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CEP 12516-410 Guaratinguetá, SP, Brazil
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In terms of stability around the primary, it is widely known that the semimajor axis of the
retrograde satellites is much larger than the corresponding semimajor axis of the prograde satellites.
Usually this conclusion is obtained numerically, since precise analytical derivation is far from being
easy, especially, in the case of two or more disturbers. Following the seminal idea that what is
unstable in the restricted three-body problem is also unstable in the general N-body problem,
we present a simplified model which allows us to derive interesting resonant configurations.
These configurations are responsible for cumulative perturbations which can give birth to strong
instability that may cause the ejection of the satellite. Then we obtain, analytically, approximate
bounds of the stability of prograde and retrograde satellites. Although we recover quite well
previous results of other authors, we comment very briefly some weakness of these bounds.

Copyright q 2008 Tadashi Yokoyama et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Among the puzzling questions in the solar system inventory, the problem of the irregular
moons of the Jovian planets is a crucial challenge and controversial topic. Their orbits are
highly tilted, very eccentric, and in opposition to inner satellites; these moons orbit the mother
planets at very large distances, being strongly disturbed by the Sun. Recently, the number
of these distant moons has increased at least one order of magnitude than the pre-CCD era
(Sheppard et al. [1], Holman et al. [2], and references therein). These discoveries have provided
a lot of new ingredients indicating interesting clues to understand the origin, composition,
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Figure 1: Geometry of the problem.

and evolution of such objects. In this work we basically analyze some dynamical aspects
which govern the escape process of an irregular satellite. It is well known that there are
some remarkable differences in the stability domain between retrograde and prograde moons
(Alvarellos and Dones [3], Hamilton and Krivov [4], Vieira Neto et al. [5, 6], Ćuk and Gladman
[7], Domingos et al. [8], etc.). Recently, a large number (about 60000) of irregular satellites were
numerically integrated by Nesvorný et al. [9]. Among some interesting new results, they also
confirm the role played by the Kozai-Lidov and evection resonances which in general provoke
the escape of these objects. The evection resonance is caused by the 1 : 1 commensurability
between � (longitude of the satellite pericenter) and λ� (Sun’s mean longitude) where index
� refers to the Sun’s elements. Nesvorný et al. [9] show that once a prograde satellite is in an
evection resonance, the critical angle � − λ� can librate around 180◦, resulting in a cumulative
perturbation which can cause the escape of the satellite. For the retrograde satellites, the
phenomenon is similar, however the definition of the critical angle must be changed and the
libration center is 90◦ or 270◦. Nesvorný et al. [9] show that both resonances occur in the vicinity
of some fixed values of the semimajor axes of the satellite. Some investigations on these values
were done by Alvarellos and Dones [3] and Hamilton and Krivov [4], using some concepts
of Jacob constant and generalization of the Tisserand constant for the restricted three-body
problem. In this work we derive an alternative and simple way to obtain, theoretically, these
semimajor values. Through the steps we outline here, it becomes very clear the main idea
which associates the libration of the critical angle with the appearance of the instability.

2. Disturbing function: second-order expansion

Let us assume a Cartesian system fixed on Jupiter. Initially, the reference plane is the equator of
the planet. Figure 1 shows the geometry of the problem. The disturbing function for the motion
of a satellite perturbed by the Sun is

R� =
k2M�r2

2r3�

(
3 cos2(S) − 1

)
, (2.1)

where third-order terms in the ratio of the distances (r/r�) are neglected; k2 is the constant of
the gravitation, M� is the mass of the Sun, and r and r� are the position vector of the satellite
and of the Sun, respectively. S is the angular distance between Sun and the satellite. From the
geometry we have

cos(S) =
x

r

x�
r�

+
y

r

y�
r�

+
z

r

z�
r�

. (2.2)
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We adopt the classical notations: (a, e, I, l, ω,Ω, f) stand for semimajor axis, eccentricity,
inclination, mean anomaly, argument of pericenter, longitude of the node, and true anomaly,
respectively, for the elements of the satellite. The same variables with the index � are used for
the Sun.

