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controller with additional dynamics to construct a parameterized set of switched controllers. In the
third step, two sufficient regulation conditions are derived for the resulting switched closed loop
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approach is proposed based on solving properly formulated bilinear matrix inequalities. Finally, a
numerical example is presented to illustrate the performance of the proposed regulator.
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1. Introduction

Recently, switched control systems have attracted much attention in the control community
since they present challenging problems of practical importance. Significant progress has been
made in this area, most notably in the stability analysis for such systems [1–7]. Numerous other
results have been published and are presented in [8–10] and the references therein. In practice,
in addition to stability requirements, there is a need to find controllers that would achieve
regulation against known reference or disturbance signals. For example, in hard disk drives,
maintaining a constant small distance between the read/write head and the disk surface is an
important target that would allow greater data storage densities on the hard disk. However,
the close proximity of the read/write head to the disk surface leads to intermittent contact
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between the two and results in a switched system regulation problem [11, 12]. Solutions to the
output regulation problem for the case of linear systems have been presented in [13–15] and for
the case of nonlinear systems in [16, 17]. However, these results cannot be applied to switched
systems since the vector fields of switched systems are discontinuous and nonsmooth. The
work of Devasia et al. [18] and Sakurama and Sugie [19] are closely related to this problem.
Devasia et al. [18] studied the exact output tracking problem for linear switched systems and
presented necessary and sufficient conditions for the existence of a regulator for exact output
tracking with parameter jumps. The derived solution was based on the assumption that the
switching times are known a priori. Therefore, the necessary and sufficient conditions were
derived only for the elimination of switching induced output transients and cannot be applied
to systems where switching is signal driven or where the switching times cannot be set a pri-
ori. Sakurama and Sugie [19] recently discussed the trajectory tracking problem for bimodal
switched systems. The reference trajectory for the switched system is assumed known and the
switching times are assumed to be measurable. An error variable and an error system are intro-
duced, based on which the tracking controller was designed using a Lyapunov-like function.
However, conditions for the existence of the desired regulator are sometimes very difficult to
check.

In this paper, a controller design approach is proposed for single-input single-output
switched bimodal systems, where it is desired to reject known disturbance signals and track
known reference inputs simultaneously. Switching in the bimodal system is defined by a
switching surface. A regulator synthesis method based on solving bilinear matrix inequali-
ties (BMIs) is presented. The proposed regulator design approach consists of three steps. In
the first step, a switched observer-based state-feedback central controller is constructed for
the switched linear system. The second step involves augmenting the switched central con-
troller with additional dynamics to construct a parameterized set of switched controllers. Sta-
bility analysis of the resulting switched closed loop system is then presented. In the third step,
two sufficient regulation conditions are derived for the switched closed loop system. The first
sufficient condition is derived based on the input-output stability property of the switched
closed loop system. The second sufficient condition for regulation is derived by transform-
ing the forced switched closed loop system into an unforced impulsive switched system. As
such, the regulation problem is transformed into a stability analysis problem for the impul-
sive switched system. Based on the parameterized controller structure and the derived regu-
lation conditions, proper BMIs are formulated and a regulator synthesis method is proposed.
The main advantage of the proposed regulator synthesis approach is that it offers a numeri-
cal procedure that can practically be implemented and used to develop the desired switched
regulator.

The rest of the paper is organized as follows. In Section 2, the general regulation problem
for switched bimodal linear systems is presented. In Section 3, the construction of a parame-
terized set of switched controllers for the switched system is discussed and the stability prop-
erties of the resulting closed loop switched system are analyzed. Regulation conditions for the
switched system are presented in Section 4 and the regulator synthesis method for switched
systems is proposed in Section 5. The controller design method is illustrated in Section 6 using
a numerical example, followed by the conclusion in Section 7.

In the following, λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of
a matrix, respectively. The symbol I represents the identity matrix. For a given 1×N matrix X,
�X denotes the N × 1 vector with the same entries as those of XT .
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2. Regulation problem for switched bimodal systems

This paper considers switched bimodal systems subject to external inputs representing distur-
bance and/or reference signals. Both the system dynamics as well as the external input signal
are assumed to switch according to a switching law defined by a switching surface. These
types of switched systems are motivated by practical applications, such as the flying height
regulation problem for the read/write head in hard disk drives [11, 12].

Consider the switched system given by the following state space representation:

Σr :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = Arx + Bru +Dx
r wr, x(0) = x0,

ẇr = Hrwr, wr(0) = wr0,

y = Cy
r x +Dy

r wr ,

e = Cex +De
rwr ,

r =

⎧
⎨

⎩

1 if e = Cex +De
rwr ≤ δ,

2 if e = Cex +De
rwr > δ,

(2.1)

where x ∈ R
n is the state vector, u ∈ R is the control input, y ∈ R is the measurement signal

to be fed to the controller, e ∈ R is the performance variable to be regulated and is assumed to
be measurable, wr ∈ R

h is the state vector of the exogenous systems generating the signal wr ,
Hr ∈ R

h×h have simple eigenvalues on the imaginary axis, r ∈ {1, 2} is the index of the system
Σr under consideration at time t, and δ is a constant satisfying |δ| > 0. The switching between
the systems Σ1 and Σ2 is performed according to the value of the performance variable e, and
is determined based on the location of x with respect to a switching surface S given by

S =
{
x ∈ R

n : e = Cex +De
rwr = δ

}
. (2.2)

The switching surface S is not fixed but changes with time given that the term De
rwr is in

general a time-varying term. The switching between the two modes takes place as follows. If
r = 1 and e becomes strictly greater than δ, then the mode switches to r = 2; and if r = 2
and e becomes less than or equal to δ, then the mode switches to r = 1. In the following, it
is assumed that for any given t ≥ 0, the system must operate in only one of the two modes
corresponding to r ∈ {1, 2}. This assumption is motivated by physical considerations in some
applications of interest, such as the example presented at the end of the paper or the system
treated in [11, 12]. For the switched system (2.1), it is desired to construct an output feedback
controller to regulate the performance variable e of the switched system against the external
input signal wr . Given the switching nature of the plant, the output feedback controller is also
chosen to be a switching feedback controller Cr , r ∈ {1, 2}, with a state space representation
given by

