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1. Introduction

Wavelets [1] are localized functions which are a very useful tool in many different
applications: signal analysis, data compression, operator analysis, and PDE solving (see,
e.g., [2] and references therein). The main feature of wavelets is their natural splitting of
objects into different scale components [1, 3] according to the multiscale resolution analysis.
For the L2(R) functions, that is, functions with decay to infinity, wavelets give the best
approximation. When the function is localized in space, that is, the bottom length of the
function is within a short interval (function with a compact support), such as pulses, any
other reconstruction, but wavelets, leads towards undesirable problems such as the Gibbs
phenomenon when the approximation is made in the Fourier basis. In this paper, it is shown
that Shannon wavelets are the most expedient basis for the analysis of impulse functions
(pulses) [4]. The approximation can be simply performed and the reconstruction by Shannon
wavelets range in multifrequency bands. Comparing with the Shannon sampling theorem
where the frequency band is only one, the reconstruction by Shannon wavelets can be done
for functions ranging in different frequency bands. Shannon sampling theorem [5] plays a
fundamental role in signal analysis and, in particular, for the reconstruction of a signal from a
digital sampling. Under suitable hypotheses (on a given signal function) a few sets of values
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(samples) and a preliminary chosen basis (made by the sinc function) enable us to completely
reconstruct the continuous signal. This reconstruction is alike the reconstruction of a function
as a series expansion (such as polynomial, i.e., Taylor series, or trigonometric functions, i.e.,
Fourier series), but for the first time the reconstruction (in the sampling theorem) makes use
of the sinc function, that is a localized function with decay to zero. Together with the Shannon
sampling theorem (and reconstruction), also the wavelets series become very popular, as
well as the bases with compact support. It has been recognized that on the sinc functions
one can settle the family of Shannon wavelets. The main properties of these wavelets will
be shown and discussed. Moreover, the connection coefficients [6–9] (also called refinable
integrals) will be computed by giving some finite formulas for any order derivatives (see
also some preliminary results in [2, 10–12]). These coefficients enable us to define any order
derivatives of the Shannon scaling and wavelet basis and it is shown that also the derivatives
are orthogonal.

2. Shannon Wavelets

Sinc function or Shannon scaling function is the starting point for the definition of the
Shannon wavelet family [11]. It can be shown that the Shannon wavelets coincide with
the real part of the harmonic wavelets [2, 10, 13, 14], which are the band-limited complex
functions

ψnk (x)
def≡ 2n/2 e

4πi(2nx−k) − e2πi(2nx−k)

2πi(2nx − k) , (2.1)

with n, k ∈ Z. Harmonic wavelets form an orthonormal basis and give rise to a
multiresolution analysis [1–3, 14, 15]. In the frequency domain, they are very well localized
and defined on compact support intervals, but they have a very slow decay in the space
variable. However, in dealing with real problems it is more expedient to make use of real
basis. By focussing on the real part of the harmonic family, we can take advantage of the
basic properties of harmonic wavelets together with a more direct physical interpretation of
the basis.

Let us take, as scaling function ϕ(x), the sinc function (Figure 1)

ϕ(x) = sincx def=
sinπx
πx

=
eπix − e−πix

2πix
(2.2)

and for the dilated and translated instances

ϕnk(x) = 2n/2ϕ(2nx − k) = 2n/2 sinπ(2nx − k)
π(2nx − k)

= 2n/2 e
πi(2nx−k) − e−πi(2nx−k)

2πi(2nx − k) .

(2.3)

The parameters n, k give, respectively, a compression (dilation) of the basic function (2.2) and
a translation along the x-axis. The family of translated instances {ϕ(x−k)} is an orthonormal
basis for the banded frequency functions [5] (Shannon theorem). For this reason, they can
be used to define the Shannon multiresolution analysis as follows. The scaling functions
do not represent a basis, in a functional space, therefore we need to define a family of
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Figure 1: Shannon scaling function ϕ(x) (thick line) and wavelet (dashed line) ψ(x).

functions (based on scaling) which are a basis; they are called the wavelet functions and
the corresponding analysis the multiresolution analysis.

Let

̂f(ω) = f̂(x) def=
1

2π

∫∞

−∞
f(x)e−iωxdx (2.4)

be the Fourier transform of the function f(x) ∈ L2(R) and

f(x) = 2π
∫∞

−∞
̂f(ω)eiωxdω (2.5)

its inverse transform. The Fourier transform of (2.2) gives us

ϕ̂(ω) =
1

2π
χ(ω + 3π) =

⎧

⎨

⎩

1
(2π)

, −π ≤ ω < π,

0, elsewhere,
(2.6)

with

χ(ω) =

⎧

⎨

⎩

1, 2π ≤ ω < 4π,

0, elsewhere .
(2.7)

Analogously for the dilated and translated instances of scaling function it is

ϕ̂nk(ω) =
2−n/2

2π
e−iω(k+1)/2nχ

(

ω

2n
+ 3π

)

. (2.8)

From the given scaling function, it is possible to define the corresponding wavelet function
[1, 15] according to the following.
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Theorem 2.1. The Shannon wavelet, in the Fourier domain, is

ψ̂(ω) =
1

2π
e−iω[χ(2ω) + χ(−2ω)]. (2.9)

Proof. It can be easily shown that the scaling function (2.6) fulfills the condition

ϕ̂(ω) = H
(

ω

2

)

ϕ̂

(

ω

2

)

, (2.10)

which characterizes the multiresolution analysis [1] with

H

(

ω

2

)

= χ(ω + 3π). (2.11)

Thus the corresponding wavelet function can be defined as [1, 15]

ψ̂(ω) = e−iωH
(

ω

2
± 2π

)

ϕ̂

(

ω

2

)

. (2.12)

With H(ω/2 − 2π) we have

ψ̂(ω) = e−iωH
(

ω

2
− 2π

)

ϕ̂

(

ω

2

)

= e−iωχ(ω + 3π − 2π)
1

2π
χ

(

ω

2
+ 3π

)

=
1

2π
e−iωχ(ω + π)χ

(

ω

2
+ 3π

)

=
1

2π
e−iωχ(2ω),

(2.13)

then analogously with H(ω/2 + 2π) we obtain

ψ̂(ω) =
1

2π
e−iωχ(−2ω), (2.14)

so that (2.9) follows.

