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An important aspect in modeling dynamic phenomena consists in measuring with higher accuracy
some physical quantities corresponding to the dynamic system. Yet for measurements performed
on limited time interval at high working frequency, certain intelligent methods should be added.
The high working frequency requires that the measurement and data processing time interval
should be greater than the time interval when the step input is received, so as to allow an accurate
measurement. This paper will show that an intelligent processing method based on oscillating
second-order systems working on limited time interval can differentiate between large step inputs
(which are active on the whole limited time interval) and short step inputs (which are active on a
time interval shorter than the limited working period). Some resonance aspects (appearing when
the input frequency is close to the working frequency of the oscillating second-order system) will
be also presented.
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1. Introduction

Filtering and sampling devices usually consist of asymptotically stable systems, sometimes
an integration of the output over a certain time interval being added. Yet such structures
are very sensitive at random variations of the integration period, being recommended for
the signal which is integrated to be approximately equal to zero at the end of the integration
period. For this reason, oscillating systems for filtering the received signal should be used,
so as the filtered signal and its slope to be approximately zero at the end of a certain time
interval (at the end of an oscillation). For avoiding instability of such oscillating systems on
extended time intervals, certain electronic devices (gates) controlled by computer commands
should be added, so as to restore the initial null conditions for the oscillating system before
a new working cycle to start [1].

The filtering performances of asymptotically stable systems are determined by their
transfer function. A filtering and sampling device consisting of low-pass filters of first or

mailto:c1mora2@yahoo.com


2 Mathematical Problems in Engineering

second order having the transfer function

H(s) =
1

T0s + 1
(1.1)

(for a first-order system) and

H(s) =
1

T2
0 s

2 + 2bT0s + 1
(1.2)

(for a second-order system) attenuates an alternating signal of angular frequency ω � ω0 =
1/T0 about ω/ω0 times (for a first-order system) or about (ω/ω0)

2 times (for a second-order
system). The response time of such systems at a continuous useful signal is about 4−6T0 (5T0
for the first-order system and 4T0/b for the second-order system). If the signal given by the
first- or second-order system is integrated over such a period, a supplementary attenuation
for the alternating signal of about 4 − 6ω/ω0 can be obtained.

But such structures are very sensitive at the random variations of the integration
period (for unity-step input, the signal which is integrated is equal to unity at the sampling
moment of time), and the use of oscillators with a very high accuracy cannot solve the
problem due to switching phenomena appearing at the end of the integration period (when
an electric current charging a capacitor is interrupted).

These random variations cannot be avoided if we use asymptotically stable filters.
By the other hand, an improvement in an electrical scheme used for integrators in analog
signal processing (see [2, 3]) cannot lead to a significant increasing in accuracy, as long as
such electronic devices perform the same task (the system has the same transfer function).
There are also known techniques for reducing the switching noise in digital systems, but
such procedures can be applied only after the analog signal is filtered and sampled, so as to
be prepared for further processing. So we must give attention to some other kind of transfer
functions and to analyze their properties in case of filtering and sampling procedures, similar
to wavelets analysis presented in [4, 5].

Mathematically, an ideal solution consists in using an extended Dirac function for
multiplying the received signal before the integration (see [1]), but is very hard to generate
such extended Dirac functions (a kind of acausal pulses) using nonlinear differential
equations for (i) symmetrical pulses (see [6]) or (ii) asymmetrical pulses (see [7] for more
details).