Cr :

⎧
⎨

⎩

ẋc = Ar,cxc + Br,cy,

u = Cr,cxc,
(2.3)
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where xc ∈ R
nc , and where the switching among controllers is to obey the same rule given in

(2.1) for switching between the two plant models. Therefore, the resulting closed loop system
is given by

Σcl
r :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
ẋ

ẋc

⎤

⎦ =

⎡

⎣
Ar BrCr,c

Br,cC
y
r Ar,c

⎤

⎦

⎡

⎣
x

xc

⎤

⎦ +

⎡

⎣
Dx
r

Br,cD
y
r

⎤

⎦wr,

e =
[

Ce 0
]
⎡

⎣
x

xc

⎤

⎦ +De
rwr,

r =

⎧
⎨

⎩

1 if e = Cex +De
rwr ≤ δ,

2 if e = Cex +De
rwr > δ.

(2.4)

The output feedback regulation problem for the switched system (2.1) can then be stated as
follows.

Output-feedback regulation problem

Given the switched system (2.1), find a switched output feedback controller of the form (2.3)
such that the resulting closed loop system satisfies the following conditions.

(C1) Internal stability. With wr(0) = 0, the equilibrium point [xT xTc ]
T = 0 of the unforced

switched closed loop system is exponentially stable.
(C2) Output regulation. For all [xT(0) xTc (0)]

T ∈ R
n × R

nc and wr(0) ∈ R
h, the response e(t) of

the closed loop system involving the switched system (2.1) and the switched controller
(2.3) satisfies

lim
t→∞

e(t) = 0. (2.5)

In the following section, a framework within which regulation conditions will be derived is
presented.

3. Parameterization of a set of controllers

The controller design approach presented in this paper relies on the construction of a param-
eterized set of output feedback controllers for the switched system (2.1). In this section, the
construction of such a set is first discussed, followed by an analysis of the stability properties of
the resulting switched closed loop system. The construction of a parameterized set of switched
controllers involves two steps. The first step consists of designing a central controller in the
form of an observer-based state-feedback controller. The second step involves augmenting the
central controller with additional dynamics to construct a parameterized set of controllers.

3.1. Observer-based state-feedback controller

Consider the following observer-based state-feedback controller for the switched system (2.1)

C
o
r :

⎧
⎨

⎩

˙̂x = Arx̂ + Bru + Lr
(
ŷ − y

)
, x̂(0) = x̂0,

u = Krx̂,
(3.1)
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Figure 1: Closed loop system with a parameterized controller.

where x̂ ∈ R
n is the estimate of the plant state vector x and ŷ = Cy

r x̂ is an estimate of the plant
output y. The mode r ∈ {1, 2} is determined according to the rule given in (2.1). Moreover, it
is assumed that there are no impulsive changes in the controller states at the switching times.

3.2. Parameterized output-feedback controller

The construction of a parameterized set of controllers for the switched system is based on con-
sidering, for each r ∈ {1, 2}, a linear fractional transformation involving a fixed system Jr and
a proper system Qr as shown in Figure 1. The proposed controllers are similar to the param-
eterized stabilizing controllers for linear systems [20, 21], but where no stability assumptions
are placed on the system Qr . The state space representation of the system Jr is given by

Jr :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂x =
(
Ar + BrKr + LrC

y
r

)
x̂ − Lry +

[
Br
(
LrD

y
r +Dx

r

) ]
yQ, x̂(0) = x̂0,

u = Krx̂ +
[

1 01×q
]
yQ,

ŷ − y = Cy
r x̂ − y,

(3.2)

and the system Qr is given by

Qr :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋQ = AQr
xQ + BQr

(
ŷ − y

)
, xQ(0) = x0

Q,

yQ =

⎡

⎣
CQr

Iq×q

⎤

⎦xQ,
(3.3)

where xQ ∈ R
q and yQ ∈ R

q+1. In particular, throughout the rest of the paper, the system Qr is
such that the matrices AQr

, BQr
, and CQr

also change according to r.

Remark 3.1. The state space representation of the system Jr given in (3.2) differs from that tra-
ditionally used in the construction of parameterized sets of stabilizing controllers for linear
systems in that the state equation in (3.2) contains the additional term (LrD

y
r + Dx

r )xQ. The
presence of this term makes it possible to derive the sufficient conditions for regulation pre-
sented in Theorem 4.2.
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By combining the systems Jr and Qr in (3.2) and (3.3), the state-space representation of
the regulator is then given by (2.3), where

xc =

[
x̂

xQ

]

, Ar,c =

[
Ar + BrKr + LrC

y
r BrCQr

+ LrD
y
r +Dx

r

BQr
C
y
r AQr

]

,

Br,c =

[
−Lr
−BQr

]

, Cr,c =
[
Kr CQr

]
, Dr,c = 0.

(3.4)

Let x̃ = x̂ − x denote the state estimation error. It follows that the resulting closed loop system
involving the plant (2.1) and the regulator given by (2.3) and (3.4) can be written as follows:

Σcl
r :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎣

ẋ

˙̃x

ẋQ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

Ar + BrKr BrKr BrCQr

0 Ar + LrC
y
r Dx

r + LrD
y
r

0 BQr
C
y
r AQr

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x

x̃

xQ

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎣

Dx
r

−Dx
r − LrD

y
r

−BQr
D
y
r

⎤

⎥
⎥
⎥
⎦
wr,

e =
[
Ce 0 0

]

⎡

⎢
⎢
⎢
⎣

x

x̃

xQ

⎤

⎥
⎥
⎥
⎦
+De

rwr.

(3.5)

Let χ = [xT x̃T xTQ]
T
1×N denote the state vector of the resulting closed loop system with N =

2n + q, and let

Âr =

⎡

⎢
⎢
⎣

Ar + BrKr BrKr BrCQr

0 Ar + LrC
y
r Dx

r + LrD
y
r

0 BQr
C
y
r AQr

⎤

⎥
⎥
⎦ ,

Er =
[(
Dx
r

)T −
(
Dx
r + LrD

y
r

)T −
(
BQr

D
y
r

)T
]T
, Cex =

[
Ce 0 0

]
.

