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This short contribution considers the essentials of nonlinear wave properties in typical
mechanical systems such as an infinite straight bar, a circular ring, and a flat plate. It
is found that nonlinear resonance is experienced in all the systems exhibiting continu-
ous and discrete spectra, respectively. Multiwave interactions and the stability of coupled
modes with respect to small perturbations are discussed. The emphasis is placed on me-
chanical phenomena, for example, stress amplification, although some analogies with
some nonlinear optical systems are also obvious. The nonlinear resonance coupling in a
plate within the Kirchhoff-Love approximation is selected as a two-dimensional exam-
ple exhibiting a rich range of resonant wave phenomena. This is originally examined by
use of Whitham’s averaged Lagrangian method. In particular, the existence of three basic
resonant triads between longitudinal, shear, and bending modes is shown. Some of these
necessarily enter cascade wave processes related to the instability of some mode compo-
nents of the triad under small perturbations.

Copyright © 2006 D. A. Kovriguine et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The main aim of the first part of this short contribution is to display the essentials of
nonlinear waves properties in mechanical systems of engineering origin (structural mem-
bers). Nonlinear resonance is examined in two one-dimensional examples, an infinite
straight elastic bar and a thin elastic circular ring, exhibiting continuous and discrete
spectra, respectively. Three-wave and four-wave interactions and the stability of coupled
modes with respect perturbations are discussed, the emphasis being placed on mechani-
cal phenomena (e.g., stress amplification), although analogies with some nonlinear opti-
cal systems are obvious.

The phenomenon of nonlinear resonance coupling classically occurs in physical sys-
tems that are governed by distinct modes of propagation; these may be of similar physical
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nature, for example, various mechanical modes, or they may be of totally different na-
ture—say, mechanical and magnetic or electric. In any case the two basic ingredients
needed are (i) the existence of multimodes in nonlinear physical systems and (ii) the dis-
persion of these modes in the linearized case. Such physical situations have received the
attention of applied mathematicians and wave specialists in various fields of physics and
engineering science, for example, in nonlinear optics and radiophysics [16], in fluid dy-
namics [3], and in elastic crystals with a microstructure [13]. In the case of elastic crystals
the multimodes are due to a coupling of classical elastic degrees of freedom with the kine-
matics of an internal structure—a rigid mechanical one such as in micropolar media and
liquid crystals, a magnetic one such as in ferromagnets (coupling between phonons and
magnons), and an electric one in ferroelectric bodies (electroelastic couplings).

In the present paper we focus attention on the nonlinear wave couplings in engineering
elastic structures, more particularly in this contribution, in one-dimensional examples
one related to an elastic infinitely long straight bar and the other to a thin closed cir-
cular ring. These two structures are chosen because they exhibit a continuous spectrum
and a discrete one (due to the circular periodicity), respectively. They have, therefore, the
value of paradigms. They are perfect examples of nonlinear oscillatory systems exhibiting
a hierarchy of wave instabilities. The mathematical tools used are those of nonlinear sci-
ence, essentially asymptotics. The related algebra often is cumbersome and will, therefore,
be omitted most of the time. It can be found in lengthy original reports. We emphasize
here on the mechanical consequences of the analysis. A two-dimensional example (elastic
plate) is sketched out in Section 4 where the notion of cascade wave process is evoked.

2. Nonlinear waves in a thin infinitely long bar

In a nondimensional notation the relevant basic field equations are the following ones
[6]:

2

Uy — Uxx = %axw,zp Wy + ‘szxxxx = .uax(”xwx) + ‘%Wi, (2.1)
where u is the longitudinal displacement of the middle line of the bar, w is the transverse
displacement, « is the nondimensional radius of inertia of the bar, and ¢ is a coupling pa-
rameter supposed to be sufficiently small for asymptotic considerations. Equations (2.1)
are established under the working hypotheses of Bernoulli and Euler. Only second-order
couplings between the longitudinal mode u and the bending mode w are kept at most.
The linear analysis of (2.1) yields straightforwardly the modes as nondispersive direct and
counter propagating longitudinal waves of frequency

w; = *k, (2.2)
and highly dispersive bending waves of frequency
wp = +ak?. (2.3)

The spectra are sketched in Figure 2.1. Now we consider the possible coupling between
three waves selected at working points 1, 2, and 3 in this figure in a typical parallelogram
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Figure 2.1. Triple-wave resonant coupling in a bar. A triad depicted as a triangle.

form such that we satisfy the so-called three-wave phase matching
w3 = w1 +w;y + Aw, k3 = k1 + kz + Ak. (2.4)