A heuristic algorithm for generating practical test functions using MATLAB proce-
dures was presented in [6]. First it has been shown that ideal test functions cannot be
generated by differential equations, being emphasized the fact that differential equations can
only generate functions similar to test functions (defined as practical test functions). Then a
step-by-step algorithm for designing the most simple differential equation able to generate
a practical test function was presented, based on the invariance properties of the differential
equation and on standard MATLAB procedures. The result of the algorithm consists in a
system working at the stability limit from initial null conditions, on limited time intervals,
the external signal representing the free term in the differential equation corresponding to the
input of the oscillating system. Such a system could be built using standard components and
operational amplifiers. However, the previously mentioned study [6] did not investigate the
behavior of such an oscillating system for an input represented by a short-step pulse. These
aspects will be studied in this paper. Finally, supplementary resonance aspects (appearing
when the input frequency is close to the working frequency of the oscillating second-order
system) will be also presented.
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2. Modeling transitions by practical test-functions integral aspects

While this study is based on robust integral procedures of practical test-functions for certain
time intervals, certain basic integral aspects of practical test functions should be mentioned.
These aspects are useful for modeling smooth transitions from a certain function of time to
another on a limited time interval [6].

From basic mathematics, it is known that the product ϕ(t)g(t) between a function g(t)
which belongs to C∞ class and a test-function ϕ(t) which differs to zero on (a, b) is also a
test-function because

(a) it differs to zero only on the time interval (a, b) where ϕ(t) differs to zero (if ϕ(t) is
null, then the product ϕ(t)g(t) is also null);

(b) the function ϕ(t)g(t) belongs to the C∞ class of functions, while a derivative of a
certain order k can be written as

(
ϕ(t)g(t)

)(k) =
k∑

p=0

C
p

kϕ(t)
(p)g(t)(k−p) (2.1)

(a sum of terms represented by a product of two continuous functions).

Yet for practical cases (when phenomena must be represented by differential
equations), the ϕ(t) test functions must be replaced by a practical test functions f(t) ∈ Cn

on R (for a finite n-considered from now on as representing the order of the practical test
function) having the following properties:

(a) f is nonzero on (a), (b),

(b) f satisfies the boundary conditions f (k)(a) = f (k)(b) = 0 for k = 0, 1, . . . , n, and

(c) f restricted to (a, b) is the solution of an initial value problem (i.e., an ordinary
differential equation on (a, b) with initial conditions given at some point in this
interval).

The generation of such practical test functions is based on the study of differential equations
satisfied by these test functions, with the initial moment of time chosen at a time moment
close to the t = a moment of time (when the function begins to present nonzero values).

By using these properties of practical test-functions, we obtain the following important
result for a product f(t)g(t) between a function g(t)which belongs toC∞ class and a practical
test-function of n order f(t)which differs to zero on (a, b):

General property for product

The product g(t)f(t) between a function g(t) ∈ C∞ and a practical test-function f of order n
is represented by a practical test function of order n.

This is a consequence of the following two properties:

(a) the product g(t)f(t) differs to zero only on the time interval (a, b) on which f(t)
differs to zero;
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(b) the derivative of order k for the product g(t)f(t) is represented by the sum

(
f(t)g(t)

)(k) =
k∑

p=0

C
p

k
f(t)(p)g(t)(k−p) (2.2)

which is a sum of terms representing products of two continuous functions for
any k ≤ n, (n being the order of the practical test-function f)—only for k > n
discontinuous functions can appear in the previous sum.

Nowwe will begin to study the integral properties of practical test functions of certain
order. For this, we note that the integral ϕ(t) of a test function φ(t) (which differs to zero on
(a, b) interval) is a constant function on the time intervals (−∞, a] and [b,+∞); it presents a
certain variation on the (a, b) time interval, from a constant null value to a certain Δ quantity
corresponding to the final constant value. Moreover, all derivatives of order k ≤ n + 1 for
the integral function F(t) are equal to zero for t = a and t = b (this can be easily checked
by taking into account that all derivatives of order p for f(t) are equal to zero at these time
moments, for p ≤ n, and a derivative of order p for f(t) corresponds to a derivative of order
p+1 for function F(t), the integral function of f(t)). This suggests the possibility of using such
integral functions for modeling smooth transitions from a certain state to another in different
kind of applications, when almost all derivatives of a certain function are equal to zero at the
initial moment of time.