For the whole family of dilated-translated instances, it is

ψ̂nk (ω) =
2−n/2

2π
e−iω(k+1)/2n

[

χ

(

ω

2n−1

)

+ χ
( −ω

2n−1

)]

. (2.15)

The Shannon wavelet function in the real domain can be obtained from (2.9) by the inverse
Fourier transform (Figure 1)

ψ(x) =
sinπ(x − 1/2) − sin 2π(x − 1/2)

π(x − 1/2)

=
e−2iπx(−i + eiπx + e3iπx + ie4iπx)

(π − 2πx)
,

(2.16)

and by the space shift and compression we have the whole family of dilated and translated
instances:

ψnk (x) = 2n/2 sinπ(2nx − k − 1/2) − sin 2π(2nx − k − 1/2)
π(2nx − k − 1/2)

. (2.17)



Mathematical Problems in Engineering 5

By summarizing (2.3) and (2.17), the Shannon wavelet theory is based on the following
functions [11]:

ϕnk(x) = 2n/2 sinπ(2nx − k)
π(2nx − k) ,

ψnk (x) = 2n/2 sinπ(2nx − k − 1/2) − sin 2π(2nx − k − 1/2)
π(2nx − k − 1/2)

(2.18)

in the space domain, and collecting (2.8) and (2.15), we have in the frequency domain

ϕ̂nk(ω) =
2−n/2

2π
e−iωk/2nχ

(

ω

2n
+ 3π

)

,

ψ̂nk (ω) = −
2−n/2

2π
e−iω(k+1/2)/2n

[

χ

(

ω

2n−1

)

+ χ
( −ω

2n−1

)]

.

(2.19)

The inner product is defined as

〈f, g〉 def≡
∫∞

−∞
f(x)g(x)dx, (2.20)

which, according to the Parseval equality, can be expressed also as

〈f, g〉 def≡
∫∞

−∞
f(x)g(x)dx = 2π

∫∞

−∞
̂f(ω)ĝ(ω)dω = 2π〈 ̂f, ĝ〉, (2.21)

where the bar stands for the complex conjugate.
With respect to the inner product (2.20), we can show the following theorem [11].

Theorem 2.2. Shannon wavelets are orthonormal functions in the sense that

〈ψnk (x), ψ
m
h (x)〉 = δ

nmδhk, (2.22)

with δnm, δhk being the Kroenecker symbols.

Proof.

〈ψnk (x), ψ
m
h (x)〉

= 2π〈ψ̂nk (ω), ψ̂
m
h (ω)〉

= 2π
∫∞

−∞

2−n/2

2π
e−iω(k+1/2)/2n

[

χ

(

ω

2n−1

)

+χ
( −ω

2n−1

)]

2−m/2

2π
eiω(h+1/2)/2m

[

χ

(

ω

2m−1

)

+χ
( −ω

2m−1

)]

dω

=
2−(n+m)/2

2π

∫∞

−∞
e−iω(k+1/2)/2n+iω(h+1/2)/2m

[

χ

(

ω

2n−1

)

+ χ
( −ω

2n−1

)][

χ

(

ω

2m−1

)

+ χ
( −ω

2m−1

)]

dω

(2.23)

which is zero for n /=m. For n = m it is

〈ψnk (x), ψ
n
h(x)〉 =

2−n

2π

∫∞

−∞
e−iω(h−k)/2n

[

χ

(

ω

2n−1

)

+ χ
( −ω

2n−1

)]

dω (2.24)
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and, according to (2.7), by the change of variable ξ = ω/2n−1

〈ψnk (x), ψ
n
h(x)〉 =

1
4π

[ ∫−2π

−4π
e−2i(h−k)ξdξ +

∫4π

2π
e−2i(h−k)ξdξ

]

. (2.25)

For h = k (and n = m), it is trivially

〈ψnk (x), ψ
n
k (x)〉 = 1. (2.26)

For h /= k, it is
∫4π

2π
e−2i(h−k)ξdξ =

i

2(h − k)
(

e−4iπ(h−k) − e−8iπ(h−k)
)

= 0 , (2.27)

and analogously
∫−2π
−4πe

−2i(h−k)ξdξ = 0.

Moreover, we have the following theorem [11].

Theorem 2.3. The translated instances of the Shannon scaling functions ϕn
k
(x), at the level n = 0,

are orthogonal in the sense that

〈ϕ0
k(x), ϕ

0
h(x)〉 = δkh , (2.28)

being ϕ0
k(x)

def= ϕ(x − k).

Proof. It is

〈ϕnk(x), ϕ
m
h (x)〉 = 2π〈ϕ̂nk(ω), ϕ̂

m
h (ω)〉

= 2π
∫∞

−∞

2−n/2

2π
e−iωk/2nχ

(

ω

2n
+ 3π

)

2−m/2

2π
eiωh/2mχ

(

ω

2m
+ 3π

)

dω

=
2−(n+m)/2

2π

∫∞

−∞
e−iω(k/2n−h/2m)χ

(

ω

2n
+ 3π

)

χ

(

ω

2m
+ 3π

)

dω .