That is, we consider the problem of modal energy exchange between a large-amplitude
high-frequency longitudinal wave (point 1) coupled to two low-frequency bending waves
(points 2 and 3) propagating in opposite directions. The three frequencies thus selected
are said to form a resonant triad, or in a more music-like Pittagorician fashion, a resonant
trio. The nonlinear resonant coupling between these modes is now examined on the basis
of (2.1) at order one in the small coupling parameter y. Coupled solutions are sought in
the form

u(x,t) = As(x,7) expi®s + pu'’ (x, 1) + (¥),
(2.5)
w(x,t) = A1 (y, 7) expi®; + A, (x, 7) expiD, +/,tw(1)(x,t) +(*),

where y = px, T = ut (u < 1), the A, are slowly varying amplitudes of the parts of (2.5)
that are solutions satisfying the linear field equations (they are thus determined by initial
and boundary conditions), and the phases ®,, are such that

D, = w,t — kyx (2.6)
with each couple (wy,k,) satisfying the correspondingly numbered dispersion relation

and altogether the phase matching conditions. The symbolism (*) denotes the complex
conjugate. On substituting from (2.5) into (2.1) and averaging the resulting equations
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over the phases, we obtain a system of three coupled hyperbolic partial differential equa-
tions for the amplitudes:

0A, A, B AU

9 + vy aX = a)_,,aA;f’ (2.7)
where
dw, (ky)
Vn = dk (2.8)
kikok
B—- 122 3 (2.9)
U = A1ALAS expidwt + AT A5 Asexp(—iAwt) (2.10)

are, respectively, the group velocities of the “linear” modes, a coefficient of nonlinearity,
and what may be called a cubic average potential. The Cauchy problem associated with
(2.7) requires the initial conditions A,(y,0) = a,(y), n = 1,2,3.

On setting

En=w?|A4]°,  Su=vuEn (2.11)

the energy and energy flux associated with each linear mode, we can establish several
consequences of (2.7)-(2.8) such as the equation

%(E1+E2+E3)+%(SI+SZ+S3) =0, (212)

clearly a law of conservation of energy between the three modes, and equations of the
type

d (E1 Ez) 0 (Sl Sz) 0 (E1 E3> 0 (Sl 83)
S (o2 (2220, (-2 (-2 =0,
oT\w;, w oy \wr or\w; ws oy \w w3

(2.13)

and similar ones by permutation. Equations (2.12), (2.13) are canonical ones. As such,
they are formally identical to those obtained for three-wave mixing in nonlinear optics
[16]. Direct consequences of these are the well-known Manley-Rowe relations (first inte-
grals of (2.12)-(2.13) that characterize the energy partition between modes):

E=E;+E, +E; = const,
E B E, Es E, E; (2.14)

=C1, — + =0 T =3,
w; Wy Wy w3 w1 w3
where the ¢, are constants.
Remarkably, for spatially uniform processes (d/dy = 0), (2.7) yields the reduced equa-
tions

dn, _ B U
At w, 0AF’

(2.15)
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These are identical to the Euler equations of motion for a rigid body about a fixed point
(for real-valued variables, obviously [11]). At the degree of approximation (cf. (2.5)) of
the present approach, we have the following easily established results concerning the sta-
bility of modes.
(i) Longitudinal waves are unstable with respect to small low-frequency perturba-
tions (so-called break-up instability).
(ii) Bending waves are stable—(at least) within the present first-order nonlinear
approximation—with respect to small high-frequency perturbations.

(iii) The loss of stability against the high-frequency wave can lead to a dynamic stress

growth caused by the resonant excitation of two low-frequency waves.

As a consequence, one must pay special attention to the initial stress level, for example,
one may envisage a restriction on it so as to stay in the elastic regime. Finally, one may
inquire about the temporal evolution of the considered triad. This requires exploiting
a technique such as the inverse scattering method in the general case [10], or to find
out much simpler analytical expressions (in terms of Jacobian elliptic functions). One
may also remark that the physical system considered may exhibit triple-wave envelope
solitons (a typical wave kinematical pattern)—the three amplitudes travel then together
as a “complex of solitonic shapes”—in which case the two modes, say, 1 and 2 are “bright”
solitons, while the third mode 3 be a “dark” one (in the optical jargon) so that energy is
conserved. In this case, the amplitudes being fixed once and for all, there is no energy
exchange while the triad travels inertially at constant speed.

3. Waves traveling around a closed circular ring

This is only briefly sketched out in order to emphasize the differences with the infinite
bar of Section 2. In this case, which necessarily implies periodicity, the ring is viewed
as a slice of an infinitely long thin shell and it obviously presents a discrete spectrum
circumferentially.