For modeling such a transition, we analyze the general case when a function f and a
finite number of its derivatives f (1), f (2), . . . f (n) present variations from null values to values
Δ,Δ1,Δ2, . . .Δn on the time interval [−1, 1]. We begin by looking for a function fn which
should be added to the null initial function so as to obtain a variation Δn for the derivative of
n order.

By multiplying the bump-like function

ϕ(τ) =

⎧
⎪⎨

⎪⎩

C exp
(

1
τ2 − 1

)
, if τ ∈ (−1, 1),

0, otherwise
(2.3)

(a test-function on [−1, 1]) with the variation Δn of the derivative of n order and by
integrating this product n + 1 times we obtain

(i) after the first integration: a constant value equal to Δn at the time moment t = 1
(while the integral of the bump-like test function on [−1, 1] is equal to 1), and a null
variation on (1,+∞);

(ii) after the second integration (when we integrate the function obtained at previous
step): a term equal to Δn(t − 1) and a term equal to a constant value c11 (a constant
of integration) on the time interval (1,+∞);

(iii) after the n + 1 integration: a term equal to Δn(t − 1)n/n! and a sum of terms having
the form c1i(t − 1)i/i! for i ∈ N, i < n (cni being constants of integration) on the
time interval (1,+∞).

All previous constants of integration are determined by integrating the test function
on [−1, 1]. The procedure continues by looking for the other functions fn−1, fn−2 . . . which
must be added to the initial null function. However, we must take care to the fact that the
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function fn previously obtained has nonzero variations dn−1, dn−2, . . . d1 for its derivatives of
order n − 1, n − 2, . . . 1 on the working interval and so we must subtract these values from the
set Δn−1,Δn−2, . . .Δ1 before passing to the next step.

Then we multiply the bump-like function with the corrected value

Δ′
n−1 = Δn−1 − dn−1 (2.4)

and by integrating this product n times we obtain in a similar manner a function with a
term equal to Δ′

n−1(t − 1)n−1/(n − 1)! and a sum of terms having the form c2i(t − 1)i/i! for
i ∈ N, i < n − 1 (cni being constants of integration) on the time interval (1,+∞). It can be
noticed that the result obtained after n integration possess the n − 1 order derivative equal to
Δ′

n−1, a smooth transition for this derivative from the initial null value being performed. So
the second function which must be added to the initial null function is the integral of n − 1
order for the bump-like function multiplied by this variation Δn−1 − dn−1 (the function being
noted as fn−1). This function fn−1 has a null value for the derivative of n order for t > 1, so the
result obtained at first step is not affected.Wemust take care again to the fact that the function
fn−1 previously obtained has nonzero variations d1

n−1, d
1
n−2, . . . d

1
1 for its derivatives of order n−

1, n−2, . . . 1 and so wemust once again subtract these values from the previously corrected set
Δn−1−dn−1,Δn−2−dn−2, . . .Δ1−d1 before passing to the next step. Finally we obtain all functions
fn+1, fn, . . . f1 which represent the terms of function f modeling the smooth transition from
an initial null function to a function having a certain set of variations for a finite number
of its derivatives on a small time interval. The procedure can be also applied for functions
possessing a finite number of derivatives within a certain time interval by time reversal (t
being replaced with −t). More details regarding possible applications of such a procedure
can be found in [6].

3. The oscillating second-order system for the case of short-step inputs

After presenting basic aspects regarding integral properties of practical test-functions, we
will analyze the behavior of a system able to generate a practical test-function for signal
processing when its command is represented by a short-step pulse. Unlike aspects presented
in previous paragraph, the step change appears for the command function u(t), and the
dynamical behavior on a limited time interval should be performed. We are searching for
a robust integral procedure (with null values of the function which is integrated at the
beginning and at the end of the interval of integration) so as the sampled values to be further
processed for determining the amplitude and the time length of the short-step pulse.

