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1. Introduction

It is well known that impulsive periodic motion is a very important and special phenomenon
not only in natural science but also in social science such as climate, food supplement,
insecticide population, and sustainable development. No autonomous periodic systems
with applications on finite dimensional spaces have been extensively studied. Particularly,
no autonomous impulsive periodic systems on finite dimensional spaces are considered
and some important results (such as the existence and stability of periodic solutions,
the relationship between bounded solution and periodic solution, and robustness by
perturbation) are obtained (see [1–5]).

Since the end of last century, many authors including us pay great attention on
impulsive systems with time-varying generating operators on infinite dimensional spaces.
Particulary, Dr. Ahmed investigated optimal control problems of system governed by
artificial heart model, uncertain systems, impulsive system with time-varying generating
operators, access control mechanism model, computer network traffic controllers model, and
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active queue management (AQM) system (see [6–14]). We also gave a series of results for
semilinear (strongly nonlinear) impulsive systems with time-varying generating operators
and optimal control problems (see [15–18]).

Although, there are some papers on periodic solutions of periodic system with time-
varying generating operators on infinite dimensional spaces (see [19–22]), to our knowledge,
nonlinear impulsive periodic systems with time-varying generating operators on infinite
dimensional (with unbounded operator) have not been extensively investigated. Recently,
we consider impulsive periodic system on infinite dimensional spaces. For linear impulsive
evolution operator is constructed and T0-periodic PC-mild solution is introduced. The
existence of periodic solutions and alternative theorem, criteria of Massera type, as well as
asymptotical stability and robustness by perturbation are established (see [23–25]).

Herein, we go on studying the semilinear impulsive periodic system with time-
varying generating operators

ẋ(t) = A(t)x(t) + f(t, x), t /= τk,

Δx(t) = Bkx(t) + ck, t = τk,
(1.1)

in the parabolic case on infinite dimensional Banach space X, where {A(t), t ∈ [0, T0]} is
a family of closed densely defined linear unbounded operators on X and the resolvent of
the unbounded operator A(t) is compact. Time sequence 0 = τ0 < τ1 < τ2 < · · · < τk · · · ,
limk→∞τk = ∞, τk+δ = τk + T0, Δx(τk) = x(τ+

k
) − x(τ−

k
), k ∈ Z

+
0 , T0 is a fixed positive number

and δ ∈ N denoted the number of impulsive points between 0 and T0. f is a measurable
function from [0,∞) × X to X and is T0-periodic in t, Bk+δ = Bk, ck+δ = ck. This paper is
mainly concerned with the existence of periodic solution for semilinear impulsive periodic
system with time-varying generating operators on infinite dimensional Banach space X.

In this paper, we use Leray-Schauder fixed point theorem to obtain the existence of
periodic solutions for semilinear impulsive periodic system with time-varying generating
operators (1.1). First, by virtue of impulsive evolution operator corresponding to linear
homogeneous impulsive system with time-varying generating operators, we construct a new
Poincaré operator P for semilinear impulsive periodic system with time-varying generating
operators (1.1), then overcome some difficulties to show the compactness of Poincaré operator
P which is very important. By a new generalized Gronwall’s inequality with mixed-type
integral operators given by us, the estimate of fixed point set {x = λPx, λ ∈ [0, 1]}
is established. Therefore, the existence of T0-periodic PC-mild solutions for semilinear
impulsive periodic system with time-varying generating operators is shown.

In order to obtain the existence of periodic solutions, many authors use Horn’s
fixed point theorem or Banach fixed point theorem. In [26, 27], by virtue of Horn’s fixed
point theorem and Banach fixed point theorem, respectively, we also obtain the existence of
periodic solutions for impulsive periodic systems. However, the conditions for Horn’s fixed
point theorem are not easy to be verified sometimes and the conditions for Banach’s fixed
point theorem are too strong. Here, a new way to show the existence of periodic solutions is
given by us, which is much different from our previous works, and other related results in the
literature. In addition, the conditions are easier to be verified and more weak compared with
some related papers (see [20, 26]). Of course, the new generalized Gronwall’s inequality with
mixed-type integral operators given by us which can be used in other problems have played
an essential role in the study of nonlinear problems on infinite dimensional spaces.

This paper is organized as follows. In Section 2, some results of linear impulsive
periodic systemwith time-varying generating operators and properties of impulsive periodic
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evolution operator corresponding to homogeneous linear impulsive periodic system with
time-varying generating operators are recalled. In Section 3, first, the new generalized
Gronwall’s inequality with mixed-type integral operator is shown and the T0-periodic
PC-mild solution for semilinear impulsive periodic system with time-varying generating
operators (1.1) is introduced. We construct the suitable Poincaré operator P and give the
relation between T0-periodic PC-mild solution and the fixed point of P . After showing the
compactness of the Poincaré operator P and obtaining the boundedness of the fixed point set
{x = λPx, λ ∈ [0, 1]} by virtue of the generalized Gronwall’s inequality, we can use Leray-
Schauder fixed point theorem to establish the existence of T0-periodic PC-mild solutions for
semilinear impulsive periodic system with time-varying generating operators. At last, an
example is given to demonstrate the applicability of our result.