Now let us choose the Sun-Jupiter orbital plane as the reference plane, so that z� = I� = 0
and

cos(S) =
[
cos(f +ω)cos(Ω) − sin(f +ω) sin(Ω)cos(I)

][
cos

(
f� +��

)]

+
[
cos(f +ω) sin(Ω) + sin(f +ω)cos(Ω)cos(I)

][
sin

(
f� +��

)]
,

cos(S) = cos
(
θ1
)
cos

(
θ2
)
+ sin

(
θ1
)
sin

(
θ2
)
cos(I),

(2.3)

where θ1 = f +� , θ2 = f� +�� − Ω (� , �� are the longitudes of pericenter of satellite and of
the Sun, resp.).

Therefore we have

R�=
k2M�a2

2r3�

r2

a2

{
− 1
4
+
3
4
[
cos

(
2θ2

)
+cos

(
2θ2

)
cos

(
2θ1

)
+cos

(
2θ1

)]
+
3
4
cos2(I)

×[1−cos(2θ2
)−cos(2θ1

)
+cos

(
2θ2

)
cos

(
2θ1

)]
+
3
2
cos(I) sin

(
2θ1

)
sin

(
2θ2

)
}
.

(2.4)

Note that terms like r2/a2, (r2/a2)cos(2f), (r2/a2) sin(2f), and so forth can be averaged
through simple formulae of the classical two-body problem (Yokoyama et al. [10]). Let 〈·〉
indicates average with respect to the mean anomaly of the satellite:

〈
r 2

a2

〉
=

1
2π

∫2π

0

r 2

a2
dl. (2.5)

Omitting the details, we easily get
〈
r 2

a2

〉
= 1 +

3
2
e2,

〈
r 2

a2
cos(2f)

〉
=
5
2
e2,

〈
r 2

a2
sin(2f)

〉
= 0. (2.6)

Note that up to now, in the above calculations neither expansion in eccentricity nor in
inclination was used. This is an important point since we have to deal with high values of the
eccentricity and inclination. The expression of the averaged disturbing function up to second
order in the ratio r/a is

R� =
k2M�a2

2r3�

{
− 1
4

(
1 +

3
2
e2
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+
3
4

[(
1 +

3
2
e2
)
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2θ2
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2
e2cos(2� − 2Ω)cos
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2θ2

)
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5
2
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+
3
4
cos2(I)
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1 +

3
2
e2
)
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1 +

3
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(
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)

− 5
2
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5
2
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(
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+
15
4
e2 sin(2� − 2Ω) sin(2θ2)cos(I)

}
.

(2.7)
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Figure 2: (a) Prograde satellite. Initial conditions: a = 395RJ , e = 0.01, I = 1.5◦, and � = 180◦. (b) Prograde
satellite. Initial conditions: a = 400RJ , e = 0.1, I = 1◦ and� = 180◦.

3. Prograde satellites

Considering this disturbing function, we integrate the Lagrange variational equations (Danby
[11]). Figure 2(a) shows the behavior of the critical angle (� − λ�) and the eccentricity. Note
that if the libration of this angle is centered at 180◦, the apocenter of the satellite will always be
close to Sun. In Figure 3 we show this situation which is a critical case when Jupiter, Sun, and
apocenter are aligned, that is, the amplitude of the libration is zero.

In this case, nomatter the period of the satellite, each time it passes through the apocenter
Swe have the Sun, satellite, and Jupiter aligned with the first two in their closest approach.

Therefore, it will occur a cumulative perturbation. In particular, note that this is the worst
situation for the orbital stability of a massless object. Now suppose that this configuration
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Figure 3: Prograde case: � − λ� = 180◦.

occurs repeatedly. After some passages, certainly, the eccentricity and the semimajor axis of
the satellite will be strongly disturbed. They should increase approaching to some dangerous
limit. This is clearly shown in Figure 2(b). Note, however, that while�−λ� remains in libration,
the eccentricity is not so high (∼0.3). The significant increase of the eccentricity appears only
when � − λ� enters in a circulation regime. This dynamics will be discussed in Section 5. Of
course in this model since we are using averaged equations, by definition, the semimajor axis
is kept constant. Therefore, within the limits of our model the escape does not necessarily occur
during this short integration time. The initial conditions we used were a = 400RJ(0.538RH),
e = 0.1, I = 1◦, � − λ� = 180◦, � = 180◦, a� = 5.202603AU, e� = 0.048497, ω� = 0◦, and Ω� = 0◦

