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1. Introduction

TheWalsh-Hadamardmatrix is widely used for theWalsh representation of the data sequence
in image coding and for Hadamard transform orthogonal code design for spread spectrum
communications and quantum computation [1–4]. Their basic functions are sampled Walsh
functions which can be expressed in terms of the Hadamard [H]N matrices. Using the
orthogonality of Hadamard matrices, more general matrices have been developed [5].
These matrices are called as Jacket matrices and denoted by Jk. From [6], we have
the following definition of Jacket matrix (http://en.wikipedia.org/wiki/Category:Matrices;
http://en.wikipedia.org/wiki/user:Jacket Matrix).

Definition 1.1. If a matrix of size m × m has nonzero elements, and an inverse form which is
only from the element-wise inverse and then transpose, such as

[J]m×m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

j0,0 j0,1 · · · j0,m−1

j1,0 j1,1 · · · j1,m−1

...
...

. . .
...

jm−1,0 jm−1,1 · · · jm−1,m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (1.1)

mailto:chenzhu@chonbuk.ac.kr
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http://en.wikipedia.org/wiki/user:Jacket Matrix


2 Mathematical Problems in Engineering

and its inverse is

[J]−1m×m � 1
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

j−10,0 j−10,1 · · · j−10,m−1

j−11,0 j−11,1 · · · j−11,m−1
...

...
. . .

...

j−1m−1,0 j−1m−1,1 · · · j−1m−1,m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (1.2)

where C is the normalized value for this matrix, and T is the transpose, then this matrix is
called as Jacket matrix.

Many interesting matrices, such as Hadamard, DFT, and Haar, belong to the Jacket
family [6, 7]. In many applications, cocyclic matrices are very useful. The definition cocyclic
matrix is as follows [8–10].

Definition 1.2. If G is a finite group of order v with operation “◦,” and C is a finite abelian
group of order w, a “two-dimensional“ cocycle is a mapping ϕ : G ×G → C, satisfying

ϕ(g, h)ϕ(g ◦ h, k) = ϕ(g, h ◦ k)ϕ(h, k), (1.3)

where g, h, k ∈ G. A square matrixMϕ,whose rows and columns are indexed by the elements
of G, with entry ϕ(g, h) in the position (g, h), that is, Mϕ = [ϕ(g, h)] where g, h ∈ G and
ϕ(g, h) ∈ C, can be called as a cocyclic matrix.

In [11], it is demonstrated that many well-known binary, quaternary, and q-ary codes
are cocyclic Hadamard codes, that is, derived from a cocyclic generalized Hadamard matrix
or its equivalents. In [9, 12, 13], Lee et al. proved that many Jacket matrices derived in [12, 14–
16] are all cocyclic matrices and they are called cocyclic Jacket matrices. Hence, the Jacket
matrices have many applications [9, 10, 17]. However, the derived Jacket matrices have
only the sizes N = 2l, 2lp, where p is an odd prime. In this paper, we present an explicit
construction of cocyclic Jacket matrices over complex field and finite field with any sizes.
As a byproduct, a factorization of unitary matrices is given, which can be useful in many
domains of mathematical and theoretical physics [18].

This paper is organized as follows: in Section 2, we present a class of cocyclic Jacket
matrices over complex number field. The known Jacket matrices belong to this class of
matrices. A class of cocyclic Jacket matrices over finite field is presented in Section 3. In
Section 4, factorization of cocyclic Jacket matrices and unitary matrices is presented. Finally,
conclusions are drawn in Section 5.

2. Cocyclic Jacket matrices over complex number field

In this section, we present a class of cocyclic Jacket matrices over complex number field.

2.1. Basic notations and results

Let p be an odd prime integer and α = e
√−1(2π/p). Thus, we have αp = 1, and Fp =

{0, 1, 2, . . . , p − 1} with the operations for 〈a · b〉 are the finite field, where

〈a〉 Δ= a mod p. (2.1)
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Let a ∈ Fp, we define a function

fa(x)
Δ= 〈a × x〉. (2.2)

Let �V = (αv0 , αv1 , . . . , αvp−1) be a vector, where vi ∈ Fp for i = 0, 1, . . . , p − 1. We define a vector

�Va =
(
αfa(v0), αfa(v1), . . . , αfa(vp−1)

)
. (2.3)

We have the following lemma.

Lemma 2.1. Let �V = (1, α1, α2, . . . , αp−1), then

�V0 × �V0
T
= p,

�Va × �Vb
T
= p, for 〈a + b〉 = 0,

�Va × �Vb
T
= 0, for 〈a + b〉/= 0 .