For a robust filtering and sampling procedure based on an integration on a limited time
interval, a search for a system having the following property was performed in a rigorous
manner in [8]: starting to work from initial null conditions, for a unity step input it must
generate an output and a derivative of this output equal to zero at a certain moment of time
(the condition for the derivative of the output to be equal to zero has been added so as the
slope and the first derivative of the slope for the signal which is integrated to be equal to
zero at the sampling moment of time, when the integration is interrupted). It was finally
shown that the simplest structure possessing such properties is represented by an oscillating
second-order system having the transfer function

Hosc =
1

T2
0 s

2 + 1
(3.1)



6 Mathematical Problems in Engineering

receiving a step input and working on the time interval [0, 2πT0]. For initial conditions equal
to zero, the response of the oscillating system at a step input with amplitude A will have the
form

y(t) = A

(
1 − cos

(
t

T0

))
. (3.2)

By integrating this result on the time interval [0, 2πT0], we obtain the result 2πAT0, and we
can also notice that the quantity which is integrated and its slope are equal to zero at the
end of the integration period. Thus the influence of the random variations of the integration
period (generated by the switching phenomena) is practically rejected.

This oscillating system attenuates about (ω/ω0)
2 times such an input, and the

influence of the integrator consists in a supplementary attenuation of about

[(
1/(2π)

)(
ω/ω0

)]
(3.3)

times. The oscillations having the form

yosc = a sin
(
ω0t

)
+ bcos

(
ω0t

)
(3.4)

generated by the input alternating component have a lower amplitude and give a null result
after an integration over the time interval [0, 2πT0].

These results have shown that such a structure provides practically the same
performances as a structure consisting of an asymptotically stable second-order system and
an integrator (response time of about 6T0, an attenuation of about (1/6)(ω/ω0)

3 times for
an alternating component having frequency ω), moreover being less sensitive at the random
variations of the integration period. For restoring the initial null conditions after the sampling
procedure (at the end of the working period), some electronic devices must be added. Yet the
previous analysis is valid for extended step inputs, which are active on the whole working
interval (the integration period).

We will continue the analysis of this structure by considering that the input is
represented by a unity short-step pulse (instead of a unity step-pulse) which differs to zero
on the time interval [0, τ]. This means that the input u can be represented under the following
form:

u(t) = 1, for t ∈ [0, τ],

u(t) = 0, for t > τ,
(3.5)

or, using the Heaviside function

u(t) = h(τ − t) for t ∈ [0,∞), (3.6)

where h(τ) corresponds to the function 1/s if we apply the Laplace transformation.
The transfer function of the second-order oscillating system is

H(s) =
1

T2
0 s

2 + 1
. (3.7)
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On the time interval [0, τ], the output of the second-order oscillating system is represented
(using the Laplace transformation) as

y(s) = H(s)u(s) =
1

T2
0 s

2 + 1
1
s

(3.8)

which corresponds to the output

y(t) =
(
1 − cos

(
t

T0

))
(3.9)

which can be written as

y(t) = 1 − cos
(
ω0t

)
, (3.10)

where ω0 = 2π/T0. When the action of the external unity pulse ceases (for t = τ) the output
y(t) is

y(τ) = 1 − cos
(
ω0τ

)
(3.11)

and the derivative of y(t) is

y′(τ) = ω0 sin
(
ω0τ

)
. (3.12)

These values, y(τ) and y′(τ), represent the initial values for the free oscillations of the
second-order oscillating system generated for t > τ (when the input command u(t) = 0).
These free oscillations have the angular velocity ω0, and thus the output y(t) for t > τ will
have the form

y(t) = C sin
(
ω0t + φ

)
, for t > τ. (3.13)

The quantitiesC and φ (amplitude and initial phase of free oscillations) should be determined
using the initial conditions for t = τ :

y(τ) = 1 − cos
(
ω0τ

)
, y′(τ) = ω0 sin

(
ω0τ

)
. (3.14)

This implies

1 − cos
(
ω0τ

)
= C sin

(
ω0τ + φ

)
, ω0 sin

(
ω0τ

)
= Cω0cos

(
ω0τ + φ

)
. (3.15)

By dividing the second equality with ω0, squaring both equalities and summing left-
hand sides and right-hand sides of both squared equalities we obtain