2. Linear impulsive periodic system with time-varying generating operators

In order to study the semilinear impulse periodic system with time-varying generating
operators, we first recall some results about linear impulse periodic systemwith time-varying
generating operators here. LetX be a Banach space. £(X) denotes the space of linear operators
in X; £b(X) denotes the space of bounded linear operators in X. £b(X) is the Banach space
with the usual supremum norm. Define ˜D = {τ1, . . . , τδ} ⊂ [0, T0], where δ ∈ N denotes the
number of impulsive points between [0, T0]. We introduce PC([0, T0];X) ≡ {x : [0, T0] → X |
x is continuous at t ∈ [0, T0] \ ˜D, x is continuous from left and has right-hand limits at t ∈ ˜D}
and PC1([0, T0];X) ≡ {x ∈ PC([0, T0];X) | ẋ ∈ PC([0, T0];X)}. Set

‖x‖PC = max

{

sup
t∈[0,T0]

∥

∥x(t + 0)
∥

∥, sup
t∈[0,T0]

∥

∥x(t − 0)
∥

∥

}

, ‖x‖PC1 = ‖x‖PC + ‖ẋ‖PC. (2.1)

It can be seen that endowed with the norm ‖·‖PC(‖·‖PC1), PC([0, T0];X)(PC1([0, T0];X)) is a
Banach space.

Consider the following homogeneous linear impulsive periodic system with time-
varying generating operators:

ẋ(t) = A(t)x(t), t /= τk,

Δx
(

τk
)

= Bkx
(

τk
)

, t = τk
(2.2)

on Banach space X, where Δx(τk) = x(τ+
k
) − x(τ−

k
), {A(t), t ∈ [0, T0]} is a family of closed

densely defined linear unbounded operators on X satisfying the following assumption.

Assumption A1 (see [28, page 158]). For t ∈ [0, T0] one has

(P1) The domain D(A(t)) = D is independent of t and is dense in X.

(P2) For t ≥ 0, the resolvent R(λ,A(t)) = (λI −A(t))−1 exists for all λ with Reλ ≤ 0, and
there is a constant M independent of λ and t such that

∥

∥R
(

λ,A(t)
)∥

∥ ≤ M
(

1 + |λ|)−1 for Reλ ≤ 0. (2.3)

(P3) There exist constants L > 0 and 0 < α ≤ 1 such that
∥

∥

(

A(t) −A(θ)
)

A−1(τ)
∥

∥ ≤ L|t − θ|α for t, θ, τ ∈ [0, T0
]

. (2.4)
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Lemma 2.1 (see [28, page 159]). Under the Assumption A1, the Cauchy problem

ẋ(t) +A(t)x(t) = 0, t ∈ (0, T0
]

with x(0) = x0 (Eq.1)

has a unique evolution system {U(t, θ) | 0 ≤ θ ≤ t ≤ T0} in X satisfying the following properties:

(1) U(t, θ) ∈ £b(X) for 0 ≤ θ ≤ t ≤ T0;

(2) U(t, r)U(r, θ) = U(t, θ) for 0 ≤ θ ≤ r ≤ t ≤ T0;

(3) U(·, ·)x ∈ C(Δ, X) for x ∈ X, Δ = {(t, θ) ∈ [0, T0] × [0, T0] | 0 ≤ θ ≤ t ≤ T0};
(4) For 0 ≤ θ < t ≤ T0, U(t, θ) : X → D and t → U(t, θ) is strongly differentiable in X.

The derivative (∂/∂t)U(t, θ) ∈ £b(X) and it is strongly continuous on 0 ≤ θ < t ≤ T0.
Moreover,

∂

∂t
U(t, θ) = −A(t)U(t, θ) for 0 ≤ θ < t ≤ T0,

∥

∥

∥

∥

∂

∂t
U(t, θ)

∥

∥

∥

∥

£b(X)
=
∥

∥A(t)U(t, θ)
∥

∥

£b(X) ≤
C

t − θ
,

∥

∥A(t)U(t, θ)A(θ)−1
∥

∥

£b(X) ≤ C for 0 ≤ θ ≤ t ≤ T0.

(2.5)

(5) For every v ∈ D and t ∈ (0, T0], U(t, θ)v is differentiable with respect to θ on 0 ≤ θ ≤ t ≤
T0

∂

∂θ
U(t, θ)v = U(t, θ)A(θ)v, (2.6)

and, for each x0 ∈ X, the Cauchy problem (Eq.1) has a unique classical solution x ∈
C1([0, T0];X) given by

x(t) = U(t, 0)x0, t ∈ [0, T0
]

. (2.7)

In addition to Assumption A1, we introduce the following assumptions.