(RJ means Jupiter’s equatorial radius and RH is Hill’s radius).
Once we have this basic information we can go further and confirm very easily; some

results shown in Hamilton and Krivov [4]. Since we have shown that the appearance of the
evection resonance causes large variation of the eccentricity, we assume that the corresponding
semimajor axis of the evection resonance has to do with the limit of stability of the satellite
around the planet. Therefore, we take this statement for granted and search the value of the
semimajor axis. To this end, in the averaged disturbing function (2.7), let us consider only the
secular and resonant terms due to the evection. All other remaining terms can be neglected. In
particular, since we showed a libration in � − λ� = 180◦, we fix this angle at 180◦. Again, from
Lagrange’s equation we easily obtain

�̇ ∼= k2M�(1 − e2)1/2

2na3
�

{
9
8
+
33
8
cos2(I) +

15
4
cosI

}
+ o

(
sin(I)

)
. (3.1)

Now, if we consider I = e = 0, we have

�̇ ∼= 9
2
k2M�
na3

�
. (3.2)

Since the apparent motion of the Sun is Keplerian, we take n� =
√
k2(M� +mJ)/a3

�.

Hill’s radius is defined as RH = a�(mJ/3M�)
1/3.

Therefore, equating �̇ = n�, we get the resonant value of the semimajor axis:

a∗ = 0.529RH, (3.3)

which is in quite agreement with Hamilton and Krivov [4] and the numerical results of
Nesvorný et al. [9].
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Recall that the semimajor axes we used in Figures 2(a), 2(b) were a = 0.531RH(395RJ)
and a = 0.538RH(400RJ), respectively.

A simple inspection in (2.7) shows that critical angle always appears in the form 2(� −
λ�). This sugests that� − λ� = 0 is also another center of libration.

We can confirm this very easily. Selecting only secular and resonant terms in (2.7) we
have

R� =
k2M�a2

2a3
�

{
1
2

(
1 +

3
2
e2
)
+
15
4
e2cos

(
2� − 2λ�

)
}
, (3.4)

where we assumed Jupiter in a circular motion and I = 0.
The conservative Hamiltonian can easily be derived from the above simplified relation:

H =
k2M�a2

2a3
�

{
3
4
e2 +

15
4
e2cos

(
2� − 2λ�

)
}
− n�L�, (3.5)

where L� is the canonical momentum conjugated to λ�. Considering the classical Delaunay
canonical variables: � , G − L (Brouwer and Clemence [12]), and writing e2 in terms of G and
L, we proceed with a new trivial canonical transformation:

(
�, λ�, G − L, L�

) −→ (
α1, α2, P1, P2

)
, (3.6)

where α1 = � − λ�, P1 = G − L, α2 = λ�, P2 = L� + (G − L).
This allow us to write a one-degree-of-freedom problem, since α2 becomes a kinosthenic

variable;

H =
k2M�a2

2a3
�

{
3
4
e2 +

15
4
e2cos

(
2α1

)
}
+ n�G, (3.7)

where e2 = (L2 − (P1 + L)2)/L2. Note that with a completely different way, we obtained (3.4) of
Hamilton and Krivov [4].

The level curves of the above Hamiltonian confirm that both � − λ� = 0◦ and 180◦ are
stable equilibrium points of the system. In Figure 4 we show the level curves in the plane
e cos(� − λ�), e sin(� − λ�). This clearly shows that the longitude of the pericenter of the
satellite can remain stably pointing to Sun direction or to the opposite direction. Of course
the net effect of this dynamics is to stretch the satellite orbit toward and away from the Sun
(Figure 4). We also can say that the � − λ� = 180◦ is a critical configuration, so that we expect
to have escape of the satellite mostly in this situation, not when� −λ� = 0◦. In Sections 5, 6 we
confirm numerically that escapes occur following these kind of behavior.

These mentioned two centers of libration play important role as we can see in Section 6.

4. Retrograde satellites

For the retrograde satellites, the definition of the longitude of the pericenter should be changed
(Saha and Tremaine [13]). Let�I be the longitude of the pericenter for this case. Therefore, we
have

�I = Ω −ω. (4.1)
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Figure 4: Level curves of Hamiltonian (3.7) with a = 396RJ .

