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We consider the mathematical model of interaction of a vibrating surface with the load
placed on it. With the purpose of accounting for influence on behavior of not only system
interaction of a blade with a load but also internal interaction of particles of a material,
the load is submitted as a finite number of strips with zero thickness. The carrying blade
is represented as a vibrating membrane. It is supposed that the weight of the material is
comparable to or considerably surpasses the weight of the blade. Therefore, the model
takes into account the inertia of the material. In the model with joint movement of the
blade and the load, the separation opportunity of the load from the blade is provided.
Therefore, there is a phase of separate movement of the blade and the load, with their
subsequent connection accompanied with impact. The process of system movement is
represented as alternating sequences of joint and separate movements of the load and
the blade. The modeling of the process of the interaction of the load and the blade is
represented as an initial-boundary value problem. The method of solution is developed
and the exact solution of the set problem is obtained in a class of generalized functions.

1. Introduction

The experience of industrial application of various mechanisms using processing of ma-
terials on a vibrating surface has shown that the efficiency of such machines influences
not only interaction of a material with a carrying surface, but also internal interaction of
particles of a material. Therefore, for reception of additional parameters for optimization
of work of such type of mechanisms, it is necessary to create a mathematical model al-
lowing to dismember processable material on components, and then to provide each of
such parts with the required characteristics.

2. Statement of the problem

With the purpose of the solution of such a problem, mathematical models are considered,
in which the carrying blade is represented as an oscillating membrane or plate, and the
processable material is represented as a series of strips. It was supposed that the weight of
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the material is comparable to or considerably surpasses the weight of the blade. There-
fore, the model takes into account the inertia of the material. In case of a membrane, the
movement of system is described by an equation of the kind

uxx +uyy −
(

1
a2

+
n∑
i=1

ρi
T
δ
(
x−hi

))
utt =

n∑
i=1

gρi
T
δ
(
x−hi

)
, (2.1)

where ρi is i’s layer of a material density, δ-Dirac function, hi-growing sequence of num-
bers. The oscillatory movements are imparted to the membrane at its edges, T are the
stretching efforts.

The carrying blade has a rectangular form with the sides of the rectangle parallel coor-
dinate axes, and 0≤ x ≤ b, 0≤ y ≤ L. To the sides x = 0 and x = b of this blade is applied
harmonic moving; the parties y = 0 and y = L are free. It is assumed that on a blade
along a straight line x = hi, the thin layers of a load of density ρi are located, the blade is
stretched on its edges in a plane xOy by efforts T .

In these assumptions, the problem is reduced to find in the domain 0 < x < b, 0 < y < L,
t > 0 solution of (2.1), satisfying the boundary conditions

u(0, y, t)=Asinωt, u(b, y, t)=Asinωt, (2.2)

uy(x,0, t)= 0, uy(x,L, t)= 0, (2.3)

and the initial conditions

u(x, y,0)= 0, ut(x, y,0)= 0, 0 < x < b, 0 < y < L. (2.4)

3. Solution of the first stage of the problem

With the help of principle of superposition, the solution of the given problem is found as
the sum of three functions

u(x, y, t)= u1(x, y, t) +u2(x, y, t) +u3(x, y, t). (3.1)

Here the function u1(x, y, t) describes stationary oscillations of a blade with load and is
represented as

u1(x, y, t)=U1(x, y)sinωt (3.2)

satisfying also the homogeneous equation appropriate (2.1), and the boundary condi-
tions (2.2) and (2.3).

The function u2(x, y, t) describes free oscillations of a blade with a load arising by start
from a status of equilibrium and rest, and is the solution of the homogeneous equation
appropriate (2.1), satisfying the boundary conditions

u(0, y, t)= 0, u(b, y, t)= 0, (3.3)
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the boundary conditions (2.3), and also the initial conditions

u(x, y,0)=−u1(x, y,0), ut(x, y,0)=−u1,t(x, y,0). (3.4)

At last, the function u3(x, y, t) describes oscillations of a blade arising owing to the
sudden application of a load at t = 0, and is the solution of (2.1) with the initial conditions
(2.4) and the boundary conditions (2.3) and (3.3).

To find of all functions ui, i= 1,2,3, there comes up a question on obtaining the gen-
eral solution of the equation

X ′′(x) +

[
p+

n∑
i=1

qi(x)δ
(
x−hi

)]
X(x)=

n∑
i=1

Si(x)δ
(
x−hi

)
. (3.5)

Therefore, first of all, we will obtain the general solution of (3.5), using a method devel-
oped in [1].