(2.29)

When m = n, we have

〈ϕnk(x), ϕ
n
h(x)〉 =

2−n

2π

∫2nπ

−2nπ
e−iω(k−h)/2ndω = 2n

sin[(h − k)π]
(h − k)π . (2.30)

Since h, k ∈ Z, there follows that

sin[(h − k)π]
(h − k)π =

{

1, h = k
0, h /= k

}

= δkh, (2.31)

that is,

〈ϕnk(x), ϕ
n
h(x)〉 = δkh. (2.32)

When m /= n, let’s say m < n, we have

〈ϕnk(x), ϕ
m
h (x)〉 =

2−(n+m)/2

2π

∫2mπ

−2mπ
e−iω(k/2n−h/2m)dω, (2.33)

that is,

〈ϕnk(x), ϕ
m
h (x)〉= 2(m+n)/2 sin[(h − 2m−nk)π]

(h − 2m−nk)π
. (2.34)
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When m /= n, the last expression is always different from zero, in fact (since m < n)

sin
[(

h − k

2|m−n|

)

π

]

= 0 =⇒
[

h − k

2|m−n|

]

π = sπ , s ∈ Z (2.35)

that is,

h = s +
k

2|m−n|
, h, k, s ∈ Z (2.36)

and h ∈ Z only if m = n. Therefore, in order to have the orthogonality it must bem = n, so that

〈ϕnk(x), ϕ
n
h(x)〉= 2nδkh. (2.37)

and, in particular, when n = 0,

〈ϕ0
k(x), ϕ

0
h(x)〉 = δkh. (2.38)

As a consequence of this proof we have that

ϕ0
k(h) = δkh (h, k ∈ Z). (2.39)

The scalar product of the (Shannon) scaling functions with the corresponding wavelets is
characterized by the following [11].

Theorem 2.4. The translated instances of the Shannon scaling functions ϕn
k
(x), at the level n = 0,

are orthogonal to the Shannon wavelets in the sense that

〈ϕ0
k(x), ψ

m
h (x)〉 = 0, m ≥ 0, (2.40)

being ϕ0
k
(x) def= ϕ(x − k).

Proof. It is

〈ϕnk(x), ψ
m
h (x)〉

= 2π〈ϕ̂nk(ω), ψ̂
m
h (ω)〉

= 2π
∫∞

−∞
2−n/2e−iωk/2nχ

(

ω

2n
+ 3π

)

2−m/2

2π
eiω(h+1/2)/2m

[

χ

(

ω

2m−1

)

+ χ
( −ω

2m−1

)]

dω

= 2−(n+m)/2
∫∞

−∞
e−iωk/2n+iω(h+1/2)/2mχ

(

ω

2n
+ 3π

)[

χ

(

ω

2m−1

)

+ χ
( −ω

2m−1

)]

dω

(2.41)

which is zero form ≥ n ≥ 0 (since, according to (2.7), the compact support of the characteristic
functions do not intersect).

On the contrary, it can be easily seen that, for m < n, it is

〈ϕnk(x), ψ
m
h (x)〉= 2−(n+m)/2

∫2nπ

2mπ
e−iωk/2n+iω(h+1/2)/2mdω

= −
21+(m+n)/2

(

ieiπ[2
−m+n−1(1+2h)−k] + eiπ(h−2m−nk)

)

2n(1 + 2h) − 21+mk

(2.42)

and this product, in general, does not vanish.
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3. Reconstruction of a Function by Shannon Wavelets

Let f(x) ∈ L2(R) be a function such that for any value of the parameters n, k ∈ Z, it is
∣

∣

∣

∣

∫∞

−∞
f(x)ϕ0

k(x)dx
∣

∣

∣

∣

≤ An
k <∞,

∣

∣

∣

∣

∫∞

0
f(x)ψnk (x)dx

∣

∣

∣

∣

≤ Bnk <∞ , (3.1)

and B ⊂ L2(R) the Paley-Wiener space, that is, the space of band-limited functions such that,

supp ̂f ⊂ [−b, b] , b <∞. (3.2)

For the representation with respect to the basis (2.18), it is b = π . According to the sampling
theorem (see, e.g., [5]) we have the the following.

Theorem 3.1 (Shannon). If f(x) ∈ L2(R) and supp ̂f ⊂ [−π,π], the series

f(x) =
∞
∑

k=−∞
αkϕ

0
k(x) (3.3)

uniformly converges to f(x), and

αk = f(k). (3.4)

Proof. In order to compute the values of the coefficients, we have to evaluate the series in
correspondence of the integer:

f(h) =
∞
∑

k=−∞
αkϕ

0
k(h) =

∞
∑

k=−∞
αkδkh = αh, (3.5)

having taken into account (2.39).
The convergence follows from the hypotheses on f(x). In particular, the importance of

the band-limited frequency can be easily seen by applying the Fourier transform to (3.3):

̂f(ω) =
∞
∑

k=−∞
f(k)ϕ̂0

k(x)

(2.8)
=

1
2π

∞
∑

k=−∞
f(k)e−iωkχ(ω + 3π)

=
1

2π
χ(ω + 3π)

∞
∑

k=−∞
f(k)e−iωk

(3.6)

so that

̂f(ω) =

⎧

⎪

⎨

⎪

⎩

1
2π

∞
∑

k=−∞
f(k)e−iωk, ω ∈ [−π,π],

0, ω/∈[−π,π].
(3.7)

In other words, if the function is band limited (i.e., with compact support in the frequency
domain), it can be completely reconstructed by a discrete Fourier series. The Fourier
coefficients are the values of the function f(x) sampled at the integers.
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As a generalization of the Paley-Wiener space, and in order to generalize the Shannon
theorem, we define the space Bψ ⊇ B of functions f(x) such that the integrals

αk = 〈f(x), ϕ0
k(x)〉 =

∫∞

−∞
f(x)ϕ0

k(x)dx,

βnk = 〈f(x), ψnk (x)〉 =
∫∞

−∞
f(x)ψnk (x)dx

(3.8)

exist and are finite. According to (2.20) and (2.21), it is in the Fourier domain that

αk = 2π〈f̂(x), ̂ϕ0
k
(x)〉 =

∫∞

−∞
̂f(ω)ϕ̂0

k(ω)dω =
∫2π

0

̂f(ω)eiωkdω,

βnk = 2π〈f̂(x), ψ̂nk (x)〉 = · · ·= 2−n/2
∫2n+2π

2n+1π

̂f(ω)eiωk/2ndω .

