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The effect of negative damping to an oscillatory system is to force the amplitude to in-
crease gradually and the motion will be out of the potential well of the oscillatory system
eventually. In order to deduce the escape time from the potential well of quadratic or cu-
bic nonlinear oscillator, the multiple scales method is firstly used to obtain the asymptotic
solutions of strongly nonlinear oscillators with slowly varying parameters, and secondly
the character of modulus of Jacobian elliptic function is applied to derive the equations
governing the escape time. The approximate potential method, instead of Taylor series
expansion, is used to approximate the potential of an oscillation system such that the
asymptotic solution can be expressed in terms of Jacobian elliptic function. Numerical
examples verify the efficiency of the present method.

1. Introduction

The effect of negative damping or external excitation to an oscillatory system may force
the amplitude to increase gradually and the motion will eventually be out of the potential
well of the oscillatory system. Escape from a potential well is a ubiquitous phenome-
non in science. Examples are known in mechanics [16], chemistry [7], physics [2, 10],
electronics [9], and so forth. Many efforts have been done to control a nonlinear dynam-
ical system against escape from a potential well, which is often identified with system
failure [5, 8, 17]. Bosley and Kevorkian derived an easily evaluated condition to predict
the distance at which the electron escapes from the ponderomotive potential well [1].
An important parameter to characterize the dynamics of system is escape time. Coffey
et al. obtained the escape time for rigid Brownian rotators [6]. Kevorkian and Li cal-
culated the escape time as an application example of the Kuzmak-Luke method [12]
and then Li generalized it to cubic nonlinear oscillator with slowly varying parameters
[15]. Only the case of symmetric oscillation with a stationary oscillation center was stud-
ied there. This paper will develop the procedure in [12, 15] to drive the escape time
from potential wells of quadratic and cubic nonlinear oscillators. Symmetric and asym-
metric oscillations with stationary or varying oscillation centers are studied in detail.
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We begin with the following strongly nonlinear oscillator with slowly varying parame-
ters:

d’y L dy .
ﬁ+sk(y,t)a+g(y,t)—0, (1.1)

where f = ¢t is the slow scale. Assume that functions k and g are arbitrary nonlinear func-
tions of their arguments and (1.1) has periodic solutions when ¢ = 0. Firstly, the multiple
scales method is applied to obtain the asymptotic solutions of (1.1). Secondly, the char-
acter of modulus of Jacobian elliptic function is used to deduce the escape time from the
potential well of quadratic or cubic nonlinear oscillator. Different signs of coefficients of
quadratic and cubic polynomials will deduce different equations to determine the escape
time. For a strongly nonlinear spring in Example 4.3, the approximate potential method,
proposed by the authors in [4, 14], is applied to approximate the potential of oscillatory
system such that the asymptotic solution can be expressed in terms of Jacobian elliptic
function. Three examples are given to illustrate the main idea of this paper. Compar-
isons of asymptotic and numerical results are also made to show the efficiency of present
method.

2. Asymptotic solution of strongly nonlinear oscillator

We assume that the solution of (1.1) can be developed in the form
y(t,e) = yo(tH,8) +eyi (tH,0) + 2y () +- - -, (2.1)

where f = ¢t is the slow scale. The fast scale t* must be chosen such that the period is
independent of £ when measured on the t* scale (see [11, Section 3.6] for more details).
Following Kuzmak [13], the fast scale ¢* is defined as dt*/dt = w(f) with an unknown
w(f) to be determined by the periodicity of solution of (1.1). Substituting (2.1) into (1.1)
and equating coefficients of like power of ¢ yield the following equations:

207 90 A _
© (D) 55 +¢(f) =0, (2.2)
207y O 7 7
w (t) ott2 +gy()’0;t))/n =Fn(y0>y1w-->yn—l>t)y (23)

where n = 1,2,.... F; can be worked out in the form

0? dw o 0

F1 =-2w
Note that there is a periodic solution to the homogeneous equation (2.3) in the form

_ 9%

V1= aq) > (25)
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where ¢ = t* + @o, o is constant and is determined by initial conditions [14]. The other
solution linearly independent of y; can be found by the reduction of order

¢ 1
J’H=)’IJ —dy. (2.6)
0 Vi

Unfortunately, the solution yy is no longer periodic to general nonlinear system. Using
variation of parameters, we obtain the general solution of the inhomogeneous equation
(2.3) in the form