Assumption A2. There exits T0 > 0 such that A(t + T0) = A(t) for t ∈ [0, T0].

Assumption A3. For t ≥ 0, the resolvent R(λ,A(t)) is compact.

Then, we have the following lemma.

Lemma 2.2. Assumptions A1, A2, and A3 hold. Then evolution system {U(t, θ) | 0 ≤ θ ≤ t ≤ T0}
in X also satisfying the following two properties:

(6) U(t + T0, θ + T0) = U(t, θ) for 0 ≤ θ ≤ t ≤ T0;

(7) U(t, θ) is compact operator for 0 ≤ θ < t ≤ T0.

In order to introduce an impulsive evolution operator and give it’s properties, we need
the following assumption.

Assumption B. For each k ∈ Z
+
0 , Bk ∈ £b(X), there exists δ ∈ N such that τk+δ = τk +

T0 and Bk+δ = Bk.
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Consider the following Cauchy’s problem

ẋ(t) = A(t)x(t), t ∈ [0, T0
] \ ˜D,

Δx
(

τk
)

= Bkx
(

τk
)

, k = 1, 2, . . . , δ,

x(0) = x0.

(2.8)

For every x0 ∈ X, D is an invariant subspace of Bk, using Lemma 2.1, step by step, one
can verify that the Cauchy problem (2.8) has a unique classical solution x ∈ PC1([0, T0];X)
represented by x(t) = S(t, 0)x0 where S(·, ·) : Δ → £(X) given by

S(t, θ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

U(t, θ), τk−1 ≤ θ ≤ t ≤ τk,

U
(

t, τ+
k

)(

I + Bk

)

U
(

τk, θ
)

, τk−1 ≤ θ < τk < t ≤ τk+1,

U(t, τ+k )

[

∏

θ<τj<t

(I + Bj)U(τj , τ+j−1)

]

(I + Bi)U(τi, θ),

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.

(2.9)

The operator S(t, θ) ((t, θ) ∈ Δ) is called impulsive evolution operator associated with
{Bk; τk}∞k=1.

The following lemma on the properties of the impulsive evolution operator
S(t, θ)((t, θ) ∈ Δ) associated with {Bk; τk}∞k=1 are widely used in this paper.

Lemma 2.3 (see [24, Lemma 1]). Assumptions A1, A2, A3, and B hold. Impulsive evolution
operator {S(t, θ), (t, θ) ∈ Δ} has the following properties.

(1) For 0 ≤ θ ≤ t ≤ T0, S(t, θ) ∈ £b(X), that is, sup0≤θ≤t≤T0‖S(t, θ)‖ ≤ MT0 , where MT0 > 0.

(2) For 0 ≤ θ < r < t ≤ T0, r /= τk, S(t, θ) = S(t, r)S(r, θ).
(3) For 0 ≤ θ ≤ t ≤ T0 and N ∈ Z+

0 , S(t +NT0, θ +NT0) = S(t, θ).
(4) For 0 ≤ t ≤ T0 and M ∈ Z+

0 , S(MT0 + t, 0) = S(t, 0)[S(T0, 0)]M.

(5) S(t, θ) is compact operator for 0 ≤ θ < t ≤ T0.

Here, we note that system (2.2) has a T0-periodic PC-mild solution x if and only
if S(T0, 0) has a fixed point. The impulsive evolution operator {S(t, θ), (t, θ) ∈ Δ} can be
used to reduce the existence of T0-periodic PC-mild solutions for linear impulsive periodic
systemwith time-varying generating operators to the existence of fixed points for an operator
equation. This implies that we can build up the new framework to study the periodic PC-
mild solutions for the semilinear impulsive periodic system with time-varying generating
operators on Banach space.

Now we introduce the PC-mild solution of Cauchy’s problem (2.8) and T0-periodic
PC-mild solution of the system (2.2).

Definition 2.4. For every x0 ∈ X, the function x ∈ PC([0, T0];X) given by x(t) = S(t, 0)x0 is
said to be the PC-mild solution of the Cauchy problem (2.8).

Definition 2.5. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of
system (2.2) if it is a PC-mild solution of Cauchy’s problem (2.8) corresponding to some x0

and x(t + T0) = x(t) for t ≥ 0.
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Secondly, we recall the following nonhomogeneous linear impulsive periodic system
with time-varying generating operators

ẋ(t) = A(t)x(t) + f(t), t /= τk,

Δx
(

τk
)

= Bkx
(

τk
)

+ ck, t = τk,
(2.10)

where f ∈ L1([0, T0];X), f(t + T0) = f(t) for t ≥ 0 and ck satisfies the following assumption.

Assumption C. For each k ∈ Z
+
0 and ck ∈ X, there exists δ ∈ N such that ck+δ = ck.

In order to study system (2.10), we need to consider the following Cauchy problem

ẋ(t) = A(t)x(t) + f(t), t ∈ [0, T0
] \ ˜D,

Δx
(

τk
)

= Bkx
(

τk
)

+ ck, k = 1, 2, . . . , δ,

x(0) = x0,

(2.11)

and introduce the PC-mild solution of Cauchy’s problem (2.11) and T0-periodic PC-mild
solution of system (2.10).

