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solving linear and nonlinear boundary value problems.
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1. Introduction

This paper discusses the analytical approximate solution for fourth-order equations with
nonlinear boundary conditions involving third-order derivatives. The general form of the
equation for a fixed positive integer n, n ≥ 2, is a differential equation of order 2n:

y(2n) + f(x, y) = 0 (1.1)

subject to the boundary conditions

y(2j)(a) = A2j , y(2j)(b) = B2j , j = 0(1)n − 1, (1.2)

where −∞ < a ≤ x ≤ b <∞ , A2j , B2j , j = 0(1)n − 1 are finite constants.
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Figure 1: Beam on elastic bearing.

It is assumed that y is sufficiently differentiable and that a unique solution of (1.1)
exists. Problems of this kind are commonly encountered in plate-deflection theory and in fluid
mechanics for modeling viscoelastic and inelastic flows [1–3]. Usmani [1, 2] discussed sixth
order methods for the linear differential equation y(4) + P(x)y = q(x) subject to the boundary
conditions y(a) = A0, y′′(A) = A2, y(b) = B0 , y

′′(b) = B2. The method described in [1] leads to
five diagonal linear systems and involves p′, p′′, q′, q′′ at a and b, while the method described
in [2] leads to nine diagonal linear systems.

Ma and Silva [4] adopted iterative solutions for (1.1) representing beams on elastic
foundations. Referring to the classical beam theory, they stated that if u = u(x) denotes the
configuration of the deformed beam, then the bending moment satisfies the relation M =
−EIu//, where E is the Young modulus of elasticity and I is the inertial moment. Considering
the deformation caused by a load f = f(x), they deduced, from a free-body diagram, that
f = −v/ and v = M/ = −EIu///, where v denotes the shear force. For u representing an elastic
beam of length L = 1, which is clamped at its left side x = 0, and resting on an elastic bearing
at its right side x =1, and adding a load f along its length to cause deformations (Figure 1), Ma
and Silva [4] arrived at the following boundary value problem assuming an EI = 1:

u(iv)(x) = f
(
x, u(x)

)
, 0 < x < 1, (1.3)

the boundary conditions were taken as

u(0) = u/(0) = 0, (1.4)

u//(1) = 0, u///(1) = g
(
u(1)

)
, (1.5)

where f ∈ C([0, 1] × R) and g ∈ C(R) are real functions. The physical interpretation of the
boundary conditions is that u///(1) is the shear force at x = 1, and the second condition in (1.5)
means that the vertical force is equal to g(u(1)), which denotes a relation, possibly nonlinear,
between the vertical force and the displacement u(1). Furthermore, since u//(1) = 0 indicates
that there is no bending moment at x = 1, the beam is resting on the bearing g.

Solving (1.3) by means of iterative procedures, Ma and Silva [4] obtained solutions and
argued that the accuracy of results depends highly upon the integration method used in the
iterative process.

With the rapid development of nonlinear science, many different methods were
proposed to solve differential equations, including boundary value problems (BVPS). These
two methods are the homotopy perturbation method (HPM) [5–7] and the variational iteration
method (VIM) [8–17]. In this paper, it is aimed to apply the variational iteration method
proposed by He [14] to different forms of (1.1) subject to boundary conditions of physical
significance.
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2. Basic idea of He’s variational iteration method

To clarify the basic ideas of He’s VIM, the following differential equation is considered:

L
[
u(t)

]
+N

[
u(t)

]
= g(t), (2.1)

where L is a linear operator, N is a nonlinear operator, and g(t) is an inhomogeneous term.
According to VIM, a correction functional could be written as follows:

un+1(t) = un(t) +
∫ t

0
λ(τ)

(
Lun(τ) +Nũn(τ) − g(τ)

)
dτ, (2.2)

where λ is a general Lagrange multiplier which can be identified optimally via the variational
theory. The subscript n indicates the nth approximation and ũn is considered as a restricted
variation, that is, δũn = 0.

For fourth-order boundary value problem with suitable boundary conditions,
Lagrangian multiplier can be identified by substituting the problem into (2.2), upon making it
stationary leads to the following:

d4

dτ4
λ = 0,

−λ′′′ + 1|τ=x = 0,

λ′′|τ=x = 0.

(2.3)

Solving the system of (2.3) yields

λ =
1
6
(τ − x)3 (2.4)

and the variational iteration formula is obtained in the form

un+1(x) = un(x) +
∫ x

0

1
6
(τ − x)3(u(4)n (τ) + f

(
τ, un, u

′
n, u

′′
n, u

′′′
n

))
dτ. (2.5)

3. The applications of VIM method

In this section, the VIM is applied to different forms of the fourth-order boundary value
problem introduced in through (1.1).