3o = Cal@ i+ Da(Byn = 25 [ Fuyudy+ 22 " Fuyiy
n n n w2 0 n a)z 0 n

- |G +j: ‘j—‘lf (D0 + J:Fnyldy)],

where coefficients C, and D, can be determined by the periodicity of higher-order solu-
tions. To have y, periodic in ¢, the inner integral and the outer integral in (2.7) must be
periodic in y and ¢, respectively. We thus have, with the periodic normalized to be T,

(2.7)

T
J Fayrde =0, (2.8)
0
T'd 1
J i (D,,(t) t— L Fuyr dw) 0. (2.9)

0V

This paper just concerns applications of leading-order approximations. For more details
of higher-order solution, readers can refer to [12] or [14].
Substituting (2.4) and (2.5) into (2.8) with n = 1 yields

J (waq,tf(,, ( o+ k(f, t))f(p)dgo 0. (2.10)

This can be written as

%(wLTfsde’)+wJOTk(f)f)f$d<P=0- (2.11)

Integrating (2.11) gives the following equation to determine w(f):

fon dgo (I 710 i f2d J T), (2.12)

where ¢ is an integral constant. If the damping k depends on y, the calculation of w(f)
will be rather involved. An approach of average damping is proposed in [14]. Instead of
k, we use the leading term of its Taylor series expansion around f = y,, the oscillatory
center, that is, we assume

() =

KOAD =KD +k, 0D (=7 + 2k OB =y s @13)
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where y, is the oscillatory center of system (1.1) and is determined by g(y,,#) = 0. Because
the system oscillates around the center y,, the second term of (2.13) vanishes on average.
Therefore, substitution of k(y,) ~ k(y,,f) into (2.12) should give a good approximation
for w(f). The result is

w(f) = #exp (Jfk(y,,r)dr) (2.14)
Iy f3do

0

Numerical examples in Section 4 show that the results are quite satisfactory.

3. Calculations of escape time from potential well

3.1. Quadratic nonlinear oscillator. We now apply the results summarized in the previ-
ous section to the following quadratic nonlinear system:

7 k(3,02 +al)y+ b))y —o0. (3.1)

Suppose that the solution of (3.1) can be developed in the form of asymptotic expression
(2.1). The leading-order equation corresponding to (2.2) has the form

_ 0> _ _

W (7) atf;’ +a(f) yo+b(F) 2 =0. (3.2)

Its energy integral is
_ 2
w?(f) (0 _

2”(53) +V (yo,a,b) = Eo(B), (3.3)

where
1 . 1, -
V(yo,a,b) = Ea(t)yé + gb(f))’g (3.4)

is the potential, and Ey(£) is the slowly varying energy of the system. It can be seen from
(3.4) that the potential V has a minimum at y, = 0 for the case of a(f) > 0. So (3.1) has
periodic solutions around y, = 0 and the oscillatory center is at y, = 0. For the case of
a(f) < 0, the potential V has a minimum at yo = —a(f)/b(f). Equation (3.1) has periodic
solutions around yo = —a(f)/b(f) and the oscillatory center y, = —a(f)/b(f) is moving
slowly with time.

3.1.1. Case of a(f) > 0. For this case, the solution of (3.2) can be expressed in terms of
Jacobian elliptic cosine function [3]

Yo = Ao (£)cn?[K(v)@,v(E) |+ Bo (), (3.5)
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where ¢ = t* + ¢y, and K(v) is the complete elliptic integral of the first kind associated
with the modulus /v. Substituting (3.5) into (3.2) yields

20 K?A¢(1 —v) +aBy+ B} + Ao[4w?K?*(2v — 1) + a+ 2bBy | cn? (u,v)

3.6
+ Ao (bAy — 60*K?v)cn*(u,v) =0, (36)
where u = K(v)¢. From (3.6), we obtain algebraic equations

2w?K?A¢(1 —v)+aBy+ B} =0,
Ao[4w’K*(2v — 1) +a+2bBy] = 0, (3.7)
Ag(bAy — 60*K*v) =0.

Then, we have

3av
SRR, 68
a 2v—1
BO__ZI:)(1/2—1/-|—1+1)’ (39)
2
4 a
@ = 16K4(v2 —v+1) (3.10)
Substituting (3.5) into (2.14), we get another form of w(f)
5 cb? Ek J
w —mexp —IO (O,T) T, (3.11)
where
K
J(v) = J sn®(u,v)en® (u, v)dn® (u,v)du
01 (3.12)
= m[(l V) (v=2)K(v)+2(v?* —v+1)E(v)].
From (3.10) and (3.11), we have an equation for v
v (v) 2cb? f
EEwe Rt |, k0.0 ), (3.13)

where constant ¢ can be determined by initial values of the system.