(2.4)

Proof. The first equation can be easily proved because �V0 = (1, 1, . . . , 1). For the second
equation, since 〈a + b〉 = 0, we have

(
fa
(
vi

)
+ fb
(
vi

))
mod p = (a + b)vi mod p = 0. (2.5)

Thus the second equation is also true. Now we consider the last equation since p is an odd
prime, we know that for any 0 < c < p,

{0, 1, 2, . . . , p − 1} =
{
0, 〈c〉, 〈2c〉, . . . , 〈(p − 1)c

〉}
. (2.6)

Furthermore, for 〈a + b〉/= 0, we have

{0, 1, 2, . . . , p − 1} =
{
0, 〈a + b〉, 〈2(a + b)

〉
, . . . ,

〈
(p − 1)(a + b)

〉}
, (2.7)

that is,

�Va × �Vb =
p−1∑
i=0

αi. (2.8)

On the other hand, from αp = 1, we have

0 = αp − 1 = (α − 1)
p−1∑
i=0

αi. (2.9)

Since α − 1/= 0,
∑p−1

i=0 α
i should be zero. Thus the last equation is also true. The proof is

completed.
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Example 2.2. Let us consider p = 5 and α = e
√−1(2π/5). We have α5 = 1 and

F5 = {0, 1, 2, 3, 4}. (2.10)

Let �V = {1, α, α2, α3, α4}, then we have

�V0 =
(
1 1 1 1 1

)
,

�V1 =
(
1 α α2 α3 α4) ,

�V2 =
(
1 α2 α4 α α3) ,

�V3 =
(
1 α3 α α4 α2) ,

�V4 =
(
1 α4 α3 α2 α

)
.

(2.11)

It can be seen that

�V0 × �V0
T
= 5,

�Va × �Vb
T
= 5, for 〈a + b〉 = 0,

�Va × �Vb
T
= 0, for 〈a + b〉/=0 .

(2.12)

2.2. Cocyclic Jacket matrix with size p

Now we are going to construct p × p cocyclic Jacket matrix over complex number field. For a
given odd prime p, let α = e

√−1(2π/p), and

�V =
{
1, α, α2, . . . , αp−2, αp−1}. (2.13)

Definition 2.3. One has the following equation:

[J]p �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�V0

�V1

...

�Vp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.14)

The inverse of [J]p is denoted by [J]−1p . From Lemma 2.1, it can be easily checked that if [6]

[J]−1p =
1
p

[
�V0

T �V1
T · · · �Vp−1

T
]
=

1
p
[J]Tp , (2.15)
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then

[J]p × [J]−1p = [I]p = [J]−1p × [J]p,

[J]p × [J]Tp = p[I]p.
(2.16)

According to the Definition 1.1, from (2.13)–(2.15), [J]p is a Jacket matrix over complex
number of field. The following lemma shows that [J]p is acocyclic Jacket matrix [10].

Lemma 2.4. Let G = Fp with the operation i ◦ j
Δ= 〈i + j〉, C = {1, α, . . . , αp−1} with traditional

multiplication, the rows and columns are indexed by the elements of Fp under the increasing order
(i.e., 0, 1, . . . , (p − 1)), and the entry of (q, h) is ϕ(g, h). Then, the Jacket matrix [J]p is a symmetric
normalized cocyclic matrix.

Proof. Let g, h, j, i ∈ G = Fp. Based on the above increasing order and from (1.3), we have

ϕ(g, 0) = ϕ(0, g) = ϕ(0, 0) = 1,

ϕ(g, h) = α〈gh〉,

ϕ(g, h ◦ k) = α〈g(h+k)〉,

ϕ(g, h)ϕ(i, k) = α〈gh+ik〉.

(2.17)

Therefore, for any g, h, k ∈ G, we have

ϕ(g, h)ϕ(g ◦ h, k) = α〈g,h〉 × α〈(g+h)k〉 = α〈gh+(g+h)k〉,

ϕ(g, h ◦ k)ϕ(h, k) = α〈g(h+k)〉 × α〈hk〉 = α〈g(h+k)+hk〉.
(2.18)

Since

〈
gh + (g + h)k

〉
=
〈
g(h + k) + hk

〉
, (2.19)

we have

ϕ(g, h)ϕ(g ◦ h, k) = ϕ(g, h ◦ k)ϕ(h, k). (2.20)

Therefore, [J]p is a cocyclic matrix.

Hence, we have the following theorem.