Example 3.1. Consider the following linear boundary value problem:

u(4)(x) = 4ex + u(x), 0 < x < 1, (3.1)

subject to the boundary conditions

u(0) = 1, u′(0) = 2, u(1) = 2e, u′(1) = 3e. (3.2)
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The exact solution for this problem is

u(x) = (1 + x)ex. (3.3)

According to (2.5), the following iteration formulation is achieved:

un+1(x) = un(x) +
∫ x

0

1
6
(τ − x)3(u(4)n (τ) − un(τ) − 4eτ

)
dτ. (3.4)

Now it is assumed that an initial approximation has the form

u0(x) = ax3 + bx2 + cx + d, (3.5)

where a, b, c, and d are unknown constants to be further determined.
By the iteration formula (3.4), the following first-order approximation may be written:

u1(x) = u0(x) +
∫ x

0

1
6
(τ − x)3(u(4)0 (τ) − u0(τ) − 4eτ

)
dτ

= ax3 + bx2 + cx + d +
∫ x

0

1
6
(τ − x)3( − aτ3 − bτ2 − cτ − d − 4eτ

)
dτ

=
1

840
ax7 +

1
360

bx6 +
1

120
cx5+

1
24
dx4 +

(
− 2

3
+ a

)
x3 + (b − 2)x2 + (c − 4)x + 4ex + d − 4.

(3.6)

Incorporating the boundary conditions (3.2), into u1(x), the following coefficients can be
obtained:

a = −2289756
301681

+
916440
301681

e, b =
4575063
301681

− 1516680
301681

e, c = 2, d = 1. (3.7)

Therefore, the following first-order approximate solution is derived:

u1(x) =
(
− 27259

3016810
+

1091
301681

e

)
x7 +

(
1525021

36201720
− 4213

301681
e

)
x6

+
1

60
x5+

1
24
x4+

(
− 7472630

905043
+

916440
301681

e

)
x3+

(
3971701
301681

− 1516680
301681

e

)
x2− 2x− 3+ 4ex.

(3.8)

Comparison of the first-order approximate solution with exact solution is tabulated in Table 1,
showing a remarkable agreement.

Similarly, the following second-order approximation is obtained:

u2(x) = u1(x) +
∫ x

0

1
6
(τ − x)3(u(4)1 (τ) − u1(τ) − 4eτ

)
dτ

=
1

6652800
ax11 +

1
1814400

bx10 +
1

362880
cx9 +

1
40320

dx8 +
(

1
840

a − 1
1260

)
x7

+
(

1
360

b − 1
180

)
x6 +

(
− 1

30
+

1
120

c

)
x5 +

(
− 1

6
+

1
24
d

)
x4

+
(
− 4

3
+ a

)
x3 + (b − 4)x2 + (c − 8)x − 8 + 8ex + d,

a = −12706529114180
681628862391

+
85535681616000
12042109902241

e, c = 2,

b =
8416302814865
227209620797

− 157452726614400
12042109902241

e, d = 1.

(3.9)
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Table 1: Comparison of the first-order approximate solution with exact solution.

x UE U1 Error
0 1.000000000 1.000000000 0.0000E + 000
0.1 1.215688010 1.215681524 6.4860E − 006
0.2 1.465683310 1.465660890 2.2420E − 005
0.3 1.754816450 1.754773923 4.2527E − 005
0.4 2.088554577 2.088492979 6.1598E − 005
0.5 2.473081906 2.473007265 7.4641E − 005
0.6 2.915390080 2.915312734 7.7346E − 005
0.7 3.423379602 3.423312592 6.7010E − 005
0.8 4.005973670 4.005929404 4.4266E − 005
0.9 4.673245911 4.673229891 1.6020E − 005
1.0 2e 2e 0.0000E + 000

Table 2: Comparison of the second-order approximate solution with exact solution.

x UE U2 Error
0 1.000000000 1.000000000 0.0E + 000
0.1 1.215688010 1.215688008 2.0E − 009
0.2 1.465683310 1.465683305 5.0E − 009
0.3 1.754816450 1.754816444 6.0E − 009
0.4 2.088554577 2.088554566 1.1E − 008
0.5 2.473081906 2.473081902 4.0E − 009
0.6 2.915390080 2.915390064 1.6E − 008
0.7 3.423379602 3.423379600 2.0E − 009
0.8 4.005973670 4.005973650 2.0E − 008
0.9 4.673245911 4.673245930 1.9E − 008
1.0 2e 2e 0.0E + 000