The real general solution of the homogeneous equation

X ′′(x) + pX(x)= 0 (3.6)

for p < 0 is

Z(x)= C1sh
√−px+C2ch

√−px, (3.7)

for p > 0 is

Z(x)= C1 sin
√
px+C2 cos

√
px, (3.8)

and for p = 0 is Z(x)= C1x+C2.
Therefore, if zi(x) are the solutions of (3.6) which satisfy the initial conditions

zi
(
hi
)= 0, zi

′(hi)= 1, (3.9)

then for p < 0,

zi(x)= 1√−p sh
√−p(x−hi), (3.10)

for p > 0,

zi(x)= 1√
p

sin
√
p
(
x−hi

)
, (3.11)

and for p = 0, zi(x)= x−hi.
Accordingly to [1], the general solution of (3.5) should be found as

X(x)= Z(x) +
n∑
i=1

Bizi(x)H
(
x−hi

)
, (3.12)
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where H(x) is the Heavyside function. As a result of substitution of this form of the so-
lution in (3.5), on account of the initial conditions (3.9), properties of δ-function, and
following from (3.12), equalities

X
(
h1
)= Z(h1

)
, X

(
hi
)= Z(hi)+

i−1∑
j=1

Bjzj
(
hi
)
, (3.13)

we obtain

B1 = S1
(
h1
)− q1

(
h1
)
Z
(
h1
)
,

Bi = Si
(
hi
)− qi(hi)

[
Z
(
hi
)

+
i−1∑
j=1

Bjzj
(
hi
)]

, i= 2, . . . ,n.
(3.14)

Hence, the general solution of (3.5) is the function

X(x)= Z(x) +
n∑
i=1

[
Si
(
hi
)− qi(hi)

[
Z
(
hi
)

+
i−1∑
j=1

Bjzj
(
hi
)]]

zi(x)H
(
x−hi

)
. (3.15)

Instead of recurrent formulas for factors Bi, it is more convenient to use obvious values
of these factors,

Bi =Mi− qi

×
i−1∑

s(1)=1

[
Ms(1)zs(1)

(
hi
)− qs(1)zs(1)

(
hi
)

×
s(1)−1∑
s(2)=1

[
Ms(2)zs(2)

(
hs(1)

)− qs(2)zs(2)
(
hs(1)

)

×
s(2)−1∑
s(3)=1

[
Ms(3)zs(3)

(
hs(2)

)− qs(3)zs(3)
(
hs(2)

)

×
s(3)−1∑
s(4)=1

[
Ms(4)zs(4)

(
hs(3)

)− qs(4)zs(4)
(
hs(3)

)

×
s(4)−1∑
s(5)=1

[
···− qs(i−3)zs(i−3)

(
hs(i−4)

)

×
s(i−3)−1∑
s(i−2)=1

[
Ms(i−2)zs(i−2)

(
hs(i−3)

)− qs(i−2)zs(i−2)
(
hs(i−3)

)

×
s(i−2)−1∑
s(i−1)=1

Ms(i−1)zs(i−1)
(
hs(i−2)

)]···
]]]]]

,

(3.16)
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which are obtained as a result of the solutions of recurrent equalities. Here

M1 = B1, Mi = Si
(
hi
)− qi(hi)Z(hi), i= 2, . . . ,n. (3.17)

With the purpose of reception of the decision in an obvious and most evident kind, we
will state in this paper the solution of the problem for a case of two symmetrically located
strips of a load. We assume n= 2, x1 = h, x2 = b−h, and 0 < h < b/2.

In this special case the function X(x) is represented as follows. For p < 0,

X(x)= C1sh
√−px+C2ch

√−px
+
[
S1(h)− q1(h)

(
C1sh

√−ph+C2ch
√−ph)]sh√−p(x−h)H(x−h)× 1√−p

+
{
S2(b−h)− q2(b−h)

[
C1sh

√−p(b−h) +C2ch
√−p(b−h)

+
[
S1(h)− q1(h)

(
C1sh

√−ph+C2ch
√−ph)]

× sh√−p(b− 2h)× 1√−p
]}

× sh√−p(x− (b−h)
)
H
(
x− (b−h)

)× 1√−p .
(3.18)

For p > 0,

X(x)= C1 sin
√
px+C2 cos

√
px

+
[
S1(h)− q1(h)

(
C1 sin

√
ph+C2 cos

√
ph
)]

sin
√
p(x−h)H(x−h)× 1√

p

+
{
S2(b−h)− q2(b−h)

[
C1 sin

√
p(b−h) +C2 cos

√
p(b−h)

+
[
S1(h)− q1(h)

(
C1 sin

√
ph+C2 cos

√
ph
)]

× sin
√
p(b− 2h)× 1√

p

]}

× sin
√
p
(
x− (b−h)

)
H
(
x− (b−h)

) 1√
p
.