(3.6)

The resulting parameterized switched closed loop system dynamics can then be expressed as

Σcl
r :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

χ̇ = Ârχ + Erwr ,

e = Cexχ +De
rwr,

r =

⎧
⎨

⎩

1 if e = Cexχ +De
rwr ≤ δ,

2 if e = Cexχ +De
rwr > δ.

(3.7)

In the following, both the internal stability as well as the input-output stability properties of
the system (3.7) are analyzed.
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3.3. Stability of the parameterized switched closed loop system

In this section, it is desired to study the stability properties of the system (3.7). The stabil-
ity analysis involves two steps, namely, internal stability analysis and input-output stability
analysis. In the first step, the internal stability of the closed loop system is studied by consid-
ering the system (3.7) in the absence of the signal wr , and studying the stability properties of
the origin for the resulting unforced switched system. The second step builds on the internal
stability results and presents input-output stability results for the system (3.7).

3.3.1. Internal stability

Consider first the system (3.7) in the absence of the signal wr . The state equation for the result-
ing system is given by

χ̇ = Ârχ. (3.8)

Note that, there are no impulsive changes in the state variables of the above switched system
at the switching times. The internal stability of the system (3.8) is then given by the following
well known result.

Lemma 3.2 (see [22]). If there exists a matrix P = PT > 0 and a constant α such that the following
inequalities hold

ÂT
r P + PÂr + 2αP < 0, α > 0, r ∈ {1, 2}, (3.9)

then the origin is an exponentially stable equilibrium point for the switched system (3.8) with arbitrary
switching, and

∥
∥χ(t)

∥
∥ < ce−αt

∥
∥χ(0)

∥
∥, (3.10)

where c =
√
λmax(P)/λmin(P).

Remark 3.3. The matrix inequality (3.9) can be solved using numerical algorithms. Here, we
search for a common Lyapunov function for the switched systems (3.8) to guarantee the sta-
bility of the origin for the system (3.8) under arbitrary switching, since the switching surface
S = {x ∈ R

n : e = Cex+De
rwr = δ} is not a fixed function of the state vector x and changes with

De
rwr .

3.3.2. Input-output stability

In this section, we will consider the input-output stability properties of the system (3.7) with
the external input signal wr . Let wm = maxr∈{1,2};t≥0‖Erwr(t)‖. Then we have the following
stability result.

Lemma 3.4 (see [9]). Assume the origin for the switched system (3.8) is an exponentially stable equi-
librium point. Then the state vector in (3.7) is bounded, and the states will ultimately evolve inside the
bounded set Bβ given by

Bβ =
{
χ ∈ R

N : ‖χ‖ ≤ β
}
, (3.11)

where β = cwm/α.
The input-output stability of the closed loop system follows immediately from the above result.
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4. Regulation conditions for the switched system

The purpose of introducing the parameterized controllers is to find, for each r ∈ {1, 2}, ap-
propriate AQr

, BQr
, and CQr

in (3.3) to solve the output-feedback regulation problem for the
switched system (3.7). The solution to the regulation problem for the switched system (3.7) is
presented in two steps. In the first step, regulation conditions for each of the individual closed
loop systems Σcl

r , r ∈ {1, 2}, are presented. In the second step, two sufficient conditions for reg-
ulation in the switched closed loop systems Σcl

r are derived. To derive the sufficient condition
for regulation, a coordinate transformation is defined first, allowing the forced switched closed
loop system to be transformed into an unforced impulsive switched system. Hence, the regu-
lation problem is transformed into a stability analysis problem for the origin of the resulting
impulsive switched system. Conditions for achieving asymptotic stability in the new impul-
sive switched system are then presented, which is equivalent to achieving regulation in the
original switched closed loop system.

4.1. Regulation conditions for Σcl
1 and Σcl

2

Let Ar =
[ Ar BrCr,c

Br,cC
y
r Ar,c

]
and Er =

[ Dx
r

Br,cD
y
r

]
in (2.4). For each of the systems Σr , r ∈ {1, 2}, and using

a controller of the form (2.3), regulation conditions are given by the following lemma.

Lemma 4.1 (see [15]). For each r ∈ {1, 2}, consider the systemΣr in (2.1) and a controller Cr in (2.3),
and assume that Ar is a stability matrix. Then, for each r ∈ {1, 2}, Σcl

r in (2.4) achieves regulation if
and only if there exists a matrix Πr that solves the linear matrix equations:

ΠrHr = ArΠr + Er,

0 = CexΠr +De
r .

(4.1)

Similarly, using the parameterized feedback regulator Cr given in (2.3) and (3.4), regulation conditions
for the switched closed loop system (3.7) can be derived and are presented in the following theorem.

Theorem 4.2. Assume that for each r ∈ {1, 2}, the closed loop systemΣcl
r given in (3.7) is exponentially

stable. Then each of the systems Σcl
1 and Σcl

2 achieves regulation only if, for each r ∈ {1, 2}, there exists
a pair of matrices (Ωr ,Ψr) which satisfy the following equations:

ΩrHr = ArΩr + BrΨr +Dx
r ,

0 = CeΩr +De
r .

(4.2)

Furthermore, if the linear matrix equations in (4.2) admit a solution (Ωr ,Ψr), and the matrices AQr

and CQr
in (3.3) are taken to be of the form

AQr
= Hr + BQr

D
y
r ,

CQr
= Ψr −KrΩr ,

(4.3)

then, for each r ∈ {1, 2}, Σcl
r in (3.7) achieves regulation.
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Proof. Equation (4.1) can be rewritten as

ΠrHr =

[
Ar BrCr,c

Br,cC
y
r Ar,c

]

Πr +

[
Dx
r

Br,cD
y
r

]

,

0 =
[
Ce 0

]
Πr +De

r .

(4.4)

Partition Πr as Πr = [
Ωr

Φr

]. Then (4.1) is the same as

ΩrHr = ArΩr + BrCr,cΦr +Dx
r ,

ΦrHr = Ar,cΦr + Br,c
(
C
y
rΩr +D

y
r

)
,

0 = CeΩr +De
r .