Let � be the usual longitude of the prograde case. Then, with a simple algebra we can relate
both:

�I = 2Ω −�. (4.2)

As in the previous case, we integrate again Lagrange’s equations taking the disturbing function
given by (2.7).

In the precedent figures, we considered the following initial condictions: ω = 0◦,
Ω = 90◦ (Figure 5(a)), and ω = 90◦, Ω = 0◦ (Figure 5(b)). For Jupiter (Sun) we adopted
a� = 5.202603AU, e� = 0.048497, ω� = 0◦, Ω� = 0◦, and l� = 0◦.

This time we see that the critical angle �I − λ� librates around 90◦ or 270◦. The situation
is not so drastic as in the direct case. The schematic geometry given in Figure 6 repeats each
time the satellite passes through S.

From Lagrange’s variational equations we have

Ω̇ =
3
2
GC

na2
, �̇ =

9
2
GC

na
, (4.3)

where GC = k2M�a2/2a3
�. As before we fixed some values considering the current resonance:

Ω−ω−λ� = 90◦, I = 180◦, and e = 0. Again equating: �̇I = n�, we get: a∗ = 0.6933RH (≈ 515.3RJ)
which coincides again with the results given in Hamilton and Krivov [4].

Recall that the semimajor axis we used in Figures 5(a) and 5(b) was a = 0.7RH (520RJ).
It is worth noting that compared to the previous direct case; the present resonance is not
very strong since the closest approach with the Sun is not like in the direct case. Even so,
the cumulative effect works quite efficiently in driving the eccentricity and semimajor axis to
critical values, sometimes causing ejection of the satellite. This is clear in Figure 5(b).

Again following the same steps outlined for the prograde case, the conservative
Hamiltonian can be written as

H =
k2M�a2

2a3
�

{
3
4

(
1 − P 2

1

L2

)
+
15
4

(
1 − P 2

1

L2

)
cos

(
2σ1

)
}
− n�P1, (4.4)
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Figure 5: (a) Retrograde satellite. Initial conditions: a = 520RJ , e = 0.03, I = 176◦, ω = 0◦, and Ω = 90◦. (b)
Retrograde satellite. Initial conditions: a = 520RJ , e = 0.03, I = 176◦, ω = 90◦, and Ω = 0◦.

where P1 and σ1 are the canonical conjugated variables defined by P1 = G = L(1 − e2)1/2 and
σ1 = �I − λ�.

Drawing level curves for H(P1, σ1), we can easily check that σ1 = 90◦, 270◦ are stable
equilibrium solutions (Figure 7). This time, in this approximation, the tendency of the orbits is
to elongate perpendicularly to the Sun-satellite direction, as suggested in Figure 6.

5. Numerical tests with exact equations

In this section we show some simulations considering the exact differential equations of a
satellite of Jupiter disturbed by the Sun. In terms of the radius of the planet, the resonant
semimajor axis for the prograde case is a∗ = 393RJ . Time variations of the eccentricity and



Tadashi Yokoyama et al. 9

S
J

Sun

Figure 6: Retrograde case:�I − λ� = 90◦.

−0.1

−0.05

0

0.05

0.1

e
si

n
(�

I
−
λ �

)

−0.002 0 0.002

e cos (�I − λ�)

Figure 7: Level curves of Hamiltonian (4.4) with a = 516.4RJ .

� −λ� are shown in Figure 8. The initial conditions were a = 355RJ , e = 0.001, I = 1◦, ω = 180◦,
and Ω = 0◦. Initially, the critical angle remains librating around zero when the eccentricity
remains almost bounded and less than 0.4.

In Figure 9 we consider a = 355RJ , e = 0.011, I = 1◦, ω = 180◦, and Ω = 0◦. As before,
initially, libration is around 0◦ and in the beginning the dynamics is very similar to the previous
figure. A significant increase of the eccentricity is observedwhen�−λ� enters in the circulation
regime and escape occurs at about t ≈ 140 years.

Figure 10 shows a case when the libration is centered only in 180◦. As before, the increase
and escape occur when� − λ� changes to a circulation regime.