(3.19)

For p = 0,

X(x)= C1x+C2
[
S1(h)− q1(h)

(
C1h+C2

)]
(x−h)H(x−h)

+
{
S2(b−h)− q2(b−h)

[
C1(b−h) +C2 +

[
S1(h)− q1(h)

(
C1h−C2

)]
(b− 2h)

]}
× (x− (b−h)

)
H
(
x− (b−h)

)
.

(3.20)
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We consider the problem of obtaining a function u1(x, y, t). Substituting the form of the
solution (3.2) in the homogeneous equation (2.1), we obtain the equation for the func-
tion U1(x, y):

U1,xx(x, y) +U1,yy(x, y) +ω2
(

1
a2

+
ρH
T

(
δ(x−h) + δ

(
x− (b−h)

)))
+U1(x, y)= 0.

(3.21)

To solve (3.21) we will apply a method of separation variables in the form

U1(x, y)= X(x)Y(y). (3.22)

As a result of separation variables, we obtain system of the two equations

X ′′ +
[
ω2
(

1
a2

+
ρH
T

(
δ(x−h) + δ

(
x− (b−h)

)))− λ]X = 0,

Y ′′ + λY = 0,
(3.23)

with the boundary conditions

X(0)Y(y)=A, X(b)Y(y)= A, (3.24)

Y ′(0)= 0, Y ′(L)= 0. (3.25)

From (3.24) it follows that

Y(y)= const. (3.26)

The second equation (3.23) has a solution of the kind (3.26) only for λ= 0. Thus, the
only eigenvalue of a problem (3.23), (3.25) under condition (3.26) is the number λ= 0.
Without loss in generality, we accept Y(y)= 1.

For λ = 0, general solution of the first equation (3.23) turns out from the formula
(3.19) at

q1 = q2 = ρHω2

T
, S1 = S2 = 0, p = ω2

a2
, (3.27)

and consequently it looks as

X(x)= C1 sin
ω

a
x

+C2 cos
ω

a
x− ρHω2

T

(
C1 sin

ω

a
h+C2 cos

ω

a
h
)
a

ω
sin

ω

a
(x−h)H(x−h)

− ρHω2

T

{
C1 sin

ω

a
(b−h) +C2 cos

ω

a
(b−h)

− ρHω2

T

(
C1 sin

ω

a
h+C2 cos

ω

a
h
)
a

ω
sin

ω

a
(b− 2h)

}
a

ω

× sin
ω

a

(
x− (b−h)

)
H
(
x− (b−h)

)
.

(3.28)
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From (3.24) we obtain X(0) = A, X(b) = A, whence and from (3.28) we determine
constants of integration. Thus, having designated

D = sin
ω

a
b− 2

aωρH
T

sin
ω

a
hsin

ω

a
(b−h) +

(
aωρH
T

)2

sin2 ω

a
hsin

ω

a
(b− 2h), (3.29)

we will have

X(x)= A

D

{
sin

ω

a
x+ sin

ω

a
(b− x) +

aωρH
T

(
cos

ω

a
(b− x)− cos

ω

a
(b− 2h)cos

ω

a
x
)

−
(
aωρH
T

)2

sin
ω

a
hsin

ω

a
(b− 2h)sin

ω

a
(x−h)

− aωρH
T

[
sin

ω

a
h+ sin

ω

a
(b−h)− aωρH

T
sin

ω

a
hsin

ω

a
(b− 2h)

]

× sin
ω

a
(x−h)H(x−h)

− aωρH
T

[
sin

ω

a
h+ sin

ω

a
(b−h) +

aωρH
T

sin
ω

a
(b−h)sin

ω

a
(b− 2h)

−
(
aωρH
T

)2

sin
ω

a
hsin2 ω

a
(b− 2h)

− aωρH
T

[
sin

ω

a
h+ sin

ω

a
(b−h)− aωρH

T
sin

ω

a
hsin

ω

a
(b− 2h)

]

× sin
ω

a
(b− 2h)

]
sin

ω

a

(
x− (b−h)

)
H
(
x− (b−h)

)}
.