(4.5)

Letting Ψr = Cr,cΦr , (4.2) follows immediately.
To prove the second part of the theorem, note that by assumption, for each r ∈ {1, 2}, Âr

in (3.7) is a stability matrix. Moreover, since Ar is related to Âr by a similarity transformation,
then Ar is also a stability matrix. Now suppose Ωr and Ψr satisfy (4.2) and that AQr

and CQr

satisfy (4.3). To show that the closed loop system achieves regulation, let Φr =
[Ωr

I

]
. Using the

expression for Ar,c in (3.4) and substituting in the expression for AQr
in (4.3) yields

Ar,c=

[
Ar + BrKr + LrC

y
r BrCQr

+ LrD
y
r +Dx

r

BQr
C
y
r Hr + BQr

D
y
r

]

=

[
Ar Dx

r

0 Hr

]

+

[
Br

0

]
[
Kr CQr

]
+

[
Lr

BQr

]
[
C
y
r D

y
r

]
.

(4.6)
It follows that:

Ar,cΦr =

[
ArΩr +Dx

r

Hr

]

+

[
BrKrΩr + BrCQr

0

]

+

[
Lr

BQr

]
(
C
y
rΩr +D

y
r

)

=

[
ArΩr + Br

(
KrΩr + CQr

)
+Dx

r

Hr

]

− Br,c
(
C
y
rΩr +D

y
r

)
.

(4.7)

Given that Ψr = CQr
+KrΩr from (4.3), then based on (4.2) we have

Ar,cΦr =

[
ArΩr + BrΨr +Dx

r

Hr

]

− Br,c
(
C
y
rΩr +D

y
r

)
= ΦrHr − Br,c

(
C
y
rΩr +D

y
r

)
. (4.8)

Therefore, (4.5) is satisfied, which implies (4.1) is satisfied and regulation can be achieved.

The results presented above represent regulation conditions for each of the closed loop
systems in (3.7), individually. In the following sections, regulation conditions for the system
(3.7) subject to switching are discussed.
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4.2. Equivalent impulsive switched closed loop system model

Based on Lemma 4.1, and using a properly defined coordinate transformation, the forced
switched closed loop system (3.7) can be transformed into an unforced impulsive switched
system. To introduce the appropriate coordinate transformation, note that the original regula-
tion condition (4.1) can be rewritten as

Π̂rHr = ÂrΠ̂r + Er,

0 = CexΠ̂r +De
r ,

(4.9)

where

Π̂r =

⎡

⎢
⎢
⎣

I 0 0

−I I 0

0 0 I

⎤

⎥
⎥
⎦Πr . (4.10)

Consider now the following coordinate transformation

χ̃ = χ − Π̂rwr. (4.11)

Using (4.9), the forced closed loop switched system (3.7) can be transformed into an unforced
switched system given by

Σ̃cl
r :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

˙̃χ = Ârχ̃,

e = Cexχ̃,

r =

⎧
⎨

⎩

1 if e = Cexχ̃ ≤ δ,

2 if e = Cexχ̃ > δ.

(4.12)

It should be noted from (4.11) that the coordinate transformation varies depending on the
value of r ∈ {1, 2}. Consequently, the states χ̃(t) in the new system (4.12) undergo impulsive
changes at the switching times. Let Ts be the set of switching times τk, k = 1, 2, . . .. Therefore,
for a given switching time τk ∈ Ts, we have that for t = τk

χ̃
(
t+
)
= χ̃
(
t−
)
+ Δχ̃(t), (4.13)

where Δχ̃(t) = Π̂r(t−)wr(t−)(t)−Π̂r(t+)wr(t+)(t). Hence, the impulsive switched closed loop system
is given by

Σ̃cl
r :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃χ = Ârχ̃,

χ̃
(
t+
)
= χ̃
(
t−
)
+ Δχ̃(t), t ∈ Ts,

e = Cexχ̃,

r =

⎧
⎨

⎩

1 if e = Cexχ̃ ≤ δ,

2 if e = Cexχ̃ > δ.

(4.14)
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In the new coordinate system, the switching surface S given in (2.2) is fixed and is expressed
as follows:

S =
{
χ̃ ∈ R

N : e = Cexχ̃ = δ
}
. (4.15)

Using the coordinate transformation in (4.11), the original output-feedback regulation problem
for the switched system (3.7) is transformed into an asymptotic stability analysis problem for
the origin of the unforced impulsive switched system (4.14).

4.3. Regulation conditions for the switched system

First, let δ0 denote the distance between the switching surface S and the origin. Then we have
δ0 = |δ|/‖Cex‖. Define

Δβm = max
r∈{1,2}
t≥0

‖Π̂rwr(t)‖ (4.16)

Let γ = β + Δβm + ε, where ε � 1, and define the set Bγ as follows:

Bγ =
{
χ̃ ∈ R

N :
∥
∥χ̃
∥
∥ ≤ γ

}
. (4.17)

Using the definition for χ̃ in (4.11), and the fact that the original state vector χ will ultimately
evolve inside a bounded set Bβ given by (3.11), it follows that there exists a finite time Tγ at
which χ̃ will enter the set Bγ and continue to evolve in Bγ thereafter. A sufficient condition for
regulation is then given as follows.

Theorem 4.3. Assume that the switched closed loop system Σcl
r given in (3.7) is internally stable under

arbitrary switching, and that for each r ∈ {1, 2}, Σcl
r given in (3.7) achieves output regulation. If

δ0 > γ, (4.18)

then the origin is an asymptotically stable equilibrium point for the impulsive switched system (4.14),
implying that the switched system (3.7) achieves regulation.

Proof. If δ0 > γ , then the switching surface S given by (4.15) does not intersect the bounded
set Bγ . The trajectory of the state vector χ̃ will enter the set Bγ at t = Tγ and continue to evolve
inside Bγ thereafter. Consequently, there will be no more switching. Since the system Σcl

r that is
active in the halfspace containing Bγ is such that Âr is a stability matrix, and since 0 ∈ Bγ , the
trajectory of the state vector χ̃ asymptotically converges to the origin, implying that regulation
in the original switched closed loop system (3.7) is achieved.