(3.9)

Let us prove the following.

Theorem 3.2 (Shannon generalization). If f(x) ∈ Bψ ⊂ L2(R) and supp ̂f ⊆ R, the series

f(x) =
∞
∑

h=−∞
αhϕ

0
h(x) +

∞
∑

n=0

∞
∑

k=−∞
βnkψ

n
k (x) (3.10)

converges to f(x), with αh and βn
k
given by (3.8) and (3.9). In particular, when supp ̂f ⊆

[−2Nπ, 2Nπ], it is

f(x) =
∞
∑

h=−∞
αhϕ

0
h(x) +

N
∑

n=0

∞
∑

k=−∞
βnkψ

n
k (x). (3.11)

Proof. The representation (3.10) follows from the orthogonality of the scaling and Shannon
wavelets (Theorems 2.2, 2.3, 2.4). The coefficients, which exist and are finite, are given by
(3.8). The convergence of the series is a consequence of the wavelet axioms.

It should be noticed that

supp ̂f = [−π, π]
⋃

n=0,...,∞
[−2n+1π, − 2nπ] ∪ [2nπ, 2n+1π] (3.12)

so that for a band-limited frequency signal, that is, for a signal whose frequency belongs to
the first band [−π, π], this theorem reduces to the Shannon. But, more in general, one has to
deal with a signal whose frequency range in different bands, even if practically banded, since
it is N <∞. In this case, we have some nontrivial contributions to the series coefficients from
all the bands, ranging from [−2Nπ, 2Nπ]:

supp ̂f = [−π, π]
⋃

n=0,...,N

[−2n+1π, − 2nπ] ∪ [2nπ, 2n+1π]. (3.13)
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In the frequency domain, (3.10) gives

f(x) =
∞
∑

h=−∞
αhϕ

0
h(x) +

∞
∑

n=0

∞
∑

k=−∞
βnkψ

n
k (x),

̂f(ω) =
∞
∑

h=−∞
αhϕ̂

0
h(ω) +

∞
∑

n=0

∞
∑

k=−∞
βnkψ̂

n
k (ω),

̂f(ω)
(2.19)
=

1
2π

∞
∑

h=−∞
αhe

−iωhχ(ω + 3π)+
1

2π

∞
∑

n=0

∞
∑

k=−∞
2−n/2βnke

−iω(k+1)/2n
[

χ

(

ω

2n−1

)

+χ
( −ω

2n−1

)]

,

(3.14)

that is,

̂f(ω) =
1

2π
χ(ω + 3π)

∞
∑

h=−∞
αhe

−iωh

+
1

2π
χ

(

ω

2n−1

) ∞
∑

n=0

∞
∑

k=−∞
2−n/2βnke

−iω(k+1)/2n

+
1

2π
χ

( −ω
2n−1

) ∞
∑

n=0

∞
∑

k=−∞
2−n/2βnke

−iω(k+1)/2n .

(3.15)

There follows that the Fourier transform is made by the composition of coefficients at
different frequency bands. When βn

k
= 0, for all n, k ∈ Z, we obtain the Shannon sampling

theorem as a special case.

Of course, if we limit the dilation factor n ≤N <∞, for a truncated series, we have the
approximation of f(x), given by

f(x) ∼=
S
∑

h=−S
αhϕ(x − h) +

N
∑

n=0

M
∑

k=−M
βnkψ

n
k (x). (3.16)

By rearranging the many terms of the series with respect to the different scales, for a fixed N
we have

f(x) ∼=
S
∑

h=−S
αhϕ(x − h) +

N
∑

n=0

fn(x),

fn(x) =
M
∑

k=−M
βnkψ

n
k (x),

(3.17)

where fn(x) represent the component of the function f(x) at the scale 0 ≤ n ≤ N (i.e., in
the band [2nπ , 2n+1π]), and f(x) results from a multiscale approximation or better from the
multiband reconstruction.



Mathematical Problems in Engineering 11

3.1. Examples

Let us first compute the approximate wavelet representation of the even function

f(x) = e−4x2
cos 2πx. (3.18)

The bottom length (i.e., the main part) of the function f(x) is concentrated in the
interval [−0.2, 0.2]. With a low scale n = 3, we can have a good approximation (Figures 2,
4) of the function even with a small number k of translation. In fact, with |k| ≤ 3 the absolute
value of the approximation error is less than 7% (see Figure 4). The higher number of the
translation parameter k improves the approximation of the function on its “tails,” in the sense
that by increasing the number of translation parameters k the oscillation on “tails” is reduced.
We can see that with |k| ≤ 10 the approximation error is reduced up to 3%. Moreover, the
approximation error tends to zero with |x| → ∞.

The multiscale representation is given by

f(x) ∼= α0ϕ(x) +
3
∑

n=0

fn(x),

fn(x) =
3
∑

k=−3

βnkψ
n
k (x),

(3.19)

so that at the higher scales there are the higher frequency oscillations (see Figure 2). It should
be also noticed that the lower scale approximations f0(x) , f1(x) , f2(x) represent the major
content of the amplitude. In other words, f0(x) + f1(x) + f2(x) gives a good representation of
(3.18) in the origin, while f3(x), with its higher oscillations, makes a good approximation of
the tails of (3.18). Therefore, if we are interested in the evolution of the peak in the origin, we
can restrict ourselves to the analysis of the lower scales. If we are interested in the evolution
either of the tails or the high frequency, we must take into consideration the higher scales (in
our case f3(x)).

If we compare the Shannon wavelet reconstruction with the Fourier integral approach,
in the Fourier method the following hold.