Theorem 2.5. The matrix [J]p is a cocyclic Jacket matrix with size p over complex number field.
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Table 1

g \ h 0 1 2 3 4
0 1 1 1 1 1
1 1 α α2 α3 α4

2 1 α2 α4 α α3

3 1 α3 α α4 α2

4 1 α4 α3 α2 α

Example 2.6. Let us consider p = 5. From Example 2.2, we have

�V0 =
(
1 1 1 1 1

)
,

�V1 =
(
1 α α2 α3 α4) ,

�V2 =
(
1 α2 α4 α α3) ,

�V3 =
(
1 α3 α α4 α2) ,

�V4 =
(
1 α4 α3 α2 α

)
,

[J]5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1

1 α α2 α3 α4

1 α2 α4 α α3

1 α3 α α4 α2

1 α4 α3 α2 α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(
[J]5
)−1 = 1

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1

1 α4 α3 α2 α

1 α3 α α4 α2

1 α2 α4 α α3

1 α α2 α3 α4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
5
[
j−1
]T
5 .

(2.21)

Moreover, the Jacket matrix [J]5 can be mapped as shown in Table 1. It can be verified that
[J]5 is a cocyclic matrix.

Example 2.7. Let us consider p = 2, this p is not an odd prime, but it is a prime. Let α =
e
√−1(π/2), we have α2 = −1. We have �V = (1, α2) and

�V0 = (1, 1),

�V1 =
(
1, α2) = (1,−1).

(2.22)
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Thus, we have

[J]2 =

[
1 1

1α2

]
=

[
1 1

1 −1

]
= [H]2,

[J]−12 =
1
2

[
1 1

1 α2

]
=

1
2

[
1 1

1 −1

]
= [H]−12 =

1
2
[J]T2 ,

(2.23)

where [H]2 is Walsh-Hadamard matrix.

2.3. Cocyclic Jacket matrix with size pe11 p
e2
2 · · · pess

First we introduce some lemmas which are useful to derive the construction of the cocyclic
Jacket matrix with size pe11 p

e2
2 · · · pess .

Lemma 2.8. One has the following equation:

(
Ai×j ⊗ Bh×k

)(
Cj×s ⊗Dk×t

)
=
(
Ai×j × Cj×s

) ⊗ (Bh×k ×Dk×t
)
, (2.24)

where ⊗ denotes the Kronecker product [1–3, 5, 6].

Lemma 2.9. One has the following equation:

(
Ah ⊗ Bk

)−1 = A−1
h

⊗ B−1
k
,

(
Ah ⊗ Bk

)T = AT
h ⊗ BT

k .
(2.25)

Now we are going to prove the following theorem.

Theorem 2.10. If Au×u and Bv×v are cocyclic Jacket matrices, then Au×u ⊗ Bv×v is also a cocyclic
Jacket matrix with size uv.

Proof. Since Au = [ai,j]u×u and Bv = [bs,t]v×v are cocyclic Jacket matrices, according to the
property of Jacket matrix, we have

Au×u
−1 =

1
Ca

[
ai,j

−1]
u×u

T
,

Bv×v
−1 =

1
Cb

[
bs,t

−1]
v×v

T
.

(2.26)

Let

Au×u ⊗ Bv×v =
[
miu+s,ju+t

]
uv×uv, (2.27)

where miu+s,ju+t = ai,jbs,t. On the other hand, from (2.25) and (2.26), we have

(
Au×u ⊗ Bv×v

)−1 = 1
CaCb

[(
ai,jbs,t

)−1]
uv×uv

T
=

1
CaCb

[(
miu+s,ju+t

)−1]
uv×uv

T
. (2.28)

From (2.27), (2.28), and Definition 1.1,Au×u ⊗Bv×v is a Jacket matrix. Next, we will prove that
Au×u ⊗ Bv×v is also a cocyclic matrix.
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Table 2

(a)

g \ h · · · g
(A)
cj · · ·

...
. . .

...
. . .

g
(A)
ri · · · ϕA(g

(A)
ri , g

(A)
cj ) · · ·

...
. . .

...
. . .

(b)

g \ h · · · g
(B)
ck

· · ·
...

. . .
...

. . .

g
(B)
rh

· · · ϕB(g
(B)
rh

, g
(B)
ck

) · · ·
...

. . .
...

. . .

(c)

g \ h · · · g
(A)
cj g

(B)
ck

· · ·
...

. . .
...

. . .

g
(A)
ri g

(B)
rh

· · · ϕAB(g
(A)
ri g

(B)
rh

, g
(A)
cj g

(B)
ck

) · · ·
...

. . .
...

. . .

Assume that Au×u and Bv×v are cocyclic under the following row and column index
orders:

g
(A)
s1 ≺ g

(A)
s2 ≺ · · · ≺ g

(A)
su , for g(A)

sj ∈ GA,

g
(B)
s1 ≺ g

(B)
s2 ≺ · · · ≺ g

(B)
sv , for g(B)

sk
∈ GB,

(2.29)

where s = r or c, g(A)
rj and g

(A)
cj denote the jth row index and jth column index of matrix A.