If condition (4.18) is not satisfied, that is, δ0 ≤ γ , then the switching surface S must
intersect with the bounded set Bγ . To present regulation conditions in this case, define the

matrices As1 =
[

Cex

CexÂ1

]
, As2 =

[
Cex

CexÂ2

]
, and b =

[ δ
0

]
. Sufficient conditions for regulation are

presented in the following theorem.
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Theorem 4.4. Assume the switched closed loop system Σcl
r given in (3.7) is internally stable under ar-

bitrary switching and that, for each r ∈ {1, 2}, Σcl
r given in (3.7) achieves output regulation. Moreover,

assume that δ0 ≤ γ , rank(As1) = rank(As2) = 2, and that the direction of vector
−−−→
Cex is not parallel to

that of
−−−−−−→
CexÂ1 and

−−−−−−→
CexÂ2. If the following conditions are satisfied,

Cex(CexÂr

)T
< 0,

bT
(
AsrA

T
sr

)−1
b > γ2,

r = 1 if δ > 0,

r = 2 if δ < 0,

(4.19)

or

Cex(CexÂr

)T
> 0,

bT
(
AsrA

T
sr

)−1
b > γ2,

r = 2 if δ > 0,

r = 1 if δ < 0,

(4.20)

then the origin is an asymptotically stable equilibrium point for the impulsive switched system (4.14),
implying that the switched system (3.7) achieves regulation.

Proof. The following proof is presented for the case of δ > 0. The case of δ < 0 is treated
using the same ideas. Let region 1 and region 2 denote the halfspaces where the systems Σ̃cl

1

and Σ̃cl
2 are active, respectively (see Figures 2 and 3). Hence, the origin is in region 1 where

the system Σ̃cl
1 is active. Define the hypersurfaces Sv1 = {χ̃ ∈ R

N : CexÂ1χ̃ = 0} and Sv2 =
{χ̃ ∈ R

N : CexÂ2χ̃ = 0}. Then for all points in Sv1, ė = CexÂ1χ̃ = 0 and for all points in Sv2,
ė = CexÂ2χ̃ = 0. Since, by assumption, δ0 ≤ γ , the switching surface S intersects with the
bounded set Bγ . Let Sγ = {χ̃ ∈ R

N : Cexχ̃ = δ and ‖χ̃‖ ≤ γ} be the intersection of the switching

surface S with Bγ . By assumption, the direction of vector
−−−→
Cex is not parallel to that of

−−−−−−→
CexÂ1

and
−−−−−−→
CexÂ2. Therefore, the switching surface S must intersect with either of the hypersurfaces

Sv1 or Sv2. Define the intersection of S with the hypersurfaces Sv1 and Sv2 as L1 = {χ̃ ∈ R
N :

CexÂ1χ̃ = 0 and Cexχ̃ = δ} and L2 = {χ̃ ∈ R
N : CexÂ2χ̃ = 0 and Cexχ̃ = δ}, respectively.

For each r ∈ {1, 2}, let lr = minχ̃∈Lr‖χ̃‖ denote the distance between the origin and the set Lr .
Then, lr can be obtained by solving the problem of minimizing ‖χ̃‖ subject to the constraint
Asrχ̃ = b. Since, by assumption, rank(As1) = rank(As2) = 2, the solution to the above problem

is lr =
√

bT(AsrA
T
sr)
−1
b, r ∈ {1, 2}. If l2r = bT(AsrA

T
sr)
−1
b > γ2, then the sets Lr , r ∈ {1, 2},

are outside the bounded set Bγ . In this situation, the set Sγ does not intersect with the sets

Sv1 or Sv2. If Cex(CexÂ1)T < 0 and l21 = bT(As1A
T
s1)
−1
b > γ2, then the set Sγ will be located

in one of the two halfspaces defined by the hypersurface Sv1 and where all the points satisfy
ė = CexÂ1χ̃ < 0. Similarly, if Cex(CexÂ2)T > 0 and l22 = bT(As2A

T
s2)
−1
b > γ2, then the set Sγ will

be located in one of the two halfspaces defined by the hypersurface Sv2 and where all the points
satisfy ė = CexÂ2χ̃ > 0. By deriving conditions on ė, and using the stability properties of Σ̃cl

1
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−−−→
Cex

Sν1

Region 2:Σ̃cl
2

Region 1:Σ̃cl
1

Bounded set Bγ

−−−−−−→
CexÂ1

S

0

Figure 2: State trajectories of Σ̃cl
1 with initial conditions on the switching surface inside the set Bγ for Case 1.

and Σ̃cl
2 , it is possible to conclude about the asymptotic stability of the origin of the impulsive

switched closed loop system (4.14). In the following, two cases are considered in detail.

Case 1 (Cex(CexÂ1)T < 0 and bT(As1A
T
s1)
−1b > γ2 (see Figure 2)). In this case, all the state tra-

jectories leaving the set Sγ and entering region 1 have ė < 0. Therefore, if the state trajectory
leaves the set Sγ and enters region 1, then it will not hit it again. Two possible cases can be con-
sidered here depending on whether the state trajectory enters the bounded set Bγ from region
1 or region 2 at time Tγ . In this case, the state trajectory enters the set Bγ from region 1, then
the state trajectory cannot hit the switching surface S since ė < 0 for all states on the switching
surface within the set Bγ . Therefore, the state trajectory is confined to evolve in region 1 inside
the set Bγ . Since Σ̃cl

1 is a stable system, the state trajectory will converge to the origin asymptot-
ically, which implies that regulation for the switched system (3.7) is achieved. Consider now
the case where the state trajectory enters the set Bγ from region 2. Since the state trajectory is
confined to evolve inside the set Bγ and since the system Σ̃cl

2 is asymptotically stable, the state
trajectory must hit the switching surface and switching must take place. Following switching,
and based on the dynamics of the impulsive switched closed system as presented in (4.14), the
state vector immediately following switching will be in region 1. Since ė < 0 for all states on
the switching surface within the set Bγ for the system Σ̃cl

1 , the state trajectory cannot cross the
switching surface again and will continue to evolve in region 1 thereafter. The state trajectory
will approach the origin asymptotically, which implies that regulation will be achieved.