(3.30)

Thus, the solution of a problem for function u1 looks as

u1(x, y, t)= X(x)sinωt, (3.31)

where X(x) is determined by formula (3.30), and D by formula (3.29).
We consider now problem on finding function u2(x, y, t). Separating variables, we will

find function u2(x, y, t) as

u2(x, y, t)=U2(x, y)T(t). (3.32)

The substitution of the form of the solution (3.32) in the homogeneous equation (2.1)
results in the two equations

U2,xx +U2,yy + λ
(

1
a2

+
ρH
T
δ(x−h) +

ρH
T
δ
(
x− (b−h)

))
U2 = 0,

T′′ + λT = 0.
(3.33)

Solution of the first equation in (3.33) also is found by method of separation variables
as

U2(x, y)= X(x)Y(y). (3.34)
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In result there appears a boundary problem of Sturm and Liouville about integration of
system of the equations

Y ′′ +µY = 0,

X ′′ +
[
λ
(

1
a2

+
ρH
T
δ(x−h) +

ρH
T
δ
(
x− (b−h)

))−µ]X = 0,
(3.35)

with boundary conditions

Y ′(0)= 0, Y ′(L)= 0, (3.36)

X(0)= 0, X(b)= 0. (3.37)

It is known that the problem of Sturm and Liouville for the first equation in (3.35) with
boundary conditions (3.36) has eigenvalues

µn =
(
πn

L

)2

, n= 0,1,2, . . . , (3.38)

and the eigenfunctions

Yn(y)= Cn cos
πn

L
y, n= 0,1,2, . . . . (3.39)

The second equation in (3.35) at n = 2, S1 = S2 = 0, p = (λ/a2)− µn, q1 = q2 = (λρH/T)
coincides with (3.5).

We consider a problem of Sturm and Liouville for the second equation in (3.35) with
boundary conditions (3.37). For this purpose it is necessary to consider three variants
separately.

(a) p < 0, or λ < (πna/L)2, n = 0,1,2 . . . . In this case, general solution of the second
equation in (3.35) looks as (3.18), and on account of values λ = a2(p + µn), q1 = q2 =
(1/T)a2ρH(p+µn), this general solution can be written down as

X(x)= C1sh
√−px+C2ch

√−px
− 1
T
a2ρH

(
p+µn

)(
C1sh

√−ph+C2
1√−p ch

√−ph)sh√−p(x−h)H(x−h)

− 1
T
a2ρH

(
p+µn

)[
C1sh

√−p(b−h) +C2ch
√−p(b−h)

− 1
T
a2ρH

(
p+µn

)(
C1sh

√−ph+C2ch
√−ph)sh√−p(b− 2h)

× 1√−p
]
sh
√−p(x− (b−h)

)× 1√−pH
(
x− (b−h)

)
.

(3.40)
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As a result of substitution of this general solution in boundary conditions (3.37), two
equalities C2 = 0, C1G(z)= 0 turn out, where z =√−pb, α= h/b, γ = (1/T)a2ρH ,

G(z)= shz− 2
γ

bz

(
b2µn− z2)shαz sh(1−α)z

+
(
γ

b

(
b2µn− z2))2

sh2αz shz(1− 2α).
(3.41)

Therefore the question on existence of eigenvalues of a considered boundary problem for
p < 0 is reduced to a question on existence of positive roots of function G(z). In [3], it is
shown that at 1/α < γµnb < 1/(α(1−α)) such positive roots zn exist. In this case boundary
problem for X(x) has the eigenvalues

λn = a2
(
µn−

(
zn
b

)2)
(3.42)

and the eigenfunctions

X(x)= Cn
[
sh
zn
b
x− a2 ρH

Tbzn

(
b2µn− z2

n

)
sh
zn
b
hsh

zn
b

(x−h)H(x−h)− a2 ρH
Tbzn

(
b2µn− z2

n

)

×
[
sh
zn
b

(b−h)− a2 ρH
Tbzn

(
b2µn− z2

n

)
sh
zn
b
hsh

zn
b

(b− 2h)
]

× shzn
b

(
x− (b−h)

)
H
(
x− (b−h)

)]
.

(3.43)

(b) p = 0, that is, λn = (πn(a/L))2, n = 0,1,2, . . . . Denoting q = (1/T)(πn(a/L))2ρH ,
we will have in this case that the general solution of the second equation in (3.35) looks
as (3.20) at S1 = S2 = 0, q1(h)= q2(h)= q. The substitution of this solution in boundary
conditions (3.37) gives

C2 = 0,

C1
[
b− 2qh(b−h) + q2h2(b− 2h)

]= 0.
(3.44)

Roots of function in square brackets are q1 = b/h(b− 2h) and q2 = 1/h, whence

n1 = L

πa

√
Tb

ρHh(b− 2h)
; n2 = L

πa

√
T

ρHh
. (3.45)

Generally, numbers n1 and n2 will not be natural, and it will mean that for p = 0 the
boundary problem (3.35), (3.37) has no eigenvalues. But, if one of numbers n1 or n2, or
both these numbers are integers, the boundary problem (3.35), (3.37) will have one or
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two eigenvalues λn1 = (πn1(a/L))2 and λn2 = (πn2(a/L))2 and one or two eigenfunctions

Xni(x)= Cni
[
x− ρH

T

(
πni

a

L

)2

h(x−h)H(x−h)

− ρH
T

(
πni

a

L

)2[
(b−h)− ρH

T

(
πni

a

L

)2

h(b− 2h)
]

× (x− (b−h)
)
H
(
x− (b−h)

)]
.