Similarly, g(B)
rk and g

(B)
ck denote the kth row index and kth column index of matrix B. Then, for

matrix Au ⊗ Bv, the row and column index orders are defined as follows:

g
(A)
sj g

(B)
sk

≺ g
(A)
si g

(B)
sh

, (2.30)

ϕAB

(
g
(A)
ri g

(B)
rh , g

(A)
cj g

(B)
ck

)
Δ= ϕA

(
g
(A)
ri , g

(A)
cj

)
ϕB

(
g
(B)
rh , g

(B)
ck

)
. (2.31)

In order to understand (2.29), (2.30), and (2.31) better, we interpret matrices Au×u, Bv×v,
and Au ⊗ Bv as the following three forms shown in Table 2. Since Au×u and Bv×v
are cocyclic matrices, thus their elements ϕA(g

(A)
ri , g

(A)
cj ) and ϕB(g

(B)
rh , g

(B)
ck ) should satisfy

(1.3). From (2.31), and the above fact, it can be verified that ϕAB(g
(A)
ri g

(B)
rh , g

(A)
cj g

(B)
ck ) Δ=

ϕA(g
(A)
ri , g

(A)
cj )ϕB(g

(B)
rh , g

(B)
ck ) is also satisfied (1.3) under the index orders (2.30). Hence, Au×u ⊗

Bv×v is a cocyclic matrix.
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Table 3

g \ h 00 01 02 03 04 10 11 12 13 14 20 21 22 23 24

00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01 1 β β2 β3 β4 1 β β2 β3 β4 1 β β2 β3 β4