Case 2 (Cex(CexÂ2)T > 0 and bT(As2A
T
s2)
−1b > γ2 (see Figure 3)). In this case, all the state

trajectories leaving the set Sγ and entering region 2 have ė > 0. Assume the state trajectory
enters the set Bγ from region 2 at the time Tγ . Given that the system Σ̃cl

2 is asymptotically stable,
and that the trajectories are confined to evolve inside Bγ , the state trajectory must cross the
switching surface to approach the origin. However, this is not possible since, with respect to
the system Σ̃cl

2 , ė > 0 for all χ̃ ∈ Sγ . Therefore, it is not possible to have the state trajectory enter
the set Bγ from region 2 at time Tγ . Consider now the case, where the state trajectory enters the
set Bγ from region 1. If the state trajectory crosses the switching surface to enter into region 2,
then that will result in a contradiction similar to that discussed for the case, where the state
trajectory enters the set Bγ from region 2. Therefore, once the state trajectory enters the set Bγ
from region 1, it will continue to evolve in region 1 forever and will never cross the switching
surface to enter into region 2 for t > Tγ . Since Σ̃cl

1 is a stable system, then the state trajectory will
converge to the origin asymptotically, which implies that regulation for the switched system
(3.7) is achieved.
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−−−→
Cex

Sν2

Region 2:Σ̃cl
2

Region 1:Σ̃cl
1

Bounded set Bγ

−−−−−−→
CexÂ2

S

0

Figure 3: State trajectories of Σ̃cl
2 with initial conditions on the switching surface inside the set Bγ for Case 2.

Therefore, based on the above analysis, if the conditions for Case 1 given by (4.19) or
the conditions for Case 2 given by (4.20) are satisfied, then regulation in the switched system
(3.7) can be achieved.

5. Regulator synthesis for the switched system

Based on the regulation conditions for the switched system proposed in the previous section,
a regulator synthesis approach is presented in this section. The proposed synthesis approach
is based on solving a set of properly formulated bilinear matrix inequalities (BMIs). The main
idea behind the regulator synthesis approach is as follows. Consider an output-feedback con-
troller Cr as given in (2.3) and (3.4), where AQr

= Hr + BQr
D
y
r and CQr

= Ψr − KrΩr . Since
(Ωr ,Ψr) is the solution to the Sylvester equation (4.2), Cr is only parameterized in the un-
known matrices Kr , Lr , and BQr

. Assume Cr is such that the resulting closed system satisfies
(3.9). Then, based on Lemma 3.2 and Theorem 4.2, the switched closed loop system Σcl

r given
in (3.7) is internally stable under arbitrary switching and, for each r ∈ {1, 2}, Σcl

r given in (3.7)
also achieves output regulation. In this case, if any of (4.18), (4.19), and (4.20) is satisfied, then
based on Theorems 4.3 and 4.4, regulation in the switched system (3.7) is achieved. The set of
conditions in Lemma 3.2 and Theorems 4.3 and 4.4 yield bilinear matrix inequalities in the un-
known parameters Kr , Lr , and BQr

. In the following, a solution procedure for the formulated
BMIs is proposed to determine the unknown parameters Kr , Lr , and BQr

in Cr .
The sufficient regulation condition (4.18) given in Theorem 4.3 is equivalent to

β < δ0 −Δβm − ε. (5.1)

Using β = cwm/α and letting κ = (δ0 −Δβm − ε)/wm, condition (4.18) is equivalent to

c

α
< κ. (5.2)

If (5.2) cannot be satisfied, the switching surface S intersects the set Bγ and conditions (4.19)
and (4.20) in Theorem 4.4 need to be verified. For the switched closed loop system (3.7), the
parameters c and α can be estimated using the following matrix inequalities [22]:

ÂT
r P + PÂr + 2αP < 0, α > 0, r ∈ {1, 2},

I < P < c2I, c > 0.
(5.3)
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If the matrices Kr , Lr , BQr
, and CQr

in Âr are unknown, then the above equations define a
bilinear matrix inequality. Combining (5.2) and (5.3), the synthesis procedure for the controller
Cr can be realized by solving the following BMIs:

⎡

⎢
⎢
⎣

Ar + BrKr BrKr BrΨr − BrKrΩr

0 Ar + LrC
y
r Dx

r + LrD
y
r

0 BQr
C
y
r Hr + BQr

D
y
r

⎤

⎥
⎥
⎦

T

P

+ P

⎡

⎢
⎢
⎣

Ar + BrKr BrKr BrΨr − BrKrΩr

0 Ar + LrC
y
r Dx

r + LrD
y
r

0 BQr
C
y
r Hr + BQr

D
y
r

⎤

⎥
⎥
⎦ + 2αP < 0, α > 0, r ∈ {1, 2},

(5.4)

I < P < c2I, c > 0, (5.5)

c

α
< κ, (5.6)

where the unknown parameters are Kr , Lr , BQr
, P , α, and c. Once Kr , Lr , BQr

are determined
based on the above BMIs, the matrices AQr

and CQr
can be calculated using (4.3) as given in

Theorem 4.2.
In this paper, a regulator synthesis algorithm, referred to as the P -C iteration algorithm,

will be used to find a parameterized regulator that satisfies either one of the regulation condi-
tions (4.18), (4.19), or (4.20). The P -C algorithm iteratively solves for the Lyapunov matrix P
and the parameters in the controller Cr given in (2.3). The basic idea of the P -C iteration is that
a BMI can be converted into an LMI when some of the parameters in the BMI are fixed. The
approach for solving BMI problems is to alternate between two optimization problems subject
to LMIs, which are related to the matrix P in (5.4) and (5.5) and the parameters in thecontroller
Cr in (2.3), respectively. In the algorithm, the input data is represented by Ar , Br , C

y
r , Ce, Dx

r ,
D
y
r , De

r , Hr , δ, and wm, whereas the unknown variables to be determined are Kr , Lr , BQr
, AQr

,
CQr

, P , α, and c. The algorithm is summarized below, where Ki
r , L

i
r , B

i
Qr

, Pi, αi, and ci denote
the solutions Kr , Lr , BQr

, P , α, and c obtained at the ith iteration of the algorithm.