Figure 4 is very useful to interpret the results of the previous simulations. Usually
the region deep inside the libration (near the center) is very regular and is related to the
existence of stable periodic orbits. For this reason, if � − λ� is trapped inside a libration
region, the eccentricity remains bounded, without suffering large excursions. On the other
hand, circulation regime allows large excursions of the eccentricity.

That said, we can analyze the dynamics of the three previous figures. In Figure 8, initially,
the satellite librates around � − λ� = 0◦ up to about 35 years when a short transition to
circulation appears for t ∼ 40 years, but soon, the system again goes back to original libration
regime up to about t ∼ 75 years when the libration center moves to 180◦ at t ∼ 80 years. Next,
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Figure 8: Prograde satellite. Initial conditions: a = 355RJ , e = 0.001, I = 1◦, ω = 180◦, and Ω = 0◦.
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Figure 9: Prograde satellite. Initial conditions: a = 355RJ , e = 0.011, I = 1◦, ω = 180◦, and Ω = 0◦.

a circulation appears, so that the motion is no more trapped inside a region of bounded small
eccentricity, as discussed above. Outside of the libration curves the motion can experience,
very easily, higher variations mostly because now the complete problem is not integrable and
the domain of the regular region of the level curves of Figure 4, certainly is very reduced
(modified). Indeed, numerical examples indicate that the librations of � − λ�, in general, are
not permanent and the perturbations always cause transitions to circulation. In Figure 8, the
eccentricity remains below 0.4 and escape occurs only after the resonant angle changes to
circulation regime. The jump of the eccentricity when � − λ� changes to circulation is best
illustrated in Figure 9. In Figure 10 the libration is always centered in 180◦, but even so, there
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Figure 10: Prograde satellite. Initial conditions: a = 344.088RJ , e = 0.001, I = 1◦, and ω = Ω = 0◦.

are some brief transitions when� −λ� attains 0◦ or 360◦. Again, as predicted, the escape occurs
after circulation appears. Although it is not clear in these figures, we have checked that the
escapes always occur in the neighborhood of� − λ� = 180◦.

As pointed out in Hamilton and Krivov, the limit a = 393RJ for the resonant semimajor
axis is rather overestimated. In some cases, escapes can occur for a = 345RJ . One of the reasons
of this discrepancy is the fact that our simplified model in (2.1) considers Jupiter in circular
orbit, however in the numerical simulations Jupiter’s eccentricity is eJ = 0.048497. Another
point which is important is related to the expansion of the function given in (2.7), where terms
of higher order in the ratio (r/r�) were neglected. The inclusion of higher order terms is not
difficult but laborious. We intend to investigate in a future work.

Our numerical simulations also show that sometimes the initial value of the pericenter
plays an important role in the stability. This seems to be more salient for values not so close to
a = a∗. For instance, in the case of a = 350 we found stability if ω = 180◦, while if ω = 0 the
satellite is ejected in less than 1000 years.

For the retrograde case we have a∗ = 515.31RJ . Figures 11 and 12 show two examples
of escape, where the center of libration changes several times, much more often than in
the prograde case. From Figure 6 we see that the two centers of libration are completely
symmetric in opposition to the centers of the prograde case (Figure 3). Therefore, the behavior
of the eccentricity around these two centers is similar. As before, the change of the center of
the libration (90◦ to 270◦ and vice versa) is predicted in the complete problem, due to the
nonintegrability. Figure 7 suggests that the occurrence of these changes is related to a chaotic
motion in the neighborhood of a separatrix. Again, each time the critical angle circulates, the
trajectory is in a region, where large excursions in eccentricity should occur. Therefore sooner
or latter this can result in an escape.

Indeed in Figures 11-12, after several changes of the center of the libration, escape ocurs
and in both cases we confirmed again the remarkable feature we always have observed, that is,



12 Mathematical Problems in Engineering

0

90

180

270

360
�
I
−
λ �

0 20 40 60 80

Years

(a)

0

0.2

0.4

0.6

0.8

1

E
cc

en
tr

ic
it

y

0 20 40 60 80

Years

(b)

Figure 11: Retrograde satellite. Initial conditions: a = 528.4RJ , e = 0.15, I = 179◦, ω = 90◦, and Ω = 180◦.
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Figure 12: Retrograde satellite. Initial conditions: a = 516.8888RJ , e = 0.01, I = 179◦, ω = 90◦, and Ω = 180◦.

in general, escapes occur in the vicinity of the center of the libration (�−λ� = 180◦ for prograde
satellites and�I − λ� = 90◦ or 270◦ for retrograde case).