Special attention is paid to the dynamical loss of stability against axisymmetric oscilla-
tions caused by a radially uniform impact. The nonlinearity yields nontrivial dynamical
effects and we observe the existence, via modal exchanges of energy, of resonant triads
between high-frequency axisymmetric oscillations and bending traveling waves (of same
wave number), leading eventually to the instability of low-frequency bending waves (at
the second order of approximation). The basic equations are those of thin walled shells
in the geometrically nonlinear theory. Let ¢ be the azimuthal angle and R the radius of
the ring of thickness h. If v(¢,t) and w(g,t) are the nondimensional azimuthal displace-
ment of the middle line and the nondimensional transverse (radial) displacement, it is
convenient to introduce the following change of dependent variables:

V=v,+w, W =w,—m. (3.1)

Accordingly, the equations governing v and w are derived from a Lagrangian formulation
with Lagrangian L such that

L=K-1I (3.2)
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with kinetic and potential energies given (in dimensional units) by

1 5 5 1 h/2 5
K=2ph(+w), T=3 J_h/zEewd(, (3.3)

where E is Young’s modulus, and the azimuthal strain ¢, is given by [5]:

1 1
Epp = E(V(P—i—w)_%(ng)_v)(p—'—ﬁ(wqj_v)z’ (3.4)

where { € [—h/2,h/2] is the radial distance from the middle line in a cross section of
the ring. The corresponding nondimensional field equations, on account of (3.1), are
deduced as

Vi — Vo + & Wy = %a(,,(wz),
] 2 (3.5)
Wi+ V + & Wogp = y[(wq,V)(p - Ewg,] + 50, (w)).
Here again p < 1, and the relative thickness of the ring is defined by ¢ = h/+/12R. The
latter eventually provides a second small parameter.
The circular shape of the ring imposes that solutions of (3.5) satisfy the periodicity
conditions

v(p,t) = v(p+2m,t), w(p,t) = w(p+2m,t). (3.6)
The linear wave phases will be of the form
q)k,n = wk,nt +ne, (37)

where # is an integer. To each one of the angular frequencies wx,, there will correspond
a normal wave. We can play with the existence of the second small parameter €. In par-
ticular, we may consider the case of rings with small curvature (large radius) for which
& < 1. Then the linear coupling between modes in (3.2) with vanishing right-hand sides
can be said to be weak. On discarding p-terms, (3.5) yield the following separate disper-
sion relations whenever we implement the inextensibility condition of the middle line of
the ring V = 0; see [4]:

2
-1
w1, = ten jm, Wy, = +Vn2+1, (3.8)

for bending and azimuthal waves, respectively. In these conditions it is shown that the
amplitudes of the azimuthal, A ,, and bending, B ,, components of the normal waves
are linearly related by

Bk,n = _ipk,nAk,n (3.9)
with coefficients py,, (k = 1,2), given approximately by

pin=n"'  pou=-n (3.10)
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Figure 3.1. Triple-wave resonant coupling in a ring.

The linear dynamical solution (3.8)—(3.10) is usually considered as quite satisfactory. In
order to respect the long-wave limit approximation, the values of n should be bounded
from above by some maximal wave number n, for example, by a characteristic wavelength
that should not exceed a certain number of ring thickness (e.g., A = 10h). If the simplify-
ing hypotheses applied to obtain the approximations (3.8) do not apply, then we cannot
discard in (3.8) terms coming from the left-hand sides of (3.5). The linear dispersion
relations then read

1/2
W, ==+ ) (1+En) 7 [ (P +1)° (1+n2) — 42 (n? - 1)*] . (3.11)

N | —
NS

The proportionality coefficients py , of the amplitudes in (3.9) are now given by a more
complicated frequency-dependent formula such as

n(1+e&*n?)

) 3.12
(1+&2)n? - w, (3.12)

k,on =

with the orthogonality condition py,p2, = —1.

Three-wave nonlinear coupling. System (3.5) is prone to exhibiting resonance couplings
inside wave triads. Exact phase matching can be realized as in Figure 3.1—here between
a high-frequency azimuthal wave and two low-frequency bending waves traveling in the
same direction. A particular case of this is given in Figure 3.2 describing a so-called two-
to-one internal resonance between the axisymmetric oscillation and two bending waves.
The algebra in the ring case is somewhat similar to that performed in Section 2 and will
not be repeated.
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7.5

Figure 3.2. Axisymmetric phase matching.

