boundary con-
ditions µ is reported in Figure 5.1. The results obtained with the help of the described
method and the R-function method [46] are represented by curves 1 and 2, respectively.
In the given graphs one may distinguish two zones: the first one is for µ ∈ [0.0,0.15],
where the plate buckling is associated with an occurrence of two half-waves in direc-
tion x; the second one is for µ∈ [0.15,0.5], where the plate buckling loss is characterized
through an occurrence of one half-wave in x-direction. Therefore, for µ= 0.15 one may
expect buckling through either the first or second buckling form.

The described method allows for an investigation of the influence of clamping stiffness
ε on the buckling forceN . The dependence of the buckling forceN versus the parameter ε
is shown in Figure 5.2 for some values of µ. It should be emphasized that in the case of an
elastic clamping of the edges y =±0.5 with no mixed boundary conditions, the additional
equilibrium forms appear for ε = 0.96. Buckling with an occurrence of one (two) half-
wave in the x-direction may appear for ε < 0.96 (ε > 0.96). A simultaneous occurrence
of the first and second equilibrium forms, depending on the parameter ε, takes place for
mixed boundary conditions. Furthermore, the additional equilibrium forms for µ→ 0
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Figure 5.2. Investigation of the influence of clamping space dimension on buckling load of the plate.

appear for ε→ 1.0. A threshold value of µ = 0.25 corresponds to plate stability loss one
buckled half-wave in x-direction for ε = 1.

For the plate shown in Figure 5.3, the solutions (5.7), (5.8) still hold. However, in the
latter case the coefficients γim should be sought in the form

γim =




2γ− (−1)m

4πm
sin(2πγm) for i=m,

4
π(m2− i2)

[
isin(πγi)cos(πγm)−msin(πγm)cos(πγi)

]
for i �=m.

(5.9)

The dependence of N versus µ is reported in Figure 5.3, whereas the dependence N(ε)
is shown in Figure 5.4 for the same values of µ. Curve 1 corresponds to formulas (5.7),
(5.8); curve 2 corresponds to the R-function method [46]; curve 3 (2.5) represents the
results reported in [27] (see [21]), and the bullets represent the experimental data shown
in [21]. To conclude, a good coincidence is achieved for both computational and experi-
mental data for the whole variation of the parameter µ.

6. Concluding remarks

The proposed computational method possesses advantages in comparison with the
known methods devoted to solving the problems associated with mixed boundary con-
ditions, that is, the methods of Bubnov-Galerkin et al. (see [36]). Namely, it does not
require a priori knowledge of the shapes of deformed surfaces. Furthermore, the pro-
posed approach does not lead also to a high-order system of transcendental equations, as
in the case of dynamical edge effect method [16].
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Figure 5.3. Comparison of the computational results of plate stability estimation with mixed bound-
ary conditions obtained through our proposed method, R-function approach, and experimental re-
sults.
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Figure 5.4. Investigation of the influence of clamping part length on buckling load of the plate.

The proposed asymptotic method allows for solution representation in an analytic
form, which is important when applying any optimal design for solution of direct prob-
lems. Applying FEM or BEM for initial ε and µ, one may also solve a boundary value
problem.
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It should be emphasized, however, that FEM method is universal with respect to a
space fulfilled by a plate. It is rather difficult to apply an asymptotic method to com-
plex form spaces, since they require knowledge of the analytical solution of zero-order
approximation. Besides, applying an asymptotic method does not provide an easier way
to introduce higher accuracy, since the construction of higher approximations is rather
difficult. However, one may require a solution obtained through two methods in order to
control the reliability of the obtained approximate solution. In the case of complex plate
forms, the results obtained through the asymptotic method can serve either as the initial
values for FEM or as tests for FEM, if a transition from a complex to simple geometry is
possible.

The proposed approach can also be applied to solve 3D problems of elasticity, hy-
dromechanics, and so forth. It allows for a significant extension of the classical method
of variables separation and the Fourier method.

One may also match the asymptotic method with the Bubnov-Galerkin-type methods.
Indeed, after obtaining an infinite set of linear algebraic equations [36], the method of
artificial small parameter can be applied easily.

Finally, in the context of the approach which has been introduced and described, the
domain decomposition method can be modified [45].
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Padé approximants, Internat. J. Solids Structures 37 (2000), no. 46–47, 6981–7001.