02 1 β2 β4 β β3 1 β2 β4 β β3 1 β2 β4 β β3

03 1 β3 β β4 β2 1 β3 β β4 β2 1 β3 β β4 β2

04 1 β4 β3 β2 β 1 β4 β3 β2 β 1 β4 β3 β2 β

10 1 1 1 1 1 μ μ μ μ μ μ2 μ2 μ2 μ2 μ2

11 1 β β2 β3 β4 μ βμ β2μ β3μ β4μ μ2 βμ2 β2μ2 β3μ2 β4μ2

12 1 β2 β4 β β3 μ β2μ β4μ βμ β3μ μ2 β2μ2 β4μ2 βμ2 β3μ2

13 1 β3 β β4 β2 μ β3μ βμ β4μ β2μ μ2 β3μ2 βμ2 β4μ2 β2μ2

14 1 β4 β3 β2 β μ β4μ β3μ β2μ βμ μ2 β4μ2 β3μ2 β2μ2 βμ2

20 1 1 1 1 1 μ2 μ2 μ2 μ2 μ2 μ μ μ μ μ

21 1 β β2 β3 β4 μ2 βμ2 β2μ2 β3μ2 β4μ2 μ βμ β2μ β3μ β4μ

22 1 β2 β4 β β3 μ2 β2μ2 β4μ2 βμ2 β3μ2 μ β2μ β4μ βμ β3μ

23 1 β3 β β4 β2 μ2 β3μ2 βμ2 β4μ2 β2μ2 μ β3μ βμ β4μ β2μ

24 1 β4 β3 β2 β μ2 β4μ2 β3μ2 β2μ2 βμ2 μ β4μ β3μ β2μ βμ

Example 2.11. Let us consider [J]3 ⊗ [J]5, let β = e
√−1(2π/5), and let μ = e

√−1(2π/3). Then we
have

[J]3 ⊗ [J]5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 β β2 β3 β4

1 β2 β4 β β3

1 β3 β β4 β2

1 β4 β3 β2 β

1 1 1 1 1
1 β β2 β3 β4

1 β2 β4 β β3

1 β3 β β4 β2

1 β4 β3 β2 β

1 1 1 1 1
1 β β2 β3 β4

1 β2 β4 β β3

1 β3 β β4 β2

1 β4 β3 β2 β
1 1 1 1 1
1 β β2 β3 β4

1 β2 β4 β β3

1 β3 β β4 β2

1 β4 β3 β2 β

μ μ μ μ μ
μ βμ β2μ β3μ β4μ
μ β2μ β4μ βμ β3μ
μ β3μ βμ β4μ β2μ
μ β4μ β3μ β2μ βμ

μ2 μ2 μ2 μ2 μ2

μ2 βμ2 β2μ2 β3μ2 β4μ2

μ2 β2μ2 β4μ2 βμ2 β3μ2

μ2 β3μ2 βμ2 β4μ2 β2μ2

μ2 β4μ2 β3μ2 β2μ2 βμ2

1 1 1 1 1
1 β β2 β3 β4

1 β2 β4 β β3

1 β3 β β4 β2

1 β4 β3 β2 β

μ
2

μ2 μ2 μ2 μ2

μ2 βμ2 β2μ2 β3μ2 β4μ2

μ2 β2μ2 β4μ2 βμ2 β3μ2

μ2 β3μ2 βμ2 β4μ2 β2μ2

μ2 β4μ2 β3μ2 β2μ2 βμ2

μ μ μ μ μ
μ βμ β2μ β3μ β4μ
μ β2μ β4μ βμ β3μ
μ β3μ βμ β4μ β2μ
μ β4μ β3μ β2μ βμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.32)

It can be easily verified that [J]3 ⊗ [J]5 is a Jacket matrix. We also present its index order
matrix as shown in Table 3, where the row and column index orders are

00 ≺ 01 ≺ 02 ≺ 03 ≺ 04 ≺ 10 ≺ 11 ≺ 12 ≺ 13 ≺ 14 ≺ 20 ≺ 21 ≺ 22 ≺ 23 ≺ 24,

ij ◦ hk Δ= 〈i + h〉3〈j + k〉5.
(2.33)

For example, 23 ◦ 14 = 02. It can be easily verified that [J]5 ⊗ [J]3 is a cocyclic matrix.
Next, we are going to construct a cocyclic Jacket matrix using the complex number

field with size pe11 p
e2
2 · · · pess , where pi, for i = 1, 2, . . . , s, are primes.
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Definition 2.12. One has the following equation:

[J]pe11 p
e2
2 ···pess

Δ= [J]pe11 ⊗ [J]pe22 ⊗ · · · ⊗ [J]pess , (2.34)

where

[J]peii
Δ= [J]pi ⊗ [J]pi ⊗ · · · ⊗ [J]pi for i = 1, 2, . . . , s. (2.35)

From Lemma 2.8 and Theorem 2.10, we have the following theorem.

Theorem 2.13. The matrix from Definition 2.12 is a cocyclic Jacket matrix over the complex number
field.

Example 2.14. Let us consider p1 = 3, p2 = 2, and e1 = e2 = 1. Thus, N = 2 × 3 = 6. Let
β = e

√−1(π/3) and α = e
√−1(2π/3), that is, α = β2. We have

[J]6=[J]3 ⊗ [J]2=

⎡
⎣
1 1 1
1 α α2

1 α2 α

⎤
⎦⊗
[
1 1
1 −1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 1 −1 1 −1
1 1 α α α2 α2

1 −1 −α α α2 −α2

1 1 α2 α2 α α
1 −1 α2 −α2 α −α

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 1 −1 1 −1
1 1 β2 β2 β4 β4

1 −1 β2 β5 β4 β
1 1 β4 β4 β2 β2

1 −1 β4 β β2 β5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.36)

From [19], we know that

[JM]6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 β β2 β5 β4 −1
1 β2 β4 β4 β2 1
1 β5 β4 β β2 −1
1 β4 β2 β2 β4 1
1 −1 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (2.37)

It can be seen that
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
× [JM]6 ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= [J]6, (2.38)

where [JM]6 is the generalized Jacket matrix of order 6.

From Lemma 2.9 and the definition of Jpe11 pe22 ···pess , it can be verified that Jpe11 pe22 ···pess is an
orthogonal matrix and its inverse matrix can be determined as

J−1
pe11 pe22 ···pess =

(
Jpe11 ⊗ Jpe22 ⊗ · · · ⊗ Jpess

)−1

pe11 pe22 · · · pess
=

1
pe11 pe22 · · · pess

(
J−1
pe11

⊗ J−2
pe22

⊗ · · · ⊗ J−1pess
)
, (2.39)

where J−1
peii

= J−1pi ⊗ J−1pi ⊗ · · · ⊗ J−1pi︸ ︷︷ ︸
ei

.
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Table 4

g \ h 0 1 2 3

0 1 1 1 1
1 1 −1 1 −1
2 1 1 −1 −1
3 1 −1 −1 1

Example 2.15. Let us consider J4 [J]4 = [J]2 ⊗ [J]2 = [H]2 ⊗ [H]2. Thus, we have

[J]4 =

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦ . (2.40)

The Jacket matrix J4 can be mapped as shown in Table 4. Then J4 is also a cocyclic matrix.

3. Cocyclic Jacket matrices over finite field

In this section, we will construct the cocyclic Jacket matrices overGF(2m). Let α be a primitive
element of GF(2m). Then,

GF
(
2m
)
=
{
0, 1, α, α2, . . . , α2m−2}, (3.1)

and we have the following lemma.