(1) It is impossible to have a series expansion except for the periodic functions.

(2) It is impossible to focus, as it is done with the Shannon series, on the contribution
of each basis to the function. In other words, the projection of f(x) on each
term {cos ξx , sin ξx} of the Fourier basis is not evident. There follows that it is
impossible to decompose the profile with the components at different scales.

(3) The integral transform performs an integral over the whole real axis for a function
which is substantially zero (over R), except in the “small” interval (−ε , ε).

As a second example, let us consider the approximate wavelet representation of the
odd function

f(x) = e−(16x)2/2 + e−4x2
sin 2πx. (3.20)

The bottom length (i.e., the main part) of the function f(x) is concentrated in the
interval [−0.2, 0.2]. Also in this case, for a localized function, with a low scale n = 3 we
can have a good approximation (Figures 3, 4) of the function even with a small number k
of translation. However, in this case, the error can be reduced (around the origin) by adding
some translated instances, but it remains nearly constant far from the origin. In fact, with



12 Mathematical Problems in Engineering

−1 −0.2 0.2 1
x

1

(a)

−1 −0.2 0.2 1
x

1

(b)

−1 −0.2 0.2 1
x

1

(c)

−1 −0.2 0.2 1
x

1

(d)

−1 −0.2 0.2 1
x

1

(e)

−1 −0.2 0.2 1
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1
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Figure 2: Shannon wavelet reconstruction (dashed) of the even function f(x) = e−4x2
cos 2πx, with nmax =

3, − 3 ≤ k ≤ 3 (bottom right). Scale approximation with (a) n = 0, − 3 ≤ k ≤ 3, (b) n = 1, − 3 ≤ k ≤ 3, (c)
n = 2, − 3 ≤ k ≤ 3, (d) n = 3, − 3 ≤ k ≤ 3, (e) 0 ≤ n ≤ 3, − 3 ≤ k ≤ 3, (f) n = 3, − 5 ≤ k ≤ 5.

|k| ≤ 3 the absolute value of the approximation error is less than 10% (8% in the origin,
Figure 4). The higher number of the translation parameter k improves the approximation
of the function on its “tails,” in the sense that by increasing the number of translation
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Figure 3: Shannon wavelet reconstruction (dashed) of the odd function f(x) = e−(16x)2/2 + e−4x2
sin 2πx,

with N = nmax = 3, − 3 ≤ k ≤ 3 (bottom right). Scale approximation with (a) n = 0, − 3 ≤ k ≤ 3, (b)
n = 1, − 3 ≤ k ≤ 3, (c) n = 2, − 3 ≤ k ≤ 3, (d) n = 3, − 3 ≤ k ≤ 3, (e) 0 ≤ n ≤ 3, − 3 ≤ k ≤ 3, (f)
n = 3, − 5 ≤ k ≤ 5.

parametersk the oscillation on “tails” is reduced and becomes constant (around 10%). But
we can see that with |k| ≤ 10 the approximation error in the origin is reduced up to 3%.
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Figure 4: Error of the Shannon wavelet reconstruction of the even function (top) f(x) = e−4x2
cos 2πx,

with N = nmax = 3 and the odd function f(x) = e−(16x)2/2 + e−4x2
sin 2πx, with N = nmax = 3 (bottom right)

with different values of kmax.

−3 3

−1

1

Figure 5: Approximation (plain) of the first derivative of the function ϕ0
0(x) (bold) by using the connection

coefficients.
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4. Reconstruction of the Derivatives

Let f(x) ∈ L2(R) and let f(x) be a differentiable function f(x) ∈ Cp with p sufficiently
high. The reconstruction of a function f(x) given by (3.10) enables us to compute also its
derivatives in terms of the wavelet decomposition

d�

dx�
f(x) =

∞
∑

h=−∞
αh

d�

dx�
ϕ0
h(x) +

∞
∑

n=0

∞
∑

k=−∞
βnk

d�

dx�
ψnk (x), (4.1)

so that, according to (3.10), the derivatives of f(x) are known when the derivatives

d�

dx�
ϕ0
h(x),

d�

dx�
ψnk (x) (4.2)

are given.
By a direct computation, we can easily evaluate the first and second derivatives of the

scaling function

d
dx

ϕnk(x) =
2n
[

− 1 + (2nx − k)π cot((2nx − k)π)
]

2nx − k ϕnk(x),

d2

dx2
ϕnk(x) =

22n{2 − [π(2nx − k)]2 − 2π(2nx − k) cot((2nx − k)π)
}

(2nx − k)2
ϕnk(x),

(4.3)

respectively. However, on this way, higher-order derivatives cannot be easily expressed.
Indeed, according to (3.10), we have to compute the wavelet decomposition of the
derivatives:

d�

dx�
ϕ0
h(x) =

∞
∑

k=−∞
λ
(�)
hk ϕ

0
k(x) +

∞
∑

n=0

∞
∑

k=−∞
Λ(�)n
hk ψnk (x),

d�

dx�
ψmh (x) =

∞
∑

k=−∞
Γ(�)m
hk

ϕ0
k(x) +

∞
∑

n=0

∞
∑

k=−∞
γ
(�)mn
hk

ψnk (x),

(4.4)

with

λ
(�)
kh

def≡
〈

d�

dx�
ϕ0
k(x), ϕ

0
h(x)

〉

, γ
(�)nm
kh

def≡
〈

d�

dx�
ψnk (x), ψ

m
h (x)

〉

, (4.5)

Λ(�)n
kh

def≡
〈

d�

dx�
ϕ0
k(x), ψ

n
h(x)

〉

, Γ(�)mhk

def≡
〈

d�

dx�
ψnh(x), ϕ

0
h(x)

〉

, (4.6)

being the connection coefficients [6–9, 11] (or refinable integrals).
Their computation can be easily performed in the Fourier domain, thanks to equality

(2.21). In fact, in the Fourier domain the �-order derivatives of the (scaling) wavelet functions
are

̂d�

dx�
ϕn
k
(x) = (iω)�ϕ̂nk(ω),

̂d�

dx�
ψn
k
(x) = (iω)�ψ̂nk (ω) (4.7)
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and according to (2.19),

̂d�

dx�
ϕn
k
(x) = (iω)�

2−n/2

2π
e−iωk/2nχ

(

ω

2n
+ 3π

)

,

̂d�

dx�
ψn
k
(x) = −(iω)� 2−n/2

2π
e−iω(k+1/2)/2n

[

χ

(

ω

2n−1

)

+ χ
( −ω

2n−1

)]

.