Definition 2.6. A function x ∈ PC([0, T0];X), for finite interval [0, T0], is said to be a PC-mild
solution of the Cauchy problem (2.10) corresponding to the initial value x0 ∈ X and input
f ∈ L1([0, T0];X) if x is given by

x(t) = S(t, 0)x0 +
∫ t

0
S(t, θ)f(θ)dθ +

∑

0≤τk<t
S(t, τ+k

)

ck. (Eq.2)

Definition 2.7. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of
system (2.10) if it satisfies the expression (Eq.2) and x(t + T0) = x(t) for t ≥ 0.

3. Periodic solutions of semilinear impulsive periodic system with
time-varying generating operators

In order to use Leray-Schauder theorem to show the existence of periodic solutions, we need
the following generalized Gronwall’s inequality with mixed-type integral operator which is
much different from the classical Gronwall’s inequality and can be used in other problems
(such as discussion on integral-differential equation of mixed type, see [15]). It will play an
essential role in the study of nonlinear problems on infinite dimensional spaces.

Lemma 3.1. Let a ≥ 0, b ≥ 0, c ≥ 0, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 < 1. If x ∈ PC([0, T0];X) satisfies

∥

∥x(t)
∥

∥ ≤ a + b

∫ t

0

∥

∥x(θ)
∥

∥

λ1dθ + c

∫T0

0

∥

∥x(θ)
∥

∥

λ2dθ, ∀t ∈ [0, T0
]

, (3.1)

then there exists a constantM∗ = M∗(a, b, c, λ2, T0) > 0 such that

∥

∥x(t)
∥

∥ ≤ M∗, ∀t ∈ [0, T0
]

. (3.2)
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Proof. Let

y(t) =
∥

∥x(t)
∥

∥ + 1, ∀t ∈ [0, T0
]

,

M = max
t∈[0,T0]

∥

∥y(t)
∥

∥.
(3.3)

Then,

1 ≤ y(t) ≤ 1 + a + b

∫ t

0

∥

∥y(θ)
∥

∥dθ + cT0M
λ2 , ∀t ∈ [0, T0

]

. (3.4)

By Gronwall’s inequality, we obtain

y(t) ≤ (1 + a + cT0M
λ2
)

ebt, ∀t ∈ [0, T0
]

. (3.5)

Thus,

M ≤ (1 + a + cT0M
λ2
)

ebT0 ≤ (1 + a + cT0
)

ebT0Mλ2 . (3.6)

Therefore,

∥

∥x(t)
∥

∥ ≤ M ≤ ((1 + a + cT0
)

ebT0
)1/(1−λ2) ≡ M∗(a, b, c, λ2, T0

)

, ∀t ∈ [0, T0
]

. (3.7)

This completes the proof.

Now, we consider the following semilinear impulsive periodic system with time-
varying generating operators

ẋ(t) = A(t)x(t) + f(t, x), t /= τk,

Δx(t) = Bkx(t) + ck, t = τk,
(3.8)

and introduce Poincaré operator and study the T0-periodic PC-mild solution of system (3.8).
In order to study the system (3.8), we first consider Cauchy’s problem

ẋ(t) = A(t)x(t) + f(t, x), t ∈ [0, T0
] \ ˜D,

Δx(τk) = Bkx
(

τk
)

+ ck, k = 1, 2, . . . , δ,

x(0) = x.

(3.9)

By virtue of the expression of the PC-mild solution of the Cauchy problem (2.11), we can
introduce the PC-mild solution of the Cauchy problem (3.9).

Definition 3.2. A function x ∈ PC([0, T0];X) is said to be a PC-mild solution of the Cauchy
problem (3.9) corresponding to the initial value x ∈ X if x satisfies the following integral
equation:

x(t) = S(t, 0)x +
∫ t

0
S(t, θ)f(θ, x(θ))dθ +

∑

0≤τk<t
S(t, τ+k

)

ck for t ∈ [0, T0
]

. (3.10)

Now, we introduce the T0-periodic PC-mild solution of system (3.8).
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Definition 3.3. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of
system (3.8) if it is a PC-mild solution of Cauchy’s problem (3.9) corresponding to some x
and x(t + T0) = x(t) for t ≥ 0.

In order to prove the existence of the PC-mild solution of Cauchy’s problem (3.9), we
need the following assumption.

Assumption F. (F1): f : [0,∞)×X → X is measurable for t ≥ 0 and for any x, y ∈ X satisfying
‖x‖, ‖y‖ ≤ ρ there exists a positive constant Lf(ρ) > 0 such that

∥

∥f(t, x) − f(t, y)
∥

∥ ≤ Lf(ρ)‖x − y‖. (3.11)

(F2): There exists a positive constant Mf > 0 such that
∥

∥f(t, x)
∥

∥ ≤ Mf

(

1 + ‖x‖) ∀x ∈ X. (3.12)

(F3): f(t, x) is T0-periodic in t. That is, f(t + T0, x) = f(t, x), t ≥ 0.