(3.46)

(c) p > 0, that is, λ > (πn(a/L))2, n= 0,1,2, . . . . In this case general solution of the sec-
ond equation in (3.35) looks as (3.19) at S1=S2 = 0, q1(h)=q2(b−h)=a2(ρH/T)(µn + p),
λ= a2(µn + p).

Therefore, substituting (3.19) in boundary conditions (3.37), we will have C2 = 0,
C1G(z)= 0, where we denote z =√pb, α= h/b,

G(z)= sinz− 2a2 ρH
Tbz

(
b2µn + z2)sinαz sin(1−α)z

+
(
a2 ρH
Tb

(
b2µn + z2)1

z

)2

sin2αz sin(1− 2α)z.
(3.47)

In [3], it is shown that the function G(z) has at each n a countable set of positive
roots in points znm, n= 0,1,2, . . ., m= 1,2, . . . . Here roots znm are supplied with an index
m in order of their increase. Then (pnm)1/2 = (znm/b), λnm = a2((znm/b)2 + (π(n/L))2),
qnm = a2(ρH/T)((znm/b)2 + (π(n/L))2), n,m= 0,1,2, . . . .

The eigenfunctions of a boundary problem for the second equation (3.35) with bound-
ary conditions (3.37), corresponding to eigenvalues λnm, look as

Xnm(x)

= Cnm
[

sinznm
x

b
− a2 ρH

Tb

((
πb

n

L

)2

+ znm2
)

1
znm

× sinznm
1
b
hsinznm

1
b

(x−h)H(x−h)− a2 ρH
Tb

((
πb

n

L

)2

+ znm2
)

1
znm

×
[

sinznm
1
b

(b−h)− a2 ρH
Tb

((
πb

n

L

)2

+ znm2
)

1
znm

sinznm
1
b
h

× sinznm
1
b

(b− 2h)
]

sinznm
1
b

(
x− (b−h)

)
H
(
x− (b−h)

)]
.

(3.48)

The functions T(t) now are easily determined.
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Hence, solution u2 can be written as

u2(x, y, t)

=
∞∑
n=0

∞∑
m=1

cosπy
n

L

[
sin

znm
b
x− a2 ρH

Tb

((
πb

n

L

)2

+ znm2
)

1
znm

sin
znm
b
h

× sin
znm
b

(x−h)H(x−h)− a2 ρH
Tb

((
πb

n

L

)2

+ znm2
)

1
znm

×
[

sin
znm
b

(b−h)− a2 ρH
Tb

((
πb

n

L

)2

+ znm2
)

1
znm

× sin
znm
b
hsin

znm
b

(b− 2h)
]

× sin
znm
b

(
x− (b−h)

)
H
(
x− (b−h)

)]

×
[
Anm sin

a

b

((
πb

n

L

)2

+ znm2
)1/2

t+Bnm cos
a

b

((
πb

n

L

)2

+ znm2
)1/2

t
]

+
n<n1∑
n>n2

cosπy
n

L

[
sh
zn
b
x− a2 ρH

Tb

((
πb

n

L

)2

− zn2
)

× 1
zn
sh
zn
b
hsh

zn
b

(x−h)H(x−h)− a2 ρH
Tb

((
πb

n

L

)2

− zn2
)

1
zn

×
[
sh
zn
b

(b−h)− a2 ρH
Tb

((
πb

n

L

)2

− zn2
)

1
zn
sh
zn
b
hsh

zn
b

(b− 2h)
]

× shzn
b

(
x− (b−h)

)×H(x− (b−h)
)]

×
[
An sin

a

b

((
πb

n

L

)2

− zn2
)1/2

t+Bn cos
a

b

((
πb

n

L

)2

− zn2
)1/2

t
]

+
2∑
i=1

cosπy
n

L

[
x− ρH

T

(
πni

a

L

)2

h(x−h)H(x−h)− ρH
T

(
πni

a

L

)2

×
[

(b−h)− ρH
T

(
πni

a

L

)2

h(b− 2h)
](
x− (b−h)

)
H
(
x− (b−h)

)]

×
[
Ani sinπni

a

L
t+Bni cosπni

a

L
t
]