(4.8)

Taking into account (2.21), we can easily compute the connection coefficients in the
frequency domain

λ
(�)
kh

= 2π
〈 ̂d�

dx�
ϕ0
k
(x), ̂ϕ0

h
(x)

〉

, γ
(�)nm
kh

= 2π
〈 ̂d�

dx�
ψn
k
(x), ψ̂m

h
(x)

〉

, (4.9)

with the derivatives given by (4.8).
For the explicit computation, we need some preliminary theorems (for a sketch of the

proof see also [11]).

Theorem 4.1. For givenm ∈ Z, � ∈ N, it is

∫

x�emxdx=(1−|μ(m)|) x
�+1

� + 1
+μ(m)

emx

|m|�+1

�+1
∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(|m|x)�−s+1

(� − s + 1)!
+Const,

(4.10)

where

μ(m) = sign (m) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, m > 0,

−1, m < 0,

0, m = 0.

(4.11)

Proof. When m = 0, (4.10) trivially follows. When m /= 0, by a partial integration we get the
iterative formula

∫

x�emxdx =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

μ(m)
1
|m|e

mx, � = 0,

μ(m)
1
|m|

[

x�emx − �
∫

x�−1emxdx
]

, � > 0 ,
(4.12)

from where by the explicit computation of iterative terms and rearranging the many terms,
(4.10) holds.

The following corollary follows. From Theorem 4.1, after a substitution x → iξ, we
have the following corollary.

Corollary 4.2. For givenm ∈ Z, � ∈ N, it is

∫

(iξ)�eimξdξ= i�(1−|μ(m)|) ξ
�+1

� + 1
−iμ(m)eimξ

�+1
∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(iξ)�−s+1

(� − s + 1)!|m|s +Const.

(4.13)
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In particular, taking into account that

eikπ = (−1)k =

⎧

⎨

⎩

1, k = ±2s,

−1, k = ±(2s + 1), s ∈ N,
(4.14)

we have the following corollary.

Corollary 4.3. For givenm ∈ Z ∪ {0}, � ∈ N, and n ∈ N, it is

∫nπ

−nπ
(iξ)�eimξdξ = i�(1 − |μ(m)|) (nπ)

�+1[1 + (−1)�]
� + 1

+ iμ(m)(−1)mn+1
�+1
∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(inπ)�−s+1

(� − s + 1)!|m|s [1 − (−1)�−s+1].

(4.15)

More in general, the following corollary holds.

Corollary 4.4. For givenm ∈ Z, � ∈ N, and a, b ∈ Z (a < b), it is

∫bπ

aπ

(iξ)�eimξdξ = i�(1 − |μ(m)|)π
�+1(b�+1 − a�+1)

� + 1

− iμ(m)
�+1
∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(iπ)�−s+1

(� − s + 1)!|m|s [(−1)mbb�−s+1 − (−1)maa�−s+1].

(4.16)

As a particular case, the following corollaries hold.

Corollary 4.5. For givenm ∈ Z, � ∈ N, and b ∈ Z (0 < b), it is

∫bπ

0
(iξ)�eimξdξ = i�(1 − |μ(m)|)π

�+1b�+1

� + 1

− iμ(m)

[

�
∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(iπ)�−s+1(−1)mbb�−s+1

(� − s + 1)!|m|s

+
(−1)(1+μ(m))�/2�![(−1)mb − 1]

|m|�+1

]

.

(4.17)

Corollary 4.6. For givenm ∈ Z, � ∈ N, it is

∫2π

0
(iξ)�eimξdξ = i�(1 − |μ(m)|) (2π)

�+1

� + 1
− iμ(m)

�
∑

s=1

(−1)[1+μ(m)](2�−s+1)/2 �!(2iπ)�−s+1

(� − s + 1)!|m|s .

(4.18)

Thus we can show that the following theorem holds.
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Theorem 4.7. The any order connection coefficients (4.5)1of the scaling functions ϕ0
k(x) are

λ
(�)
kh

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(−1)k−h
i�

2π

�
∑

s=1

�!πs

s![i(k − h)]�−s+1
[(−1)s − 1], k /= h,

i�π�+1

2π(� + 1)
[1 + (−1)�], k = h ,

(4.19)

or, shortly,

λ
(�)
kh =

i�π�

2(� + 1)
[1+(−1)�](1−|μ(k − h)|)+(−1)k−h|μ(k−h)| i

�

2π

�
∑

s=1

�!πs

s![i(k − h)]�−s+1
[(−1)s−1].

(4.20)

Proof. From (4.9), (4.8), (4.7), (2.21), (2.19), it is

λ
(�)
kh =

1
2π

∫∞

−∞
(iω)�e−i(k−h)ωχ(ω + 3π)χ(ω + 3π)dω, (4.21)

that is,

λ
(�)
kh

=
1

2π

∫∞

−∞
(iω)�e−i(k−h)ωχ(ω + 3π)χ(ω + 3π)dω

=
1

2π

∫π

−π
(iω)�e−i(k−h)ωdω =

i�

2π

∫π

−π
ω�e−i(k−h)ωdω.

(4.22)

The last integral, according to (4.15) (with n = 1), gives (4.20).