Then, we have the following theorem.

Theorem 3.4. Assumptions A1, F(F1), and F(F2) hold. Cauchy’s problem (3.9) has a unique PC-mild
solution given by

x(t, x) = S(t, 0)x +
∫ t

0
S(t, θ)f(θ, x(θ, x))dθ +

∑

0≤τk<t
S(t, τ+k

)

ck. (3.13)

Proof. Under the Assumptions A1, F(F1), and F(F2), using the similar method of Theorem
5.3.3 (see [28, page 169]), Cauchy’s problem

ẋ(t) = A(t)x(t) + f(t, x), t ∈ [s, τ],

x(s) = x ∈ X
(3.14)

has a unique mild solution

x(t) = U(t, s)x +
∫ t

s

U(t, θ)f
(

θ, x(θ)
)

dθ. (3.15)

In general, for t ∈ (τk, τk+1], Cauchy’s problem

ẋ(t) = A(t)x(t) + f(t, x), t ∈ (τk, τk+1
]

,

x(τk) = xk ≡ (I + Bk

)

x
(

τk
)

+ ck ∈ X
(3.16)

has a unique PC-mild solution

x(t) = U
(

t, τk
)

xk +
∫ t

τk

U(t, θ)f
(

θ, x(θ)
)

dθ. (3.17)

Combining all of solutions on [τk, τk+1] (k = 1, . . . , δ), one can obtain the PC-mild
solution of the Cauchy problem (3.9) given by

x(t, x) = S(t, 0)x +
∫ t

0
S(t, θ)f(θ, x(θ, x))dθ +

∑

0≤τk<t
S(t, τ+k

)

ck. (3.18)
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In order to study the periodic solutions of the system (3.8), we define Poincaré operator
from X to X as following:

P(x) = x(T0, x) = S(T0, 0)x +
∫T0

0
S(T0, θ)f

(

θ, x(θ, x)
)

dθ +
∑

0≤τk<T0
S(T0, τ+k

)

ck, (3.19)

where x(·, x) denote the PC-mild solution of the Cauchy problem (3.9) corresponding to the
initial value x(0) = x. We note that a fixed point of P gives rise to a periodic solution.

Lemma 3.5. System (3.8) has a T0-periodic PC-mild solution if and only if P has a fixed point.

Proof. Suppose x(·) = x(· + T0), then x(0) = x(T0) = P(x(0)). This implies that x(0) is a
fixed point of P . On the other hand, if Px0 = x0, x0 ∈ X, then for the PC-mild solution
x(·, x0) of the Cauchy problem (3.9) corresponding to the initial value x(0) = x0, we can
define y(·) = x(· + T0, x0), then y(0) = x(T0, x0) = Px0 = x0. Now, for t > 0, we can use the (2),
(3), and (4) of Lemma 2.3 and Assumptions A2, B, C, F(F3) to obtain

y(t) = x
(

t + T0, x0
)

= S(t + T0, T0
)S(T0, 0

)

x0 +
∫T0

0
S(t + T0, T0

)S(T0, θ
)

f
(

θ, x
(

θ, x0
))

dθ

+
∑

0≤τk<T0
S(t + T0, T0

)S(T0, τ+k
)

ck

+
∫ t+T0

T0

S(t + T0, θ
)

f
(

θ, x
(

θ, x0
))

dθ +
∑

T0≤τk+δ<t+T0
S(t + T0, τ

+
k+δ

)

ck

= S(t, 0)
{

S(T0, 0
)

x0 +
∫T0

0
S(T0, θ

)

f
(

θ, x
(

θ, x0
))

dθ +
∑

0≤τk<T0
S(T0, τ+k

)

ck

}

+
∫ t

0
S(t + T0, s + T0

)

f
(

s + T0, x
(

s + T0, x0
))

ds +
∑

0≤τk<t
S(t, τ+k

)

ck

= S(t, 0)y(0) +
∫ t

0
S(t, s)f(s, y(s, y(0)))ds +

∑

0≤τk<t
S(t, τ+k

)

ck.

(3.20)

This implies that y(·, y(0)) is a PC-mild solution of Cauchy’s problem (3.9)with initial value
y(0) = x0. Thus, the uniqueness implies that x(·, x0) = y(·, y(0)) = x(· + T0, x0), so that x(·, x0)
is a T0-periodic.

Next, we show that P defined by (3.19) is a continuous and compact operator.

Lemma 3.6. Assumptions A1, A3, F(F1), and F(F2) hold. Then, P is a continuous and compact
operator.