(1) Calculating κ: determine (Ωr ,Ψr) by solving the Sylvester equation (4.2) and let Πr =
[Ωr

Φr

]
with Φr =

[Ωr

i

]
. Let Π̂r be as in (4.10). Determine Δβm using (4.16), then calculate

κ = (δ0 −Δβm − ε)/wm.
(2) Initializing Cr : initialize the controller parameters K0

r , L0
r , and B0

Qr
to make the switched

closed loop system (3.7) internally stable, which can be realized by solving the follow-
ing two LMIs separately for the unknown matrices Kr , Lr , BQr

, PK, and PL with preset
constants αK ≥ 0 and αL ≥ 0,

[
Ar + BrKr

]T
PK + PK

[
Ar + BrKr

]
+ αKPK < 0, r ∈ {1, 2},

[
Ar + LrC

y
r Dx

r + LrD
y
r

BQr
C
y
r Hr + BQr

D
y
r

]T

PL + PL

[
Ar + LrC

y
r Dx

r + LrD
y
r

BQr
C
y
r Hr + BQr

D
y
r

]

+ αLPL < 0, r ∈ {1, 2}.

(5.7)
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(3) Initializing α0: based on the initial controller parameters K0
r , L0

r , and B0
Qr

from step 2, ini-
tialize the maximum decay rate α0 by solving the following optimization problem:

maxα

subject to (5.4).
(5.8)

(4) P -Step: At the ith iteration, i = 1, 2, . . ., given the matricesKi−1
r , Li−1

r , and Bi−1
Qr

and the scalar
αi−1, solve the following optimization problem for Pi and ci:

min c

subject to (5.4) and (5.5).
(5.9)

(5) C-Step: At the ith iteration, i = 1, 2, . . ., given the matrix Pi and ci from step 4, solve the
following optimization problem for Ki

r , L
i
r , B

i
Qr

, and αi:

maxα

subject to (5.4) and (5.5).
(5.10)

(6) Verification: Verify the constraints (5.6), (4.19), and (4.20), and if any of the three conditions
is satisfied, compute AQr

and CQr
using (4.3), then stop the algorithm. If none of (5.6),

(4.19), and (4.20) is satisfied, then go to step 4.

The iterative loop is repeatedly executed until a solution is found, or there is no major
reduction in c/α relative to the previous iteration. The algorithm converges to a local solution
of c/α, since at each ith iteration of the algorithm, we have ci ≤ ci−1 and αi ≥ αi−1. Therefore, if
no solution can satisfy the regulation conditions (5.6), (4.19), or (4.20) by the iterative proce-
dure described above, then the initial parameters K0

r , L0
r , and B0

Qr
can be adjusted by changing

the decay rates αK and αL in (5.7), and restarting the iterative procedure again. If the above
algorithm yields a solution, then, according to Theorems 4.3 or 4.4, the switched closed loop
system will achieve regulation.

6. Numerical example

In this section, the regulator synthesis method proposed in this paper will be used to de-
sign a controller that cancels the contact vibrations in a mechanical system. Figure 4 shows
the diagram of such a system consisting of a mass m, a contact surface Sc, and their respec-
tive coordinates. The mass m is attached to a spring with stiffness k and a damper with
damping coefficient c. The mass m moves only in the vertical direction, whereas the con-
tact surface underneath it moves to the left. The mass m may enter into intermittent con-
tact with the surface Sc, resulting in contact vibrations. When the mass m enters into contact
with the surface Sc, the contact characteristics are represented by a spring with stiffness kc
and a damper with damping coefficient cc. The force F represents the external force used to
control the mass m, whereas Fa represents a disturbance force. This model can be found in
many applications, such as the interface between the read/write head and the disk surface in
hard disk drive systems. In the following, and with respect to the system shown in Figure 4,
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k c

v

0
vs

ve

Fa F

m Contact surface Sc

Direction of surface motion

kc cc

Figure 4: Diagram of a mechanical system with switched dynamics.

the control objective is for the mass m to follow the displacement of the contact surface Sc,
while maintaining a desired constant separation in the vertical direction. Let ν be the deviation
of the mass from its equilibrium position. Then the equations of motion of the mass can be
written as

mν̈ + cν̇ + kν = −F + Fa, when ν > νs (noncontact mode),

mν̈ + cν̇ + kν = −F + Fa + Fc, when ν ≤ νs (contact mode),
(6.1)

where Fc is the contact force expressed as

Fc = cc
(
ν̇s − ν̇

)
+ kc
(
νs − ν

)
, (6.2)

and where νs is the displacement of the contact surface. The wavy contact surface profile is
expressed as a linear combination of sinusoidal functions:

νs =
∑

k

ck cos
(
ωkt + φk

)
+ νe, (6.3)

with amplitudes ck, frequencies ωk, phases φk, k = 1, 2, . . ., and constant offset νe. Therefore,
the distance between the mass m and contact surface Sc is ν − νs. The control signal is defined
as u = −F/m for the noncontact situation and u = −(F −kcνe)/m, when contact takes place. Let
−νe denote the desired distance between the mass m and contact surface Sc. The output y, to
be fed to the controller, is defined as

y = ν. (6.4)

The performance variable e is defined to be the difference between the actual distance ν − νs
and the desired distance −νe,

e = ν − νs + νe. (6.5)
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Therefore, the system will switch between the contact and noncontact modes according to the
value of the performance variable e. If e > δ = νe, the system will operate in the noncontact
mode, and if e ≤ δ = νe, the system will operate in the contact mode. Let x1 = ν and x2 = ν̇,
then the switched system model is given by

Σr :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎣
ẋ1

ẋ2

⎤

⎦ = Ar

⎡

⎣
x1

x2

⎤

⎦ +

⎡

⎣
0

1

⎤

⎦u +

⎡

⎣
0 0

1 0

⎤

⎦dr

y =
[

1 0
]
⎡

⎣
x1

x2

⎤

⎦

e =
[

1 0
]
⎡

⎣
x1

x2

⎤

⎦ +
[

0 −1
]
dr

r =

⎧
⎨

⎩

1 if e ≤ νe,

2 if e > νe,

(6.6)

where

A1 =

⎡

⎢
⎣

0 1

−
(
k + kc

)

m
−
(
c + cc

)

m

⎤

⎥
⎦ ,

A2 =

⎡

⎢
⎣

0 1

− k
m
− c
m

⎤

⎥
⎦ ,

d1 =

⎡

⎣

1
m

(
ccν̇s + kcνs − kcνe + Fa

)

νs − νe

⎤

⎦ ,

d2 =

[
Fa/m

νs − νe

]

.