Thus we have at the lower-order derivatives � ≤ 5

λ
(1)
kh

= − (−1)k−h

k − h , λ
(1)
00 = 0,

λ
(2)
kh

= −2(−1)k−h

(k − h)2
, λ

(2)
00 = −π

2

3
,

λ
(3)
kh = (−1)k−h

(k − h)2π2 − 6

(k − h)3
, λ

(3)
00 = 0,

λ
(4)
kh

= 4(−1)k−h
(k − h)2π2 − 6

(k − h)4
, λ

(4)
00 =

π4

5
,

λ
(5)
kh = (−1)k−h

(k − h)4π4 − 20(k − h)2π2 + 120

(k − h)5
, λ

(5)
00 = 0 .

(4.23)

Analogously for the connection coefficients (4.5)2, we have the following theorem.
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Theorem 4.8. The any order connection coefficients (4.5)2 of the Shannon wavelets (2.18)2 are

γ
(�)nm
kh = δnm

{

i�(1 − |μ(h − k)|)π
�2n�−1

� + 1
(2�+1 − 1)(1 + (−1)�)

+ μ(h − k)
�+1
∑

s=1

(−1)[1+μ(h−k)](2�−s+1)/2 �!i�−sπ�−s

(� − s + 1)!|h − k|s (−1)−s−2(h+k)2n�−s−1

×
{

2�+1
[

(−1)4h+s + (−1)4k+�
]

− 2s
[

(−1)3k+h+� + (−1)3h+k+s
]}

}

,

(4.24)

respectively, for � ≥ 1, and γ
(0)nm
kh

= δkhδnm.

Proof. From (4.9), (4.8), (4.7), (2.21), (2.19), it is

γ
(�)nm
kh

def=
〈

d�

dx�
ψnk (x), ψ

m
h (x)

〉

(4.9)
= 2π

〈 ̂d�

dx�
ψn
k
(x), ψ̂m

h
(x)

〉

(4.7)
= 2π〈(iω)�ψ̂nk (ω) , ψ̂

m
h (ω)〉

(2.21)
= 2π

∫∞

−∞
(iω)�ψnk (ω)ψ̂

m
h
(ω)dω

(2.19)
= 2π

∫∞

−∞
(iω)�

2−n/2

2π
e−iω(k+1/2)/2n

[

χ

(

ω

2n−1

)

+ χ
( −ω

2n−1

)]

× 2−m/2

2π
eiω(h+1/2)/2m

[

χ

(

ω

2m−1

)

+ χ
( −ω

2m−1

)]

dω,

(4.25)

from where, according to the definition (2.7), it is

γ
(�)nm
kh

= 0, n /=m, (4.26)

and (for n = m)

γ
(�)nn
kh

=
2−n

2π

∫∞

−∞
(iω)�e−iω(k−h)/2n

[

χ

(

ω

2n−1

)

+ χ
( −ω

2n−1

)]

dω

=
2−n

2π

[∫−2nπ

−2n+1π

(iω)�e−iω(k−h)/2ndω +
∫2n+1π

2nπ
(iω)�e−iω(k−h)/2ndω

]

.

(4.27)

By taking into account (4.16), (4.24) is proven.

Theorem 4.9. The connection coefficients are recursively given by the matrix at the lowest scale level:

γ
(�)nn
kh

= 2�(n−1)γ
(�)11
kh

. (4.28)
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Moreover, it is

γ
(2�+1)nn
kh

= − γ (2�+1)nn
hk

, γ
(2�)nn
kh

= γ
(2�)nn
hk

. (4.29)

Let us now prove that the mixed connection coefficients (4.6) are zero. It is enough to
show the following theorem.

Theorem 4.10. The mixed coefficients (4.6)1 of the Shannon wavelets are

Λ(�)n
kh = 0. (4.30)

Proof. From (4.9), (4.8), (4.7), (2.21), (2.19), it is

Λ(�)n
kh

def=
〈

d�

dx�
ϕ0
k(x) , ψ

m
h (x)

〉

= 2π
〈 ̂d�

dx�
ϕ0
k
(x) , ψ̂m

h
(x)

〉

(4.7)
= 2π〈(iω)�ϕ̂0

k(ω) , ψ̂
m
h (ω)〉

(2.21)
= 2π

∫∞

−∞
(iω)�ϕ0

k(ω)ψ̂
m
h
(ω)dω

(2.19)
= 2π

∫∞

−∞
(iω)�

2−n/2

2π
e−iωk/2nχ

(

ω

2n
+ 3π

)

× 2−m/2

2π
eiω(h+1/2)/2m

[

χ

(

ω

2m−1

)

+ χ
( −ω

2m−1

)]

dω,

(4.31)

from where, since

χ

(

ω

2n
+ 3π

)[

χ

(

ω

2m−1

)

+ χ
( −ω

2m−1

)]

= 0, (4.32)

the theorem is proven.

As a consequence, we have that the �-order derivatives of the Shannon scaling and
wavelets are

d�

dx�
ϕ0
h(x) =

∞
∑

k=−∞
λ
(�)
hk ϕ

0
k(x),

d�

dx�
ψmh (x) =

∞
∑

n=0

∞
∑

k=−∞
γ
(�)mn
hk ψnk (x) .

(4.33)

In other words, the following theorem holds.