[21] M. Hamada, Y. Inoue, and H. Hasimoto, Buckling of simply supported partially clamped rectan-
gular plates uniformly compressed in one direction, Bull. ISME 10 (1967), no. 37, 35–40.

[22] J.-H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg. 178 (1999),
no. 3-4, 257–262.

[23] , A coupling method of homotopy technique and a perturbation technique for non-linear
problems, Int. J. Non-Linear Mech. 35 (2000), 37–43.

[24] , A review on some new recently developed nonlinear analytical techniques, Int. J. Non-
linear Sci. Numer. Simul. 1 (2000), no. 1, 51–70.

[25] M. Kawahara, N. Yoshimura, K. Nakagawa, and H. Ohsaka, Steady and unsteady finite element
analysis of incompressible viscous fluid, Internat. J. Numer. Methods Engrg. 10 (1976), no. 2,
437–456.

[26] Ya. F. Kayuk, Some Problems of the Methods Splitting by Parameter, Naukova Dumka, Kiev, 1991.
[27] L. M. Kier and V. Stal, Eigenvalue problem for rectangular plate with mixed boundary values, J.

Appl. Mech. Tech. Phys. 2 (1972), 196–204.
[28] S. J. Liao, A second-order approximate analytical solution of a simple pendulum by the process

analysis method, J. Appl. Mech. Tech. Phys. (ASME) 59 (1992), no. 4, 970–975.
[29] , An approximate solution technique not depending on small parameters: a special exam-

ple, Int. J. Non-Linear Mech. 30 (1995), no. 3, 371–380.
[30] , A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite

flat plate, J. Fluid Mech. 385 (1999), 101–128.
[31] S. J. Liao and A. T. Chwang, Application of homotopy analysis method in nonlinear oscillations,

Trans. ASME J. Appl. Mech. 65 (1998), no. 4, 914–922.
[32] V. Meleshko, Selected topics in the history of the two-dimesional biharmonic problem, Appl. Mech.

Rev. 56 (2003), no. 1, 33–85.
[33] N. A. Meller and A. A. Dorodnitsyn, Approaches to the solution of stationary Navier-Stokes equa-

tions, USSR Comp. Math. & Math. Phys. 8 (1968), no. 2, 205–217.
[34] N. A. Meller and A. A. Dorodnitzyn, Application of the small parameter method to the solution

of Navier-Stokes equations, Fluid Dynamics Trans. 5 (1971), no. 2, 67–82.
[35] T. Miloh (ed.), Mathematical Approaches in Hydrodynamics, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, 1991.



340 Artificial small parameter method

[36] R. T. Moenck and J. H. Carter, Approximate algorithms to derive exact solutions to systems of
linear equations, Symbolic and Algebraic Computation (EUROSAM ’79, Internat. Sympos.,
Marseille, 1979), Lecture Notes in Comput. Sci., vol. 72, Springer, Berlin, 1979, pp. 65–73.

[37] A. H. Nayfeh, Perturbation Methods, Wiley Classics Library, Wiley-Interscience [John Wiley &
Sons], New York, 2000.

[38] A. K. Noor and J. M. Peters, Tracing post-limit-point paths with reduced basis technique, Com-
put. Methods Appl. Mech. Engrg. 28 (1981), 217–240.

[39] I. F. Obraztsov, B. V. Nerubaı̆lo, and I. V. Andrianov, Asymptotic Methods in the Structural Me-
chanics of Thin-Walled Structures, Mashinostroenie, Moscow, 1991.

[40] B. V. Pal’tsev, The expansion of solutions Dirichlet’s problem and a mixed problem for a bihar-
monic equation in a series of solutions of reducing problems, USSR Comp. Math. & Math.
Phys. 6 (1966), no. 1, 59–72.

[41] , Small-parameter method in the boundary value problem for an Oseen system, USSR
Comp. Math. & Math. Phys. 7 (1967), no. 5, 236–266.

[42] , Convergence of expansions with respect to a small parameter introduced into the bound-
ary conditions of the solutions of boundary value problem for Navier-Stokes equations, USSR
Comp. Math. & Math. Phys. 10 (1970), no. 2, 133–157.

[43] V. Z. Parton and P. I. Perlin, Mathematical Methods of the Theory of Elasticity. Vol. 1, Mir,
Moscow, 1984.

[44] , Mathematical Methods of the Theory of Elasticity. Vol. 2, Mir, Moscow, 1984.
[45] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations,

Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford Univer-
sity Press, New York, 1999.
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