6. Some islands of stability

As mentioned before, the bounds 395RJ and 515RJ are approximate and overestimated.
Certainly, a model using higher order expansion of the disturbing function R� would provide
better determination of these values. Since expansion in Legendre polynomials is crucial for
large values of the ratio of the distances, nowonder about some discrepancies in these numbers
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Figure 13: Prograde satellite. Initial conditions: a = 340RJ , e = 0.001, I = 1◦, ω = 0◦, and Ω = 0◦.
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Figure 14: Prograde satellite. Initial conditions: a = 352RJ , e = 0.001, I = 1◦, ω = 180◦, and Ω = 0◦.

since they were obtained taking the simplest expansion of second order in (3.1). However, no
matter the improvement in this determination, we show, in this section, the existence of several
islands of stability beyond the values mentioned above.

In Figures 4 and 7 we found two stable equilibrium centers. Although the onset of the
resonance can cause large variations and sometimes escape, however if the satellite is trapped
deep inside the libration curve, this orbit can remain very stable, free of dangerous variations
in eccentricity. In general these are periodic (quasi-) stable orbits and are not isolated. Our
numerical experiments have shown that there are some finite intervals of the semimajor axis
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Figure 15: Retrograde satellite. Initial conditions: a = 583RJ , e = 0.001, I = 179◦, ω = 0◦, and Ω = 0◦.
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Figure 16: Retrograde satellite. Initial conditions: a = 612RJ , e = 0.001, I = 179◦, ω = 180◦, and Ω = 0◦.

even for a > 395RJ , where the satellite survives for at least 5 myr. Figures 13 and 14 show
typical examples, where the satellite remains trapped in� − λ� = 0◦ and 180◦, respectively.

In the case of retrograde orbits we found much more interesting intervals of stability.
We show only two Figures 15 and 16, where although the resonant angle changes sometimes
from 90◦ to 270◦, the eccentricity remains quite safe from collision or escapes. Note that in
these two figures, the semimajor axis is much larger than a∗. Recall that this kind of stable
regions is possible thanks to the two stable libration centers predicted in our simplified model.
In other words, the appearance of the two stable centers is related to the existence of a family of
stable periodic orbits. In the complete problem, part of this region of stability is still preserved.
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Therefore, we can numerically find some of these orbits even for high distances. Finally, we list
some semimajor axis intervals (a > a∗), where stability was found for at least 5 million years,
as follows:

[604–640] (l = 180◦, ω = l� = 0◦);

[600–642] (l = l� = 0◦, ω = 180◦);

[564–676] (l = l� = ω = 180◦);

[568–677] (l = ω = 0◦, l� = 180◦);

[576–620], [652–680] (l = 0◦, ω = l� = 180◦);

[572, 618], [654–682] (l = l� = 180◦, ω = 0◦);

where within parentesis, on the right of the intervals, we indicate the initial values for l, l�, and
ω. For the remaining values we considered e = 0.001, I = 179◦, andΩ = Ω� = 0◦. Most probably
some of these orbits are the same as pointed out by Winter [14] for the Earth-Moon problem.

7. Conclusion

We have derived, analytically, the values of the semimajor axis, where evection resonances
can occur. These values are important, since they define approximated limits, where direct
and retrograde orbits can remain stable around a planet. Through a simple model based on the
restricted three-body problem these values were obtained and checked against exact numerical
integration. Using a completely different way, we confirm previous results of other authors.
Our methodology is based on the classical expansion of the disturbing function which can be
improved much more if we consider higher order terms. Therefore, we think that the current
values: 395RJ and 515RJ perhaps can be improved. We also showed that the existence of stable
orbits beyond the above values is related to the stability of the region in the vicinity of the
libration centers of the evection resonance, which still persist even for large values of the
semimajor axis.
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