Proof. (1) Show that P is a continuous operator on X.
Let x, y ∈ Ξ ⊂ X, where Ξ is a bounded subset of X. Suppose x(·, x) and x(·, y) are the

PC-mild solutions of Cauchy’s problem (3.9) corresponding to the initial value x and y ∈ X,
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respectively, given by

x(t, x) = S(t, 0)x +
∫ t

0
S(t, θ)f(θ, x(θ, x))dθ +

∑

0≤τk<t
S(T0, τ+k

)

ck,

x(t, y) = S(t, 0)y +
∫ t

0
S(t, θ)f(θ, x(θ, y))dθ +

∑

0≤τk<t
S(T0, τ+k

)

ck.

(3.21)

Thus, we obtain
∥

∥x(t, x)
∥

∥ ≤ MT0‖x‖ +MT0MfT0 +MT0

∑

0≤τk<T0

∥

∥ck
∥

∥ +MT0

∫ t

0

∥

∥x(θ, x)
∥

∥dθ,

∥

∥x(t, y)
∥

∥ ≤ MT0‖y‖ +MT0MfT0 +MT0

∑

0≤τk<T0

∥

∥ck
∥

∥ +MT0

∫ t

0

∥

∥x(θ, y)
∥

∥dθ.

(3.22)

By Gronwall’s inequality with impulse [5, Lemma 1.7.1], one can verify that there exist
constants M∗

1 and M∗
2 > 0 such that

‖x(t, x)‖ ≤ M∗
1, ‖x(t, y)‖ ≤ M∗

2. (3.23)

Let ρ = max{M∗
1,M

∗
2} > 0, then ‖x(·, x)‖, ‖x(·, y)‖ ≤ ρ which imply that they are locally

bounded. By Assumption F(F1), we obtain

∥

∥x(t, x) − x(t, y)
∥

∥ ≤ ∥∥S(t, 0)∥∥‖x − y‖ +
∫ t

0

∥

∥S(t, θ)∥∥f(θ, x(θ, x)) − f
(

θ, x(θ, y)
)‖dθ

≤ MT0‖x − y‖ +MT0Lf(ρ)
∫ t

0

∥

∥x(θ, x) − x(θ, y)
∥

∥dθ.

(3.24)

By Gronwall’s inequality with impulse [5, Lemma 1.7.1] again, one can verify that there exists
constant M > 0 such that

∥

∥x(t, x) − x(t, y)
∥

∥ ≤ MMT0‖x − y‖ ≡ L‖x − y‖, ∀t ∈ [0, T0
]

, (3.25)

which implies that
∥

∥P(x) − P(y)
∥

∥ =
∥

∥x
(

T0, x
) − x

(

T0, y
)∥

∥ ≤ L‖x − y‖. (3.26)

Hence, P is a continuous operator on X.
(2) Verifies that P takes a bounded set into a precompact set in X.
Let Γ be a bounded subset of X. Define K = PΓ = {P(x) ∈ X | x ∈ Γ}.
For 0 < ε < t ≤ T0, define

Kε = PεΓ = S(T0, T0 − ε
){

x(T0 − ε, x) | x ∈ Γ
}

. (3.27)

Next, we show that Kε is precompact in X. In fact, for x ∈ Γ fixed, we have

∥

∥x
(

T0 − ε, x
)∥

∥ =
∥

∥

∥

∥

S(T0 − ε, 0
)

x +
∫T0−ε

0
S(T0 − ε, θ

)

f
(

θ, x(θ, x)
)

dθ +
∑

0≤τk<T0−ε
S(T0 − ε, τ+k

)

ck

∥

∥

∥

∥

≤ MT0‖x‖ +MT0MfT0 +
∫T0

0

∥

∥x(θ, x)
∥

∥dθ +MT0

∑

0≤τk<T0

∥

∥ck
∥

∥

≤ MT0‖x‖ +MT0MfT0 + T0ρ +MT0

∑

0≤τk<T0

∥

∥ck
∥

∥.

(3.28)

This implies that the set {x(T0 − ε, x) | x ∈ Γ} is bounded.
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By (5) of Lemma 2.3, S(T0, T0 − ε) is a compact operator. Thus, Kε is precompact in X.
On the other hand, for arbitrary x ∈ Γ,

Pε(x) = S(T0, 0
)

x +
∫T0−ε

0
S(T0, θ

)

f
(

θ, x(θ, x)
)

dθ +
∑

0≤τk<T0−ε
S(T0, τ+k

)

ck. (3.29)

Thus, combined with (3.19), we have

∥

∥Pε(x) − P(x)
∥

∥ ≤
∥

∥

∥

∥

∫T0−ε

0
S(T0, θ

)

f
(

θ, x(θ)
)

dθ −
∫T0

0
S(T0, θ

)

f
(

θ, x(θ)
)

dθ

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑

0≤τk<T0−ε
S(T0, τ+k

)

ck −
∑

0≤τk<T0
S(T0, τ+k

)

ck

∥

∥

∥

∥

∥

≤
∫T0

T0−ε

∥

∥S(T0, θ
)∥

∥

∥

∥f
(

θ, x(θ)
)∥

∥dθ +MT0

∑

T0−ε≤τk<T0

∥

∥ck
∥

∥

≤ 2MT0Mf(1 + ρ)ε +MT0

∑

T0−ε≤τk<T0

∥

∥ck
∥

∥.