Therefore, the second-order approximate solution may be written as

u2(x) =
(
− 57756950519

20612456798703840
+

12857095
12042109902241

e

)
x11

+
(

1683260562973
82449827194815360

− 86779501
12042109902241

e

)
x10 +

1
181440

x9

+
1

40320
x8 +

(
− 731163797543

31809346911580
+

101828192400
12042109902241

e

)
x7

+
(

7961883573271
81795463486920

− 437368685040
12042109902241

e

)
x6 − 1

60
x5

− 1
8
x4 +

(
− 13615367597368

681628862391
+

85535681616000
12042109902241

e

)
x3

+
(

7507464331677
227209620797

− 157452726614400
12042109902241

e

)
x2 − 6x − 7 + 8ex.

(3.10)

Again, the obtained solution is of distinguishing accuracy, as indicated in Table 2 and Figure 2.
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Figure 2: Comparison between different solutions.

Example 3.2. Consider the following linear boundary value problem:

u(4)(x) = u(x) + u′′(x) + ex(x − 3), 0 < x < 1, (3.11)

subject to the boundary conditions

u(0) = 1, u′(0) = 0, u(1) = 0, u′(1) = −e. (3.12)

The exact solution for this problem is

u(x) = (1 − x)ex. (3.13)

According to (2.5), the iteration formulation may be written as

un+1(x) = un(x) +
∫ x

0

1
6
(τ − x)3

(
u
(4)
n (τ) − un(τ) − u′′u(τ) − eτ(τ − 3)

)
dτ. (3.14)

Now it is assumed that an initial approximation has the form

u0(x) = ax3 + bx2 + cx + d. (3.15)

Where a, b, c, and d are unknown constants to be further determined.
By the iteration formula (3.14), the following first-order approximation is developed:

u1(x) = u0(x) +
∫ x

0

1
6
(τ − x)3

(
u
(4)
0 (τ) − u0(τ) − u′′0(τ) − eτ(τ − 3)

)
dτ

= ax3 + bx2 + cx + d +
∫ x

0

1
6
(τ − x)3( − aτ3 − bτ2 − (6a + c)τ − 2b − d − eτ(τ − 3)

)
dτ

=
1

840
ax7+

1
360

bx6 +
(

1
20
a +

1
120

c

)
x5 +

(
1

12
b +

1
24
d

)
x4 +

(
2
3
+ a

)
x3 +

(
b +

5
2

)
x2

+
(
ex + 6 + c

)
x − 7ex + 7 + d.

(3.16)
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Table 3: Comparison of the first-order approximate solution with exact solution.

x UE U1 Error
0 1.0000000000 1.0000000000 0.0000000E + 000
0.1 0.9946538262 0.9947931547 1.3932850E − 004
0.2 0.9771222064 0.9775949040 4.7269760E − 004
0.3 0.9449011656 0.9457776230 8.7645740E − 004
0.4 0.8950948188 0.8963297250 1.2349062E − 003
0.5 0.8243606355 0.8258087440 1.4481085E − 003
0.6 0.7288475200 0.7302919280 1.4444080E − 003
0.7 0.6041258121 0.6053240800 1.1982679E − 003
0.8 0.4451081856 0.4458625400 7.5435440E − 004
0.9 0.2459603111 0.2462193000 2.5898890E − 004
1.0 0.0000000000 0.0000000000 0.0000000E + 000

Incorporating the boundary conditions (3.12), into u1(x), it can be written as

a =
7904470
323149

− 2950080
323149

e, b = −12770295
323149

+
4640400
323149

e, c = 0, d = 1. (3.17)

Therefore, the following first-order approximate solution is obtained:

u1(x) =
(

112921
3877788

− 3512
323149

e

)
x7 +

(
− 851353

7755576
+

12890
323149

e

)
x6

+
(

790447
646298

− 147504
323149

e

)
x5 +

(
− 25217441

7755576
+

386700
323149

e

)
x4

+
(

24359708
969447

− 2950080
323149

e

)
x3 +

(
− 23924845

646298
+

4640400
323149

e

)
x2

+
(
6 + ex

)
x + 8 − 7ex.

(3.18)

Comparison of the first-order approximate solution with exact solution is tabulated in Table 3,
again showing a clear agreement. Even higher accurate solutions could be obtained without
any difficulty.