Lemma 3.1. One has the following equation:

2m−2∑
i=0

αri =

⎧
⎨
⎩
1, for r = 0,

0, for 1 ≤ r ≤ 2m − 2.
(3.2)

Proof. It is evident that
∑2m−2

i=0 αri contains 2m−1 terms, that is, odd terms. If r = 0, then
∑2m−2

i=0 αri

is a sum of odd 1’s and should be 1. Thus, the first equation is proved.
We now consider the case of 1 ≤ r ≤ 2m − 2. Since αr(2m−2)=1 =1, we have

0 = αr(2m−1) + 1 =
(
αr + 1

)(2m−2∑
i=0

ari

)
. (3.3)

Since 1 ≤ r ≤ 2m − 2, that is, αr + 1/= 0, we have
∑2m−2

i=0 ari = 0. The proof is completed.

Let [JF]2m−1 = [mi,j](2m−1)(2m−1),where

mij = αij for 0 ≤ i, j ≤ 2m − 2, (3.4)

then, we have the following theorem.

Theorem 3.2. [JF]2m−1 is a cocyclic Jacket matrix.
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Table 5: Binary representation of GF(23).

Elements Binary representation
0 (0 0 0)
1 (1 0 0)
α (0 1 0)
α2 (0 0 1)
α3 (1 1 0)
α4 (0 1 1)
α5 (1 1 1)
α6 (1 0 1)

Proof. Let

[JF]−12m−1 =
[
m−1

i,j

]T
(2m−1)×(2m−1), (3.5)

where mi,j = αij . From the definition of [JF]2m−1 and Lemma 3.1, we have

[JF]2m−1 × [JF]−12m−1 = [JF]−12m−1 × [JF]2m−1 = I(2m−1). (3.6)

Hence, [JF]2m−1 is a Jacket matrix. Next, we will prove that [JF]2m−1 is also a cocyclic matrix.
Let ϕ(i, j) be the entry of row i and column j, where the order of rows and columns is from 0
to 2m − 2. From (3.4), we have

ϕ(i, 0) = ϕ(0, i) = ϕ(0, 0) = α0 = 1,

ϕ(i, j) = αij ,

ϕ(i, j ◦ h) = αi(j+k),

ϕ(i, j)ϕ(h, k) = αij+hk.

(3.7)

Therefore, for any g, h, k ∈ Z2m−1,we have

ϕ(g, h)ϕ(g ◦ h, k) = αgh × α(g+h)k = αgh+(g+h)k,

ϕ(g, h ◦ k)ϕ(h, k) = αg(h+k) × αhk = αg(h+k)+hk.
(3.8)

Since 〈gh + (g + h)k〉 = 〈g(h + k) + hk〉, we have

ϕ(g, h)ϕ(g ◦ h, k) = ϕ(g, h ◦ k)ϕ(h, k). (3.9)

In terms of (1.3), [JF]2m−1 is a cocyclic matrix. The proof is completed.

Example 3.3. Let us consider [JF]7 = [JF]23−1. Let α and x3+x+1 = 0 be the primitive element
and primitive polynomial of GF(23), respectively. Thus, GF(23) = {α, α2, α3, α4, α5, α6} and
α7 = 1. On the other hand, any element β ∈ GF(23) can be represented as a binary vector
(b0, b1, b2), where bi ∈ {0, 1} for i = 0, 1, 2 such that

β = b0 + b1α + b2α
2, (3.10)

as shown in Table 5.
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Table 6: Index mapping of order-8 Cocyclic Jacket matrix.

g \ h 0 1 2 3 4 5 6
0 1 1 1 1 1 1 1
1 1 α α2 α3 α4 α5 α6

2 1 α2 α4 α6 α α3 α5

3 1 α3 α6 α2 α5 α α4

4 1 α4 α α5 α2 α6 α3

5 1 α5 α3 α α6 α4 α2

6 1 α6 α5 α4 α3 α2 α

Table 7: Binary representation of GF(32).

Elements Binary representation
0 (0 0)
1 (1 0)
α (0 0)
α2 (2 1)
α3 (2 2)
α4 (0 2)
α5 (2 0)
α6 (1 2)
α7 (1 1)

Using Table 5, it can be easily checked that (3.9) is true for GF(23). Thus, we have

[JF]7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

1 α3 α6 α2 α5 α α4

1 α4 α α5 α2 α6 α3

1 α5 α3 α α6 α4 α2

1 α6 α5 α4 α3 α2 α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[JF]−17 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 α6 α5 α4 α3 α2 α
1 α5 α3 α α6 α4 α2

1 α4 α α5 α2 α6 α3

1 α3 α6 α2 α5 α α4

1 α2 α4 α6 α α3 α5

1 α α2 α3 α4 α5 α6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.11)

and index mapping of order-8 Cocyclic Jacket matrix (see Table 6).
It can be verified that [JF]7 is a cocyclic Jacket matrix over GF(23).