(3.30)

It is showing that the set K can be approximated to an arbitrary degree of accuracy by a
precompact setKε. Hence,K itself is precompact set in X. That is, P takes a bounded set into
a precompact set in X. As a result, P is a compact operator.

In order to use Leary-Schauder fixed pointed theorem to examine that the operator P
has a fixed point, we have to make the Assumption F(F2) a little strong as following.

(F2′): there exist constant Nf > 0 and 0 < λ < 1 such that
∥

∥f(t, x)
∥

∥ ≤ Nf

(

1 + ‖x‖λ) ∀x ∈ X. (3.31)

Now, we can give the main results in this paper.

Theorem 3.7. Assumptions A1, A2, A3, B, C, F(F1), F(F2′), and F(F3) hold. Then system (3.8) has
a T0-periodic PC-mild solution on [0,+∞).

Proof. By (5) of Lemma 2.3, S(T0, 0) is a compact operator on infinite dimensional space X.
Thus, S(T0, 0)/=αI, α ∈ R. Then, there exists β > 0 such that

∥

∥

[

σS(T0, 0
) − I

]

x
∥

∥ ≥ β‖x‖ for σ ∈ [0, 1]. (3.32)

In fact, define Πσ = I − σS(T0, 0), σ ∈ [0, 1], and

Πσ : [0, 1] −→ £b(X), h(σ) =
∥

∥Πσ

∥

∥ : [0, 1] −→ R
+. (3.33)

It is obvious that h ∈ C([0, 1];R+). Thus, there exist σ∗ ∈ [0, 1] and β > 0 such that

h
(

σ∗
)

= min
{

h(σ) | σ ∈ [0, 1]
} ≥ β > 0. (3.34)

If not, there exits σ ∈ [0, 1] such that h(σ) = 0. We can assert that σ /= 0 unless h(σ) = 1. Thus,
for σ ∈ (0, 1]

S(T0, 0) = 1
σ
I where

1
σ

≥ 1, (3.35)

which is a contradiction with S(T0, 0)/=αI, α ∈ R.
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By Theorem 3.4, for fixed x ∈ X, the Cauchy problem (3.9) corresponding to the initial
value x(0) = x has the PC-mild solution x(·, x). By Lemma 3.6, the operator P defined by
(3.19), is compact.

According to Leray-Schauder fixed point theory, it suffices to show that the set {x ∈
X | x = σPx, σ ∈ [0, 1]} is a bounded subset ofX. In fact, let x ∈ {x ∈ X | x = σPx, σ ∈ [0, 1]},
we have

β‖x‖ ≤ ∥∥[σS(T0, 0
) − I

]

x
∥

∥

= σ

∫T0

0

∥

∥S(T0, θ
)∥

∥

∥

∥f
(

θ, x(θ, x)
)∥

∥dθ + σ
∑

0≤τk<T0

∥

∥S(T0, τ+k
)∥

∥

∥

∥ck
∥

∥.
(3.36)

By Assumption F(F2′),

‖x‖ ≤ σ

β

∫T0

0

∥

∥S(T0, θ
)∥

∥

∥

∥f
(

θ, x(θ, x)
)∥

∥dθ +
σ

β

∑

0≤τk<T0

∥

∥S(T0, τ+k
)∥

∥

∥

∥ck
∥

∥

≤ σ

β
MT0

(

NfT0 +Nf

∫T0

0

∥

∥x(θ, x)
∥

∥

λ
dθ +

∑

0≤τk<T0

∥

∥ck
∥

∥

)

.

(3.37)

For t ∈ [0, T0], we obtain

∥

∥x(t, x)
∥

∥ ≤ MT0‖x‖ +MT0NfT0 +MT0Nf

∫ t

0

∥

∥x(θ, x)
∥

∥

λ
dθ +MT0

∑

0≤τk<t

∥

∥ck
∥

∥

≤ σ

β
M2

T0

(

NfT0 +Nf

∫T0

0

∥

∥x(θ, x)
∥

∥

λ
dθ +

∑

0≤τk<T0

∥

∥ck
∥

∥

)

+MT0NfT0 +MT0Nf

∫ t

0

∥

∥x(θ, x)
∥

∥

λ
dθ +MT0

∑

0≤τk<t

∥

∥ck
∥

∥

≤ MT0NfT0 +
σ

β
M2

T0
NfT0 +

σ

β
M2

T0

∑

0≤τk<T0
‖ck‖ +MT0

∑

0≤τk<T0

∥

∥ck
∥

∥

+MT0Nf

∫ t

0

∥

∥x(θ, x)
∥

∥

λ
dθ +

σ

β
M2

T0
Nf

∫T0

0

∥

∥x(θ, x)
∥

∥

λ
dθ.