(6.7)

Consider a model for the read/write head and disk surface interface in hard disk drive sys-
tems similar to that in [11, 12]. The surface profile is given by νs = (sin(120πt) − 30) × 10−6m,
and the force Fa = (1.5 sin(120πt + π) + 0.1 cos(120πt + π)) × 10−3 N. Therefore, we have
δ = ve = −30 × 10−6m. Let m, k, c, kc, and cc be 200 mg, 1.5 × 103 N/m, 0.05 N/m/Sec,
1.5 × 104 N/m, and 0.3 N/m/Sec, respectively. In the following, a regulator for the switched
system is designed using the synthesis procedure described in the previous section. Simula-
tion results will illustrate the performance of the proposed regulator in maintaining the desired
system output despite the presence of switching.
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In order to find a feasible solution for the BMIs, we introduce a coordinate transforma-
tion as

[
x′1
x′2

]
= T
[ x1
x2

]
, where T =

[
0.25 0.25×10−8

0.50 −0.50×10−8

]
. Rewriting (6.6) in the state space form (2.1)

results in

A1 =

[
49999991 −24999995

100000017 −50000008

]

,

A2 =

[
49999998 −24999999

100000002 −50000001

]

,

H1 = H2 =

[
0 120π

−120π 0

]

, w10 = w20 =

[
0

1 × 10−6

]

, B1 = B2 =

[
0.25 × 10−8

−0.50 × 10−8

]

,

C
y

1 = Cy

2 = Ce =
[
2 1
]
,

Dx
1 =

[
0.21 1.41 × 10−3

−0.41 −2.82 × 10−3

]

, Dx
2 =

[
1.87 × 10−2 1.25 × 10−3

−3.75 × 10−2 −2.50 × 10−3

]

, D
y

1 = Dy

2 = 0,

De
1 = De

2 = [−1 0].

(6.8)

It is desired to design a regulator that can reject the disturbance in the switched system. Based
on Theorem 4.2, solving the Sylvester equation (4.2) yields

Ψ1 = [−14.21 9.42] × 104, Ψ2 = [−14.21 −40.58] × 104,

Ω1 = Ω2 =

[
0.25 9.42 × 10−7

0.50 −1.88 × 10−6

]

, Π1 = Π2 =

⎡

⎢
⎢
⎣

Ω1

Ω1

I2×2

⎤

⎥
⎥
⎦ .

(6.9)

Based on (4.16), we obtain Δβm = 1.76 × 10−6. Since δ = −30 × 10−6 m and wm = 0.62 × 10−6, and
with ε = 0.01, we have κ = 18.81 in (5.2). Using the P -C algorithm proposed above, we obtain

K1 = [−4.20 1.88] × 1015, K2 = [−8.98 4.02] × 1015,

L1 =

[
−1.51

−3.02

]

× 107, L2 =

[
−0.52

−1.04

]

× 107,

BQ1 =

[
−29.69

4.34

]

× 107, BQ2 =

[
−5.21

3.91

]

× 107,
c

α
= 23.61.

(6.10)

Then, based on (4.3), we have

CQ1 = [11006.43 7.51] × 104, CQ2 = [23532.54 1.63] × 104. (6.11)
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Figure 5: Simulation results for the case of νe = −30 micrometers showing the performance variable e and
the switching component dr(1, 1) in the disturbance dr .
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Figure 6: Simulation results for the case of νe = −30 micrometers showing the regulated mass height v and
the contact surface displacement νs.

Since c/α = 23.61 > κ = 18.81, condition (5.6) is not satisfied. Then conditions (4.19) and (4.20)
will be verified. First, we obtain γ = cwm/α+Δβm+ε = 16.41×10−6. Hence, after a long enough
time, the trajectory will enter into the bounded set Bγ with γ = 16.41 × 10−6 and continue to
evolve thereafter. Given that δ < 0 and that

Cex(CexÂ1
)T = 3 × 108 > 0,

bT
(
As1A

T
s1

)−1
b = 281.25 × 10−12 > γ2 = 268.91 × 10−12,

(6.12)

it follows that regulation condition (4.20) in Theorem 4.4 is satisfied. Therefore, regulation can
be achieved in the switched closed loop system using the designed controller.

The simulation results of the response of the closed loop system under switching are
illustrated in Figures (5-6). It can be seen that if the performance variable is smaller than −30
micrometers, the mass enters into contact with the contact surface Sc and the model of the
system switches. It can also be seen that the disturbance dr changes at the switching times. But
even in the presence of switching, the switched system performance variable e still converges
to zero, which means the mass m asymptotically follows the contact surface Sc at the desired
separation 30 micrometers.
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7. Conclusion

The problem of regulation in switched bimodal systems against known disturbance or ref-
erence signals is discussed. A regulator design approach based on the parameterization of a
set of controllers that can achieve regulation for the switched system is presented. The forced
switched closed loop system involving the parameterized controller is transformed into an
unforced impulsive switched system. Consequently, the original regulation problem is trans-
formed into a stability analysis problem for the origin of the impulsive switched system. Suf-
ficient conditions for regulation and a regulator synthesis method based on solving a set of
bilinear matrix inequalities are presented. A simulation example is used to illustrate the effec-
tiveness of the proposed regulator.
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