(3.49)

with arbitrary constants Anm, Bnm, An, Bn, Ani, Bni. In the general case for obtaining these
constants, it is necessary to expand the right parts of the initial conditions (3.4) as

−u1(x, y,0)=
∞∑
n=0

ϕn(x)cosπy
n

L
, −u1,t(x, y,0)=

∞∑
n=0

ψn(x)cosπy
n

L
, (3.50)
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where

ϕn(x)=
∞∑
m=1

bnmXnm(x), ψn(x)=
∞∑
m=1

cnmXnm(x). (3.51)

It can be shown that the eigenfunctions Xnm(x), responding to various eigenvalues λnm,
are linearly independent, but not orthogonal on an interval [0,b]. Therefore coefficients
of expansion bnm and cnm have to be determined from infinite system of the linear equa-
tions

∞∑
m=1

bnm

∫ b
0
Xnm(x)Xns(x)dx =

∫ b
0
ϕn(x)Xnm(x)dx,

∞∑
m=1

cnm

∫ b
0
Xnm(x)Xns(x)dx =

∫ b
0
ψn(x)Xnm(x)dx, s= 1,2, . . . ; n= 0,1,2, . . . .

(3.52)

Determinants of these systems are determinants of Gramme, therefore these systems have
unique solution for bnm and cnm, respectively.

In a considered special case the kind of the solution u1 permits the formula (3.49) to
be limited only to double sum, and therefore

Bnm = bnm, Anm = bcnm

a
(
(πbn/L)2 + znm2

)1/2 . (3.53)

Moreover, in this case only c0m and hence A0m will be distinct from zero. Therefore,
final kind of function u2 becomes essentially simpler.

We will turn now to a question on finding function u3(x, y, t), which we will search as
the sum of two functions:

u3(x, y, t)= u31(x, y, t) +u32(x, y, t), (3.54)

where u31(x, y, t) is static deflection of a membrane

u31(x)= ρH g
T

(− x+ (x−h)H(x−h) +
(
x− (b−h)

)
H
(
x− (b−h)

))
, (3.55)

and u32(x, y, t) is the solution of the homogeneous equation (2.1), satisfying the boundary
conditions (2.3) and (3.3) and providing for function u3(x, y, t) satisfaction to the initial
conditions (2.4).

Now initial conditions for function u32 will be

u32(x, y,0)=−u31(x), u32,t(x, y,0)= 0. (3.56)

The obtaining of function u32 also is carried out by a method of separation variables,
for which it is sufficient to use the form of the solution (3.49). Taking into account a
kind of the initial conditions (3.56), in formula (3.49) distinct from zero will be only
coefficients B0m, determined from (3.53), and constants b0m will be determined from the
first system (3.52), in which it is necessary to put ϕ0(x)=−u31(x).
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So,

u32(x, y, t)

=
∞∑
m=1

B0m cosa
z0m

b
t
[

sin
z0m

b
x−a2 ρH

Tb
z0m sin

z0m

b
hsin

z0m

b
(x−h)H(x−h)

−a2 ρH
Tb

z0m

[
sin

z0m

b
(b−h)−a2 ρH

Tb
z0m sin

z0m

b
h

× sin
z0m

b
(b−2h)

]
sin

z0m

b

(
x− (b−h)

)
H
(
x− (b−h)

)]
.

(3.57)

Thus, the solution of a problem on the movement of a blade and a load without sepa-
ration is obtained.

4. The separate movement of load and blade

At large enough acceleration the separation of a load from a blade can take place. The
necessary and sufficient conditions for separation look as

utt
(
hi, t

)=−g, uttt
(
hi, tOTP

)
< 0, (4.1)

where tOTP is the least positive root of the first equation (4.1), determining the moment
of possible separation of a load. If the separation will take place, the structure of system
at t > tOTP will change and beginning from t = tOTP a load and blade will sometime move
separately. The movement of a blade will be determined by function v(x, t), being on an
interval 0 < x < b and at t > tOTP by the solution of the wave equation

vxx − 1
a2
vtt = 0, (4.2)

satisfying the initial conditions

v
(
x, tOTP

)= u(x, tOTP
)
, vt

(
x, tOTP

)= ut(x, tOTP
)
, (4.3)

and the boundary conditions

v(0, t)= Asinωt; v(b, t)=Asinωt. (4.4)

The movement of a load will be described by the equation

z(t)=−g
2

(
t− tOTP

)2
+ut

(
h, tOTP

)(
t− tOTP

)
+u
(
h, tOTP

)
. (4.5)