Example 3.4. Let us consider [JF]32−1 = [JF]8 over GF(32). Let α and x2 + x + 2 =
0 be the primitive and primitive polynomial of GF(32), respectively. Thus, GF(32) =
{0, 1, α, α2, α3, α4, α5, α6, α7} and α8 = 1. Conversely, any element β ∈ GF(32) can be
represented as a vector over GF(3) : β = b0 + b1α, where b0, b1 ∈ {0, 1, 2} (see Table 7).
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Table 8: Index mapping of order-9 Cocyclic Jacket matrix.

g \ h 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1
1 1 α α2 α3 α4 α5 α6 α7

2 1 α2 α4 α6 1 α2 α4 α6

3 1 α3 α6 α α4 α7 α2 α5

4 1 α4 1 α4 1 α4 1 α4

5 1 α5 α2 α7 α4 α α6 α3

6 1 α6 α4 α2 1 α6 α4 α2

7 1 α7 α6 α5 α4 α3 α2 α

Using this table, it is easy to deduce that (3.2) is true for GF(32) (change 2m to 3m).
Thus, we have

[JF]8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6 α7

1 α2 α4 α6 1 α2 α4 α6

1 α3 α6 α α4 α7 α2 α5

1 α4 1 α4 1 α4 1 α4

1 α5 α2 α7 α4 α α6 α3

1 α6 α4 α2 1 α6 α4 α2

1 α7 α6 α5 α4 α3 α2 α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[JF]−18 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 α7 α6 α5 α4 α3 α2 α
1 α6 α4 α2 1 α6 α4 α2

1 α5 α2 α7 α4 α α6 α3

1 α4 1 α4 1 α4 1 α4

1 α3 α6 α α4 α7 α2 α5

1 α2 α4 α6 1 α2 α4 α6

1 α α2 α3 α4 α5 α6 α7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.12)

and index mapping of order-9 Cocyclic Jacket matrix (see Table 8).
It is easy to verify that [JF]8 is a cocyclic Jacket matrix over GF(32).

Remark 3.5. We can also construct cocyclic Jacket matrices based on additive characters of
the finite field Fq and first-order q-ary Reed-Muller codes RMp(1, n) [20], where Fq = {α1 =
0, α2, . . . , αq} is a finite field of q elements, q = pm, and p is a prime number. The way of
construction is described by the following lemma.

Lemma 3.6. The cocyclic Jacket matrix with order N = pn is Jpn = [ω�i◦�j], where ω =
exp(2π

√−1/p), and one defines

�i · �j = (i0, i1, . . . , in−1
) · (j0, j1, . . . , jn−1

)

=
〈
i0 × j0

〉
p +
〈
i1 × j1

〉
p + · · · + 〈in−1 × jn−1

〉
p

(3.13)

for 0 ≤ ik, jk ≤ p − 1 (0 ≤ k ≤ n − 1).
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Table 9: The correspondence between the indices and the entries of J32 .

i/�j

j/�j

0 1 2 3 4 5 6 7 8
00 01 02 10 11 12 20 21 22

0 00 ω0 ω0 ω0 ω0 ω0 ω0 ω0 ω0 ω0

1 01 ω0 ω1 ω2 ω0 ω1 ω2 ω0 ω1 ω2

2 02 ω0 ω2 ω1 ω0 ω2 ω1 ω0 ω2 ω1

3 10 ω0 ω0 ω0 ω1 ω1 ω1 ω2 ω2 ω2

4 11 ω0 ω1 ω2 ω1 ω2 ω0 ω2 ω0 ω1

5 12 ω0 ω2 ω1 ω1 ω0 ω2 ω2 ω1 ω0

6 20 ω0 ω0 ω0 ω2 ω2 ω2 ω1 ω1 ω1

7 21 ω0 ω1 ω2 ω2 ω0 ω1 ω1 ω2 ω0

8 22 ω0 ω2 ω1 ω2 ω1 ω0 ω1 ω0 ω2

Example 3.7. Let p = 3, n = 2, and m = 1, the finite field of q = p1 = 3 elements F3 =
{0, 1, 2}, RM3(1, 2) is as follows:

RM3(1, 2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 1 2
0 2 1

0 0 0
0 1 2
0 2 1

0 0 0
0 1 2
0 2 1

0 0 0
0 1 2
0 2 1

1 1 1
1 2 0
1 0 2

2 2 2
2 0 1
2 1 0

0 0 0
0 1 2
0 2 1

2 2 2
2 0 1
2 1 0

1 1 1
1 2 0
1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.14)

The entries of J32 are shown in Table 9.