Theorem 4.11. The derivatives of the Shannon scaling function are orthogonal to the derivatives of
the Shannon wavelets

〈

d�

dx�
ϕ0
h(x),

dp

dxp
ψmh (x)

〉

= 0 . (4.34)

Proof. It follows directly from (4.33) and the orthogonality of the Shannon functions
according to Theorem 2.4.
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4.1. First- and Second-Order Connection Coefficients

For the first and second derivatives of the Shannon wavelets, we have (see [11])

d

dx
ψnk (x) =

∞
∑

h=−∞
γ ′nnkh ψ

n
h(x),

d2

dx2
ψnk (x) =

∞
∑

h=−∞
γ ′′nnkh ψnh(x),

(4.35)

with (4.24)

γ ′nnkh = μ(h − k)
2
∑

s=1

(−1)[1+μ(h−k)](2−s+1)/2 i1−sπ1−s

(2 − s)!|h − k|s (−1)−s−2(h+k)2n−s−1

×
{

4
[

(−1)4h+s + (−1)4k+1
]

− 2s
[

(−1)3k+h+1 + (−1)3h+k+s
]}

,

γ ′′nnkh = −(1 − |μ(h − k)|)π222n

+ μ(h − k)
3
∑

s=1

(−1)[1+μ(h−k)](5−s)/2 2i2−sπ2−s

(3 − s)!|h − k|s (−1)−s−2(h+k)22n−s−1

×
{

8
[

(−1)4h+s + (−1)4k+2
]

− 2s
[

(−1)3k+h+2 + (−1)3h+k+s
]}

,

(4.36)

respectively.
A disadvantage in (4.33) is that derivatives are expressed as infinite sum. However,

since the wavelets are mainly localized in a short range interval, a good approximation can
be obtained with a very few terms of the series. The main advantage of (4.33) is that the
derivatives are expressed in terms of the wavelet basis.

Analogously, we obtain for the first and second derivative of the scaling function

d

dx
ϕ0
k(x) =

∞
∑

h=−∞
λ′khϕ

0
h(x),

d2

dx2
ϕ0
k(x) =

∞
∑

h=−∞
λ′′khϕ

0
h(x),

(4.37)

with (4.20)

λ′kh = (−1)h−kμ(h − k)
2
∑

s=1

(−1)[1+μ(h−k)](3−s)/2 i1−sπ1−s

2(2 − s)!|h − k|s [1 + (−1)1−s],

λ′′kh=−(1−|μ(h − k)|)
π2

2
+(−1)h−kμ(h−k)

3
∑

s=1

(−1)[1+μ(h−k)](5−s)/2 i2−sπ2−s

(3 − s)!|h − k|s [1+(−1)2−s].

(4.38)
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The coefficients of derivatives are real values as can be shown by a direct computation

γ ′11
kh

k = −2 k = −1 k = 0 k = 1 k = 2

h = −2 0 −1
2

−1
4

−1
6

−1
8

h = −1
1
2

0 −1
2

−1
4

−1
6

h = 0
1
4

1
2

0 −1
2

−1
4

h = 1
1
6

1
4

1
2

0 −1
2

h = 2
1
8

1
6

1
4

1
2

0

(4.39)

γ ′22
kh

k = −2 k = −1 k = 0 k = 1 k = 2

h = −2 0 −1 −1
2

−1
3

−1
4

h = −1 1 0 −1 −1
2

−1
3

h = 0
1
2

1 0 −1 −1
2

h = 1
1
3

1
2

1 0 −1

h = 2
1
4

1
3

1
2

1 0

(4.40)

If we consider a dyadic discretization of the x-axis such that

xk= 2−n
(

k +
1
2

)

, k ∈ Z, (4.41)

that is,

k = −2 k = −1 k = 0 k = 1 k = 2

n = 0 −1.5 −0.5 0.5 1.5 2.5

n = 1 −0.75 −0.25 0.25 0.75 1.25

n = 2 −0.375 −0.125 0.125 0.375 0.625

(4.42)
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there results

ψnk

(

2−n
(

k +
1
2

))

= −2n/2, k ∈ Z . (4.43)

Thus (4.33) at dyadic points xk= 2−n(k + 1/2)becomes
[

d

dx
ψn
k
(x)

]

x=xk
= −2n/2

∞
∑

h=−∞
γnn
kh
,

[

d2

dx2
ψnk (x)

]

x=xk
= −2n/2

∞
∑

h=−∞
Γnnkh.

(4.44)

For instance, (see the above tables) in x1= 2−1(1 + 1/2),

[

d

dx
ψ1

1(x)
]

x=x1=3/4
= −21/2

∞
∑

h=−∞
γ11

1h
∼= −21/2

2
∑

h=−2

γ11
1h = −21/2

(

1
6
+

1
4

)

= −5
√

2
12

. (4.45)

Analogously, it is

ϕnk

(

2−n
(

k +
1
2

))

=
21+n/2

π
, k ∈ Z, (4.46)

from where, in xk = (k + 1/2), it is
[

d

dx
ϕ0
k
(x)

]

x=xk
=

2
π

∞
∑

h=−∞
λkh,

[

d2

dx2
ϕ0
k
(x)

]

x=xk
=

2
π

∞
∑

h=−∞
Λkh .

(4.47)

Outside the dyadic points, the approximation is quite good even with low values of
the parameters n, k. For instance, we have (Figure 5) the approximation

d
dx

ϕ0
0(x) =

cos πx
x

− sinπx
πx2

∼=
5
∑

h=−5

λ0hϕ
0
h(x) . (4.48)

5. Conclusion

In this paper, the theory of Shannon wavelets has been analyzed showing the main properties
of these functions sharply localized in frequency. The reconstruction formula for the L2(R)
functions has been given not only for the function but also for its derivatives. The derivative
of the Shannon wavelets has been computed by a finite formula (both for the scaling and for
the wavelet) for any order derivative. Indeed, to achieve this task, it was enough to compute
connection coefficients, that is, the wavelet coefficients of the basis derivatives. These
coefficients were obtained as a finite series (for any order derivatives). In Latto’s method
[6, 8, 9], instead, these coefficients were obtained only (for the Daubechies wavelets) by using
the inclusion axiom but in approximated form and only for the first two order derivatives.
The knowledge of the derivatives of the basis enables us to approximate a function and
its derivatives and it is an expedient tool for the projection of differential operators in the
numerical computation of the solution of both partial and ordinary differential equations
[2, 3, 10, 13].
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