Similarly, the following second-order approximation can be written as

u2(x) = u1(x) +
∫ x

0

1
6
(τ − x)3(u(4)1 (τ) − u1(τ) − u′′1(τ) − eτ(τ − 3)

)
dτ

=
1

6652800
ax11 +

1
1814400

bx10 +
(

1
362880

c +
1

30240
a

)
x9 +

(
1

10080
b +

1
40320

d

)
x8

+
(

1
5040

c +
1

420
a +

1
1260

)
x7 +

(
1

720
d +

1
144

+
1

180
b

)
x6 +

(
1
12

+
1

20
a +

1
120

c

)
x5

+
(

1
2
+

1
24
d +

1
12
b

)
x4 + (3 + a)x3 +

(
b +

21
2

)
x2 +

(
24 + 3ex + c

)
x + 27 − 27ex + d.

(3.19)
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Incorporating the boundary conditions, (3.12), into u2(x), yields

a =
381804789300110

4289712004667
− 140985028800000

4289712004667
e, c = 0,

b = −629495301082065
4289712004667

+
230790037363200

4289712004667
e, d = 1.

(3.20)

The following second-order approximate solution is then achieved in the following form:

u2(x) =
(

3470952630001
259441782042260160

− 63575500
12869136014001

e

)
x11

+
(
− 41966353405471

518883564084520320
+

381597284
12869136014001

e

)
x10

+
(

38180478930011
12972089102113008

− 13986610000
12869136014001

e

)
x9

+
(
− 2513691492323593

172961188028173440
+

22895837040
4289712004667

e

)
x8

+
(

1149704079904997
5405037125880420

− 335678640000
4289712004667

e

)
x7

+
(
− 415373822050043

514765440560040
+

1282166874240
4289712004667

e

)
x6

+
(

233372585584733
51476544056004

− 7049251440000
4289712004667

e

)
x5

+
(
− 1203224346103459

102953088112008
+

19232503113600
4289712004667

e

)
x4

+
(

394673925314111
4289712004667

− 140985028800000
4289712004667

e

)
x3

+
(
− 1168906650066123

8579424009334
+

230790037363200
4289712004667

e

)
x2

+
(
3ex + 24

)
x + 28 − 27ex.

(3.21)

The obtained solution is of evident accuracy, as shown in Table 4 and Figure 3.

Example 3.3. Consider the following nonlinear boundary value problem:

u(4)(x) = u2(x) + g(x), 0 < x < 1, (3.22)

subject to the boundary conditions

u(0) = 0, u′(0) = 0, u(1) = 1, u′(1) = 1, (3.23)

where

g(x) = −x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x − 48. (3.24)
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Figure 3: Comparison between different solutions.

Table 4: Comparison of the second-order approximate solution with exact solution.

x UE U2 Error
0 1.0000000000 1.0000000000 0.00000E + 000
0.1 0.9946538262 0.9946577580 3.93180E − 006
0.2 0.9771222064 0.9771357780 1.35716E − 005
0.3 0.9449011656 0.9449268900 2.57244E − 005
0.4 0.8950948188 0.8951321100 3.72912E − 005
0.5 0.8243606355 0.8244058800 4.52445E − 005
0.6 0.7288475200 0.7288945300 4.70100E − 005
0.7 0.6041258121 0.6041666500 4.08379E − 005
0.8 0.4451081856 0.4451352800 2.70944E − 005
0.9 0.2459603111 0.2459701300 9.81890E − 006
1.0 0.0000000000 0.0000000000 0.00000E + 000

The exact solution for this problem is

u(x) = x5 − 2x4 + 2x2. (3.25)

According to (2.5), the iteration formulation is written as follows:

un+1(x) = un(x) +
∫ x

0

1
6
(τ − x)3(u(4)n (τ) − u2

n(τ) − g(τ)
)
dτ. (3.26)

Now it is assumed that an initial approximation has the form

u0(x) = ax3 + bx2 + cx + d, (3.27)

where a, b, c, and d are unknown constants to be further determined.
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Table 5: Comparison of the first-order approximate solution with exact solution.

x UE U1 Error
0 0.0000000000 0.0000000000 0.0000000E + 000
0.1 0.0198100000 0.0198624243 5.2424300E − 005
0.2 0.0771200000 0.0773022107 1.8221070E − 004
0.3 0.1662300000 0.1665781379 3.4813790E − 004
0.4 0.2790400000 0.2795490972 5.0909720E − 004
0.5 0.4062500000 0.4068747265 6.2472650E − 004
0.6 0.5385600000 0.5392178270 6.5782700E − 004
0.7 0.6678700000 0.6684511385 5.8113850E − 004
0.8 0.7884800000 0.7888727023 3.9270230E − 004
0.9 0.8982900000 0.8984356964 1.4569640E − 004
1.0 1.0000000000 1.0000000000 0.0000000E + 000