Solution of the problem (4.2), (4.3), (4.4) is represented as

v(x, t)= v1(x, t) + v2(x, t), (4.6)

where the function v1(x, t) looks like

v1(x, t)= X1(x)sinωt, (4.7)

satisfying (4.2) and boundary conditions (4.4).
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The substitution (4.7) in (4.2) results in the equation

X ′′1 (x) +
ω2

a2
X1(x)= 0, (4.8)

whose general solution is the function

X1(x)= B sin
xω

a
+C cos

xω

a
. (4.9)

Substituting (4.7) in boundary conditions (4.4) and taking into account (4.9), we will
receive system of the equations

C =A, B sin
bω

a
+C cos

bω

a
= A, (4.10)

from which are obtained

B = A

sin(bω/a)

(
1− cos

bω

a

)
, C = A. (4.11)

Therefore,

X1(x)= A

sin(bω/a)

(
sin

xω

a
+ sin

(b− x)ω
a

)
. (4.12)

Then the function v2(x, t) should be the solution of (4.2), satisfying the homogeneous
boundary conditions

v2(0, t)= 0, v2(b, t)= 0, (4.13)

and the initial conditions

v2
(
x, tOTP

)= u(x, tOTP
)−X1(x)sinωtOTP = ϕ(x),

v2,t
(
x, tOTP

)= ut(x, tOTP
)−ωX1(x)sinωtOTP = ψ(x).

(4.14)

The problem of searching for the function v2(x, t) can be solved by the method of con-
tinuations or Fourier method. In case of application of the Fourier method, the function
v2(x, t) will look like [4, pages 82–85]

v2(x, t)=
∞∑
n=1

(
An sin

πnat

b
+Bn cos

πnat

b

)
sin

πnx

b
, (4.15)

and the factors An and Bn are determined from equalities

An sin
πnatomp

b
+Bn cos

πnatomp

b
=Nn,

An sin
πnatomp

b
+Bn cos

πnatomp

b
= bKn
πna

,
(4.16)
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that is,

An =Nn sinπatOTP
n

b
+Kn

b

πna
cosπatOTP

n

b
,

Bn =Nn cosπatOTP
n

b
−Kn b

πna
sinπatOTP

n

b
,

(4.17)

where

Nn = 2
b

∫ b
0
u
(
x, tOTP

)
sinπx

n

b
dx, Kn = 2

b

∫ b
0
ut
(
x, tOTP

)
sinπx

n

b
dx. (4.18)

Thus, if separation of load and blade will take place, the separate movement of a blade
will be described by function

v(x, t)= A
(

sin
ω

a
x+ sin

ω

a
(b− x)

)
1

sinωb/a
+

∞∑
n=1

(
An sinπat

n

b
+Bn cosπat

n

b

)
sinπx

n

b
,

(4.19)

In a case of n strips, the problem becomes complicated as separation can take place only
in parts of strips, and in this case movement of a blade and part of strips, which has stayed
on it, will be described by an equation of the kind (2.1). In this case, problem about move-
ment of a blade is necessary to solve in principle the same way as in case of movement of
system without separation. However in each concrete case, the various layers of load can
separate from blade and in various sequences, therefore problem becomes multivariant.

5. Connection of the load and the blade

Further there will be a connection of a load and a blade at the moment of time tcµ, which
is determined as the least positive root of the equation z(t) = v(hi, t), greater than tOTP.
At t > tcµ, the system again will change structure, and at this stage again it is necessary to
consider a problem about joint movement of a blade and a load. This problem is similar
to the one considered at the beginning, only initial conditions in case of two stripes will
look as

u
(
x, tcµ

)= v(x, tcµ
)
, ut

(
x, tcµ

)= ψ2(x), (5.1)

where the function ψ2(x) is under construction, proceeding from the following reasons.
The blade at t = tcµ has speed vt(x, tcµ). Besides, on straight lines x = h and x = b−h on a
blade, at this moment the load having speed z′(tcµ) falls. Proceeding from preservation of
quantity of movement on straight lines x = h and x = b−h, we accept that at the moment
of time t = tcµ the speed on these straight lines is

vh =
ρvt
(
x, tcµ

)
+ ρHz′

(
tcµ
)

ρ+ ρH
. (5.2)

Therefore ψ2(x) is equal to vt(x, tcµ), if x �= h or x �= b− h, and is equal vh, if x = h or
x = b−h.
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6. Connected movement of load and blade

The solution of the problem on the connected movement of load and blade after their
joining, that is at t > tcµ, is found as the sum of three functions:

u(x, y, t)= u1(x, y, t) +u31(x, y, t) +u4(x, y, t). (6.1)

Here functions u1(x, y, t) and u31(x, y, t) are the same ones that have been obtained above
with formulas (3.2) and (3.55) accordingly. We only recall that finally function u1(x, y, t)
is obtained as

u1(x, y, t)= X(x)sinωt, (6.2)

where X(x) is determined by formula (3.30). Function u4(x, y, t) is similar to the sum of
functions u2(x, y, t) and u32(x, y, t), is the solution of homogeneous equation appropriate
(2.1), and satisfies the boundary conditions (2.2) and (2.3) and the initial conditions

u4
(
x, y, tcµ

)= v(x, tcµ
)−u1

(
x, tcµ

)−u31(x),

u4,t
(
x, y, tcµ

)= ψ2(x)−u1,t
(
x, tcµ

)
.