The phase matching conditions read
w1 +w; = w3+ Aw, ny +ny = ns, (3.13)

where Aw is the detuning (equal to zero in exact matching conditions). Solutions of (3.5)
are looked for in the following asymptotic form:

3
V(xa t) =—i Z PkAk(T) exp chk +MV(1)(§0>t) + (*):
k=1

, (3.14)

w(x,t) = > Ap(t) exp i@y +puw (g, 1) + (*),
k=1

at order y with 7 the slow time scale. Substituting from these into (3.5) and equating the
terms of order y, after integration over the wave phases, we find the differential equations
that govern the nonresonant corrections v and w) as

dA, . B U

dt ' w.y} 0AY

(3.15)

where 8 = nyn,(1 — pyny) is the nonlinearity coefficient, and U is the average potential
given by

U = A1A,AS expidwt + AT AT Az exp(—iAwt). (3.16)
Initial conditions associated to (3.15) read

An(Xao) = an(X): n= 1>2>3- (317)
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Just like in Section 2, (3.15) possesses first integrals in the form of the energy conserva-
tion and the Manley-Rowe relations (cf. [10], for details). The system being conservative
(Hamiltonian), the following conclusions can be drawn in so far as stability properties—
at this order of approximation—are concerned:

(i) azimuthal high-frequency waves are unstable with respect to small perturbations
(so-called break-up instability);
(ii) bending low-frequency waves are stable with respect to small perturbations;

(iii) one can study the time evolution of the amplitude envelopes [10];

(iv) the loss of stability against the high-frequency wave and the resonant excitation of
two low-frequency waves is accompanied by a stress amplification phenomenon.

Notice that one can play with the value of the parameters—by adjusting them—so that
matching conditions can be exactly satisfied. The critical value of ¢ is found by solving
the general expression (3.11) for fixed n when we want, for instance, degenerate resonant
conditions such as (this is realized in Figure 3.2)

n=mn; =—n, n3 =0, w1 = w = w3/2. (3.18)

4. Two-dimensional example

We finally focus our attention on the nonlinear wave couplings in an exemplary two-
dimensional (in space) example, provided by nonlinear waves in a thin elastic plate mod-
eled within the Kirchhoff-Love framework. Linear modes of the longitudinal, shear, and
bending types are coupled by nonlinearity. This allows one to define the interactions be-
tween the dispersion manifolds with the possibilities of group-velocity and phase-velocity
matching. Weakly nonlinear waves are studied on the basis of Whitham’s average La-
grangian theory [13, 14]. This is seldom exploited in solid mechanics, notable exceptions
being in [7, 15]. This is the main originality of this contribution. For lack of space only
some of the possibilities of nonlinear resonance couplings are exhibited. The study reveals
that among the possible resonant triads that can be identified exhibiting phase matching
and the appropriate nonlinear coupling, only three provide the building blocks of further
wave constructs, namely, the Tip,-type triad (see the upper subsection) and Tspb-, Tish-
type triads composed by shear and bending modes. Indeed, a brief study of the evolution
of resonant triads shows that some of these are isolated while others have unstable com-
ponents that inevitably interact with other triads (Figure 4.1). This yields the concept of
cascade wave processes following along ideas of Richardson and Landau. We emphasize
the necessarily sketchy nature of this paper as cumbersome formulas of repetitive form
are only to be found in a long report [10] and also some of our recent papers [8, 9]. This
does not exhaust the subject matter since direct numerical solutions of the true three-
dimensional equations would be most instructive. Other techniques such as the higher-
order Bubnov-Galerkin approach and finite-element methods are promising. For these
we refer the reader to recent synthesis works [1, 2, 4-12, 14, 15, 17, 18].

The one-dimensional structural examples briefly examined in this contribution have
revealed the essential properties of three-wave and four-wave resonance couplings [8]. Al-
though the emphasis has been placed on mechanical consequences of these couplings, the
analogy with nonlinear optical systems (of which the jargon is often used) is more than
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Figure 4.1. A typical triad-cell cascade in a plate. Coupling of various Ty- and Ty, -type triads of
different scales.

obvious. This may be even more true when dealing with two-dimensional mechanical
systems such as plates and shells, an example of which will be dealt within [9]. In this case
the obtained results are comparable with those achieved in various physical applications,
see, for instance, [1, 2, 12, 17, 18]. From the mathematical viewpoint this contribution
should emphasize the perturbation analysis based on the idea of normal form of non-
linear PDE governing equations in a contrast with that dealing with nonlinear normal
oscillatory forms [1, 2]. This contribution has been suggested during the International
Conference “Nonlinear Dynamics” held at the Kharkov Polytechnic University (Ukraine)
in 2004. The subject of the paper is related to a project supported by REBR (no. 04-02-
17156) and a grant from the President of the Russian Federation (no. NSh-1638.2003.8).
GAM benefits from a Max Planck Award for International Cooperation (2002—-2005).
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