It can be seen from (3.4) that the potential well is “~-shaped” or “~-shaped” when
a(f) > 0. In this case, if there exists the effect of a negative damping in the system, the
amplitude will be gradually increasing, and the motion will be forced out of the potential
well and cease to be periodic. Obviously from (3.8), if a/b is constant, the increasing
amplitude implies an increasing modulus v. Once v reaches 1, y, is no longer a periodic
function of ¢. This can be used to determine the escape time from potential well. Denote

<
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the escape time as Ty, from (3.13) we have

b* (T )exp( J K (0, T)d‘r>=z. (3.14)

a¥2(T,) 5

Here, the fact that J(v) — 2/15 as v — 1 has been used.

3.1.2. Case of a(f) < 0 and b(f) > 0. For this case, the solution of (3.2) also can be ex-
pressed as (3.5) w1th

A = —3av
T vt
Bo— -2 (122 ), (3.15)
2b\ Vv —v+1
2
w* a

T 16KA(2—v+1)

Substituting (3.5) into (2.14), we get another form of w(f)

s__ _ JE _alm)
w’ = 144K () exp ( . k b(T)’T dr . (3.16)
Then the equation governing v becomes
Vi) . f _a(v)
(vz—v+1)5/4 = 5y exp( ok b(T)’T dr|. (3.17)
Now the escape time T, can be determined by
cb?*(Ty) eTo a(t) 3
Cap2(Ty) exp L k b(T)’T dr | = = (3.18)

3.2. Cubic nonlinear oscillator. Consider the following cubic nonlinear oscillator:

d*y dy ~
E-ﬁ-é‘kl( )E+a1( )y+b1(t)}/3 =0. (3.19)
The potential corresponding to (3.4) is
| D (R
V(yo,al,bl) = Eal(t)yo + Zbl (t)yo. (320)

It can be seen from (3.20) that the potential V' has a minimum at y, = 0 for the case
of a;() > 0 and the system oscillates around the center y, = 0. For the case of a;(f) <0

and by () >0, the potential V has two minimums at yo = ++/—a;(£)/b;(f). The system

has two families of oscillations centered about y, = ++/—a;(£)/b; (), which are moving
slowly with time.



Jianping Caietal. 371

3.2.1. Case of a\ () > 0 and by (f) < 0. Similar to the quadratic nonlinear oscillator, we can
get approximate solution of leading order

_ —2a1v
Yo = /b1(1+v)sn(l<<p,v), (3.21)

~ —ab(1+v) ‘
w(f) = 2avKWILW) exp ( - L kl(O,‘r)d‘r>, (3.22)
where
K 1
L(v) = J;) cn?(u,v)dn?(u,v)du = 5[(1 +v)E(v) — (1 -v)K(W)]. (3.23)

The equation governing v becomes

v2LA(v)  cibi Jf
A+v)  aa P —2] ki0.7)dr ), (3.24)

where constant ¢; can be determined by the initial values of the system.
The escape time T can be solved from (3.24):

cibi(To)
a3 (To)

eTy
exp<—2 0 kl(O,T)dT) - % (3.25)

Here, the fact that L(v) — 2/3 as v — 1 has been used. For more details of this subsection,
readers can refer to [15].

3.2.2. Case of a)(f) < 0 and by (f) > 0. Here we are concerned only with the oscillation
around the right-hand side center. Similar to the above sections, we can get the asymp-
totic solution of leading order

2{11
Yo = md}’l(K(P,V),
b (v—2) g a(1) (3.26)
7y I\ A _ _
wie) = 2a;v2K (v)M(v) exP( Jo kl( b(r)’T) dT)’
where
K 1
M®) = J sn?(u,v)en* (u,v)du = ﬁ[(z —V)E(v) —2(1 —=v)K(v)]. (3.27)
0

The equation governing v becomes

4012 21,2 3
e (o fa([E) o
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The escape time T can be determined by (3.28):

21,2 eT|
c1bi (To) ( J 0 ( a(r) ) ) 4
—S -2 k - ,T|dt ) =——. 3.29
ai(r) “P\ 72 MW e 7)) T (329
Here, the fact that M(v) — 1/3 as v — 1 has been used.
4. Examples
Example 4.1. Consider the following quadratic nonlinear oscillator:
d’y 1 5\ 4y 5/2,,2
T _£<1+£t_y)dt +(1+et)’y—(1+et) =0, (4.1)
y(0)=05,  y(0)=0. (4.2)

From initial conditions we can obtain ¢y = 1, ¥(0) = 0.5, and ¢ = 0.27312. The escape
time T can be solved from (3.14):

nel(2o) b2 43)
5¢ €

Comparisons of asymptotic results from (4.3) and numerical results are shown in Table
4.1. In this paper, numerical results are obtained by software Mathematica.