(3.38)

By Lemma 3.1, there exists M∗ > 0 such that

∥

∥x(t, x)
∥

∥ ≤ M∗ for t ∈ [0, T0
]

. (3.39)

This implies that ‖x(0, x)‖ = ‖x‖ ≤ M∗ for all x ∈ {x ∈ X | x = σPx, σ ∈ [0, 1]}.
Thus, by Leray-Schauder fixed point theory, there exits x0 ∈ X such that Px0 =

x0. By Lemma 3.5, we know that the PC-mild solution x(·, x0) of Cauchy’s problem (3.9)
corresponding to the initial value x(0) = x0, is just T0-periodic. Therefore x(·, x0) is a T0-
periodic PC-mild solution of system (3.8).
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4. Application

In this section, an example is given to illustrate our theory. Consider the following problem:

∂

∂t
x(t, y) = sin tΔx(t, y) +

√

3x2/3(t, y) + 2 + sin(t, y), y ∈ Ω, t ∈ (0, 2π] \
{

1
2
π,π,

3
2
π

}

,

Δx(τi, y) = x
(

τi + 0, y
) − x(τi − 0, y)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.05Ix
(

τi, y
)

, i = 1,

−0.05Ix(τi, y
)

, i = 2,

0.05Ix
(

τi, y
)

, i = 3,

y ∈ Ω, τi =
i

2
π, i = 1, 2, 3,

x(t, y)|y∈∂Ω = 0, t > 0,

x(0, y) = x(2π, y),
(4.1)

where Ω ⊂ R3 is bounded domain and ∂Ω ∈ C3.
Define X = L2(Ω), D(A) = H2(Ω)

⋂

H1
0(Ω), and A(t)x = − sin t(∂2x/∂y2

1 + ∂2x/∂y2
2 +

∂2x/∂y2
3) for x ∈ D(A), which satisfies Assumptions A1, A2, and A3. Define x(·)(y) = x(·, y),

sin(·)(y) = sin(·, y), f(·, x(·))(y) =
√

3x2/3(·, y) + 2 + sin(·, y) and

Bi =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.05I, i = 3m − 2,

−0.05I, i = 3m − 1, τi =
iπ

2
, i,m ∈ N.

0.05I, i = 3m.

(4.2)

It is obvious that τi+3 = τi + 2π , Bi+3 = Bi ∈ £b(L2(Ω))which satisfy the Assumption B.
For any x, z ∈ X satisfying 1 ≤ ‖x‖, ‖z‖ ≤ ρ,

∥

∥f(t, x) − f(t, z)
∥

∥≤
∥

∥

∥

√

3x2/3 + 2 −
√

3z2/3 + 2
∥

∥

∥

≤ (‖x‖1/3 + ‖z‖1/3)‖x1/3 − z1/3‖
√

3‖x‖2/3 + 2 +
√

3‖z‖2/3 + 2

≤ ρ1/3√
2
‖x − z‖.

(4.3)

Meanwhile,

∥

∥f(t, x)
∥

∥ ≤
∥

∥

∥

√

3x2/3 + 2
∥

∥

∥ + ‖ sin t‖ ≤
√

3‖x‖2/3 + 2 + 1 ≤ 3
(

1 + ‖x‖2/3),

f(· + 2π, x) =
√

3x2/3 + 2 + sin(· + 2π) =
√

3x2/3 + 2 + sin(·) = f(·, x).
(4.4)

These imply that Assumptions F(F1), F(F2′), and F(F3) hold. It comes from

S(2π, 0) = U
(

2π, τ3
)(

I + B3
)

U
(

τ3, τ2
)(

I + B2
)

U(τ2, τ1
)(

I + B1
)

U(τ1, 0
)

=
(

0.952 · 1.05)U(2π, 0)
(4.5)
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that S(2π, 0)/=αI, α > 1. In fact, if (0.952 · 1.05)T(2π) = αI, then U(2π, 0) = (α/(0.952 · 1.05))I
cannot be compact in L2(Ω), which is a contradiction with U(t, θ)which is compact operator
for 0 ≤ θ < t ≤ T0. Thus problem (4.1) can be rewritten as

ẋ(t) = A(t)x(t) + f(t, x), t ∈ (0, 2π] \
{

1
2
π,π,

3
2
π

}

,

Δx

(

i

2
π

)

= Bix

(

i

2
π

)

, i = 1, 2, 3,

x(0) = x(2π).

(4.6)

It satisfies all the assumptions given in Theorem 3.7, our results can be used to problem (4.1).
That is, problem (4.1) has a 2π-periodic PC-mild solution x2π(·, y) ∈ PC2π([0 + ∞);L2(Ω)),
where

PC2π
(

[0,+∞);L2(Ω)
) ≡ {x ∈ PC

(

[0,+∞);L2(Ω)
) | x(t) = x(t + 2π), t ≥ 0

}

. (4.7)
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