By the iteration formula (3.26), the following first-order approximation is obtained:

u1(x) = u0(x) +
∫ x

0

1
6
(τ − x)3(u(4)0 (τ) − u2

0(τ) + τ
10 − 4τ9 + 4τ8 + 4τ7 − 8τ6 + 4τ4 − 120τ + 48

)
dτ

= − 1
24024

x14 +
1

4290
x13 − 1

2970
x12 − 1

1980
x11 +

(
1

5040
a2 +

1
630

)
x10

+
1

1512
abx9 +

(
− 1

420
+

1
1680

b2 +
1

840
ac

)
x8 +

(
1

420
bc +

1
420

ad

)
x7

+
(

1
180

bd +
1

360
c2
)
x6 +

(
1 +

1
60
cd

)
x5 +

(
1
24
d2 − 2

)
x4 + ax3 + bx2 + cx + d.

(3.28)

Incorporating the boundary conditions (3.23), into u1(x), results in the following values:

a = −0.006871650809; b = 2.005929593; c = 0, d = 0. (3.29)

The following first-order approximate solution is then achieved:

u1(x) = −4.162504162 × 10−5x14 + 2.331002331 × 10−4x13

− 3.367003367 × 10−4x12 − 5.050505050 × 10−4x11

+ 1.587310956 × 10−3x10 − 9.116433669 × 10−6x9

+1.4139007 × 10−5x8 + x5−2x4 − 6.871650809 × 10−3x3

+2.005929593x2.

(3.30)

Comparison of the first-order approximate solution with exact solution is tabulated in Table 5,
which once again shows an excellent agreement.

Similarly, the following second-order approximation may be written:

u2(x) = u1(x) +
∫ x

0

1
6
(τ − x)3(u(4)1 (τ) − u2

1(τ)+τ
10 − 4τ9 + 4τ8 + 4τ7 − 8τ6 + 4τ4 − 120τ + 48

)
dτ.

(3.31)
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Table 6: Comparison of the second-order approximate solution with exact solution.

x UE U2 Error
0 0.0000000000 0.0000000000 0.000E + 000
0.1 0.0198100000 0.0198100068 6.800E − 009
0.2 0.0771200000 0.0771200239 2.390E − 008
0.3 0.1662300000 0.1662300464 4.640E − 008
0.4 0.2790400000 0.2790400692 6.920E − 008
0.5 0.4062500000 0.4062500874 8.740E − 008
0.6 0.5385600000 0.5385600961 9.610E − 008
0.7 0.6678700000 0.6678700906 9.060E − 008
0.8 0.7884800000 0.7884800670 6.700E − 008
0.9 0.8982900000 0.8982900292 2.920E − 008
1.0 1.0000000000 1.0000000012 1.200E − 009

Incorporating the boundary conditions, (3.23), into u2(x), yields

a = −8.269548014E − 7; b = 2.000000763; c = 0, d = 0. (3.32)

The following second-order approximate solution is obtained:

u2(x) = −1.093855974 × 10−9x9+1.817 × 10−9x8−2x4 − 1.117934793 × 10−8x21

+ 1.463705892 × 10−9x20+6.586694874 × 10−8x19 + 2.000000763x2

− 8.269548014 × 10−7x3 − 1.047931585 × 10−7x18 − 3.536760165 × 10−8x17

+ 1.453571773 × 10−7x16 − 5.173598972 × 10−13x28 − 2.569735395 × 10−14x31

+ 1.252296566 × 10−13x30 − 2.016131906 × 10−13x29+2.007605778 × 10−15x32

+ 2.564345160 × 10−12x27 + 3.603899741 × 10−9x22+3.025 × 10−13x14

− 1.392179800 × 10−10x12 + 6.103539401 × 10−10x11+x5+9.879565106 × 10−12x24

− 2.268156651 × 10−12x26 − 5.281071651 × 10−12x25 − 3.917282540 × 10−10x23

− 1.335600908 × 10−13x15 − 6.059998643 × 10−10x10.

(3.33)

The obtained solution is once again of remarkable accuracy, as shown in Table 6 and Figure 4.

4. Conclusion

This study showed that the variational iteration method is remarkably effective for solving
boundary value problems. A fourth-order differential equation with particular engineering
applications was solved using the VIM in order to prove its effectiveness. Different forms of the
equation having boundary conditions of physical significance were considered. Comparison
between the approximate and exact solutions showed that one iteration is enough to reach
the exact solution. Therefore the VIM is able to solve partial differential equations using a
minimum calculation process. This method is a very promoting method, which promises to
find wide applications in engineering problems.
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