(6.3)

The form of solution u4 is represented by formula (3.49). However, owing to that, as
discovered above, solution of the considered problem is independent from variable y,
hence in formula (3.49) we have to put n = 0, and therefore form of solution becomes
more simply:

u4(x, t)=
∞∑
m=1

X0m(x)
(
A0m sin

a

b
z0mt+B0m cos

a

b
z0mt

)
. (6.4)

Having designated

ϕ(x)= v(x, tcµ
)−u1

(
x, tcµ

)−u31(x),

ψ(x)= ψ2(x)−u1,t
(
x, tcµ

)
,

(6.5)

we build expansion of these functions of the kind

ϕ(x)=
∞∑
m=1

b0mX0m(x), ψ(x)=
∞∑
m=1

c0mX0m(x), (6.6)

where

X0m(x)= sin
z0mx

b
− a2ρHz0m

Tb
sin

z0m

b
hsin

z0m

b
(x−h)H(x−h)

− a2ρHz0m

Tb

[
sin

z0m

b
(b−h)− a2ρHz0m

Tb
sin

z0m

b
hsin

z0m

b
(b− 2h)

]

× sin
z0m

b

(
x− (b−h)

)
H
(
x− (b−h)

)
.

(6.7)
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Thus coefficients of expansion of initial functions have to be determined from system
of equations

∞∑
m=1

b0m

∫ b
0
X0m(x)X0s(x)dx =

∫ b
0
ϕ(x)X0m(x)dx,

∞∑
m=1

c0m

∫ b
0
X0m(x)X0s(x)dx =

∫ b
0
ψ(x)X0m(x)dx, s= 1,2, . . . .

(6.8)

After that, having substituted the form of the solution (6.4) in the initial conditions
(6.3) in view of expansion (6.6) and having equated factors in the left and right parts
of the turned-out equalities at X0m(x) with identical values m, we will receive systems of
the equations

A0m sin
a

b
z0mtcµ +B0m cos

a

b
z0mtcµ = b0m,

A0m cos
a

b
z0mtcµ−B0m sin

a

b
z0mtcµ = bc0m

az0m
,

(6.9)

m= 1,2, . . . , whence

A0m = b0m sin
a

b
z0mtcµ +

bc0m

az0m
cos

a

b
z0mtcµ,

B0m = b0m cos
a

b
z0mtcµ− bc0m

az0m
sin

a

b
z0mtcµ.

(6.10)

7. Further movements

As at t > tcµ separation of a load from a blade also can take place, the necessary and suffi-
cient separation conditions (4.1) again are considered, but already with function u(x, t),
being the solution of initial-boundary value problem (2.1), (2.2), (2.3), (5.1). The least
positive root tOTP1 of (4.1), responding to a condition tOTP1 > tcµ, is considered as the mo-
ment of possible repeated separation of a load from a blade. Then, under formula (4.5)
with replacement in it of function u(x, t) by the solution of a problem (2.1), (2.2), (2.3),
(5.1) and tOTP by tOTP1, separate movement of a load is determined. Thus under formula
(4.19), in which the factors An and Bn are still calculated under formula (4.17), but the
factors Nn and Kn should be determined for functions ϕ1 and ψ1, looking like (4.14),
with last function u(x, t) and with replacement tOTP by tOTP1, the separate movement of a
blade is determined. After that the sufficient condition of separation, inequality (4.1) for
t > tOTP1 is checked. If this condition is satisfied, that is, separation has taken place, again
from the equation z(t)= v(hi, t) the moment of coupling of a load with a blade tcµ1 as the
least positive root of this equation, greater than tOTP1, is determined. Then at t > tcµ1, a
problem such as (2.1), (2.2), (2.3), (5.1), describing joint movement of a load and a blade
up to next separation, is solved. And so on. To consider some final quantity of cycles both
separating and coupling a load and a blade it is necessary, as from follows the formulas of
solutions, that the functions describing movement of a load and a blade be not periodic.

The separate interest represents search of periodic modes of movement of such system
[2].
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