From Table 9, we can see when i = 2, j = 4, we have

ω(02)◦(11) = ω〈0×1〉3+〈2×1〉3 = ω2. (3.15)

The other entries can be obtained using the same fashion, perfectly.

4. The factorization of cocyclic Jacket matrices and unitary matrices

Definition 4.1. A square matrix U is a unitary matrix if U−1 = UH, where UH denote the
conjugate transpose and U−1 is the matrix inverse.

Proposition 4.2. The matrix Un = (1/
√
c)Jn is a unitary matrix where Jn is the cocyclic Jacket

matrix, c is the normalized value for Jn.

Proof. From the definition of Jacket matrix, we have Jn = [j]−1n = (1/c)[j−1]Tn, and the entries

in cocyclic Jacket matrices also satisfy ‖j‖ = 1, we have j−1 = j, then [j]−1n = (1/c)[j]
T

n, [j]
T

n =
[j]Hn = c[j]−1n . Certainly,

Un·UH
n =

1√
c
[j]n·

1√
c
[j]Hn =

1
c
[j]n·[j]Hn =

1
c
[j]n·c[j]−1n = In. (4.1)
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Example 4.3. Based on Example 2.14, we have

[J]6 = [J]3 ⊗ [J]2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 1 −1 1 −1
1 1 α α α2 α2

1 −1 −α α α2 −α2

1 1 α2 α2 α α
1 −1 α2 −α2 α −α

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (4.2)

where α = e
√−1(2π/3) = eiθ, i =

√
1, θ = 2π/3, then

[U]6·[U]H6 =
1
6
[J]6·[J]H6

=
1
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 1 −1 1 −1
1 1 eiθ eiθ ei2θ ei2θ

1 −1 −eiθ eiθ ei2θ −ei2θ
1 1 ei2θ ei2θ eiθ eiθ

1 −1 ei2θ −ei2θ eiθ −eiθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 1 −1 1 −1
1 1 e−iθ −e−iθ e−2iθ e−2iθ

1 −1 e−iθ e−iθ e−2iθ −e−2iθ
1 1 e−2iθ e−2iθ e−iθ e−iθ

1 −1 e−2iθ −e−2iθ e−iθ −e−iθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= [I]6.

(4.3)

A special feature of cocyclic Jacket matrices has been introduced in [21]. If the cocyclic Jacket
matrices with order N = p1p2 · · · pn, pi is the prime number, then

JN = Jp1 ⊗ Jp2 ⊗ · · · ⊗ Jpn = A1
p1A

2
p2 · · ·An

pn , (4.4)

where

Am
pm = Ip1 ⊗ Ip2 ⊗ · · · Ipm−1︸ ︷︷ ︸

m−1

⊗ Jpm ⊗ Ipm+1 ⊗ Ipm+2 ⊗ · · · ⊗ Ipn︸ ︷︷ ︸
n−m

, (4.5)

and based on this characteristic of cocyclic Jacket matrices, we can easy decompose the
unitary matrices with sparse matrices

UN =
1√
N

JN =
1√
N

A1
p1A

2
p2 · · ·An

pn . (4.6)

From (4.6), theU6 can be decomposed as

U6 =
1√
6

(
I3 ⊗ J2

)(
J3 ⊗ I2

)
=

1√
6

(
I3 ⊗

√
2U2
)(√

3U3 ⊗ I2
)
=
(
I3 ⊗U2

)(
U3 ⊗ I2

)

=
1√
6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 0 0 0 1 1
0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
0 1 0 1 0 1
1 0 eiθ 0 ei2θ 0
0 1 0 eiθ 0 ei2θ

1 0 ei2θ 0 eiθ 0
0 1 0 ei2θ 0 eiθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.7)

Clearly, (4.7) is the new factorization matrix.
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5. Conclusions

In this paper, we present a new class of cocyclic Jacket matrices over complex number field
and finite field. Using this way, we can get such kind of matrix with order pk directly, for the
other orders N = pk11 pk22 · · · pknn , they can be obtained from the Kronecker product with some
matrices whose orders are pkii . The cocyclic Jacket matrices also have a close relation with
unitary matrices. In particular, the factorizations of unitary matrices have the similar patterns
with that of cocyclic Jacket matrices. Therefore, the door for using cocyclic Jacket matrices
in signal processing [7], cryptography [9], mobile communication [4, 6], Jacket transform
coding [13, 20], and quantum processing [17, 22] is opened.
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