Example 4.2. Consider the following quadratic nonlinear oscillator:

2
ﬂ—s(3+£t+y—y2)%—(1+st)2y+(l+st)y2=0, (4.4)

dr?
y(0)=0.1,  7(0)=0. (4.5)

From initial conditions we can obtain ¢ = 1, v(0) = 0.878, and ¢ = 0.57514. The escape
time Ty can be solved from (3.18):

0.1819
P

Ty =

(4.6)

Comparisons of asymptotic results from (4.6) and numerical results are shown in
Table 4.2.

Example 4.3. Consider the strongly nonlinear oscillator

d*y 1 dy 2
ﬁ_ ma+(1+et)smy—;(1+£t)y=0, (4.7)
9(0) = % 7(0) = 0. (4.8)

The leading-order equation corresponding to (2.2) has the form

o
o’

w? (%) +(1+st)51ny07—(1+st)yo— ) (4.9)
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Table 4.1. Escape time from potential well of system (4.1).

€ Asymptotic result Numerical result Error (%)
0.1 11.97 14.83 19
0.01 119.7 124.4 3.8
0.001 1197 1236 3.2
0.0001 11970 12301 2.7

Its energy integral is

W (1) (9y0)° .
> (F) +V(y0) = Eo(), (4.10)
where
V(yo) = —(1+et)cosyp — %(1+et)y§+l+et (4.11)

is the potential. With this potential, the integral of (4.10) cannot be expressed in terms
of any elemental or known functions. Approximate approaches must be used. The ap-
proximate potential method was first proposed in [14] to deal with a strongly nonlinear
oscillator resulting from the free-electron laser (FEL), where the potential was approx-
imated by a polynomial of degree three. Note that the potential V(y,) has a minimum
point at yo = 0 and two maximum points at y = =7/2. We may seek a polynomial of
degree four to approximate it (see [4] for more details). Denoting it by

V() = %al(f)y2+ ibl(f)y‘*, (4.12)

where the coefficients are chosen such that

V=V, V=0 atyzO,y=§, (4.13)
we get
- 4(4-m) . 16(4 —m)
al(t) = 2 (1+et), b](t) = —T(I‘Fé‘t). (4.14)

Substituting V for V in (4.10) and integrating it, we can obtain the approximate solution
of (3.21) and the escape time of (3.25). From initial conditions, we can obtain ¢ = 1,
v(0) = 0.285714, and ¢ = 0.431393. From (3.25), the approximate escape time T is

1.529
c

Ty = (4.15)

Comparisons of asymptotic results from (4.15) and numerical results are shown in
Table 4.3.

If the potential (4.11) is expanded as Taylor series of fourth order, the escape time
corresponding to (4.15) is Ty = 1.082/¢, which has an unacceptable error of about 26%.
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Table 4.2. Escape time from potential well of system (4.4).

€ Asymptotic result Numerical result Error (%)
0.01 18.19 18.49 1.6
0.001 181.9 180.4 0.8
0.0001 1819 1779 2.3

Table 4.3. Escape time from potential well of system (4.7).

€ Asymptotic result Numerical result Error (%)
0.1 15.29 17.25 11
0.01 152.9 147.5 3.7
0.001 1529 1467 4.2
0.0001 15290 14635 4.5

The reason is that Taylor series expansion is valid only for small oscillation, while the
approximate potential works for relatively large oscillation.

5. Conclusions

(1) The multiple scales method and character of modulus of Jacobian elliptic function are
applied to drive the escape time from the potential wells of quadratic and cubic nonlinear
oscillators. The method of approximate potential makes the result more accurate than
that of Taylor series expansion.

(2) Examples show that the asymptotic results are in good agreement with the numer-
ical results. It should be noted that the amount of computations is about the same though
¢ decreases. However, if one uses a numerical method to solve (4.1), (4.4), and (4.7), as ¢
decreases these systems become stiff and the computing time increases rapidly and may
produce large system errors.
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