[
1 − cos

(
ω0τ

)]2 + sin2(ω0τ
)
= C2 (3.16)

and (while sin2(ω0τ) + cos2(ω0τ) = 1)

2 − 2cos
(
ω0τ

)
= C2. (3.17)
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While

cos
(
ω0τ

)
= 1 − 2sin2

(
ω0τ

2

)
(3.18)

by substituting cos(ω0τ) with the right-hand side of the above equality, the result is

4sin2
(
ω0τ

2

)
= C2. (3.19)

It results

C = 2 sin
(
ω0τ

2

)
. (3.20)

(C is a positive quantity, because ω0τ ∈ [0, 2π]→ω0τ/2 ∈ [0, π]→ sin(ω0τ/2) ≥ 0).
The phase φ can be obtained using the two equations determined by the initial conditions:

1 − cos
(
ω0τ

)
= C sin

(
ω0τ + φ

)
, sin

(
ω0τ

)
= Ccos

(
ω0τ + φ

)
(3.21)

(the second equation resulting by dividing previous equation of y′(τ) to ω0).
By dividing left-hand side of first equality to left-hand side of second equality, and

right-hand side of first equality to right-hand side of second equality, it results

1 − cos
(
ω0τ

)

sin
(
ω0τ

) = tan
(
ω0τ + φ

)
. (3.22)

Using equalities

cos
(
ω0τ

)
= 1 − 2sin2

(
ω0τ

2

)
, sin

(
ω0τ

)
= 2 sin

(
ω0τ

2

)
cos

(
ω0τ

2

)
, (3.23)

it results by substituting cos(ω0τ), cos(ω0τ)with the above expressions

tan
(
ω0τ

2

)
= tan

(
ω0τ + φ

)
. (3.24)

So φ is obtained as

φ = −
(
ω0τ

2

)
(3.25)

and the output y(t) corresponding to the free oscillations of the system for t > τ (when the
action of the external short-step command u has ceased) can be written as

y(t) = 2 sin
(
ω0τ

2

)
sin

(
ω0t − ω0τ

2

)
. (3.26)
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4. Algorithm for detecting short-step pulses

While the signal processing system is linear, in case of a short-step pulse of amplitude A
defined on time interval [0, τ] the output y(t) of the system will be multiplied byA as related
to the output obtained in case of a unity short-step input (presented in previous paragraph).
Thus, the output y(t) will be

A(1 − cos(ω0t)), for t ∈ [0.τ],

y(t) = 2A sin
(
ω0τ

2

)
sin

(
ω0t − ω0τ

2

)
, for t > τ.

(4.1)

This output, y(t), is equal to zero at two time moments t1 and t2 after time moment τ .
At time moment t1,

(
ω0t1 − ω0τ

2

)
= π ; (4.2)

and at time moment t2,

(
ω0t2 − ω0τ

2

)
= 2π. (4.3)

These imply that

t1 =
τ

2
+

π

ω0
,

t2 =
τ

2
+ 2

(
π

ω0

)
.

(4.4)

We must check whether both t1, t2 are greater than τ . First we check the inequality
t1 = τ/2 + π/ω0 > τ . This is equivalent to τ/2 < π/ω0, τ < 2π/ω0 = T0, where T0 represents
the period of the second-order oscillating system. It is obvious that τ < T0, while we have
considered that the short-step pulse has nonzero values for t ∈ (0, T0). Thus t1 > τ , and while
t2 > t1 it results that t2 > t1 > τ .

The signal processing system will perform the integration of output y(t) on two
different time intervals. The first value I1 is obtained by an integration of y(t) on the time
interval [0, t2]. It results

I1 =
∫ t2

0
y(t)dt =

∫ τ

0
A
(
1 − cos

(
ω0t

))
dt +

∫ t2

τ

2A sin
(
ω0τ

2

)
sin

(
ω0t − ω0τ

2

)
dt,

I1 = A

(
τ − 1

ω0
sin

(
ω0τ

)
+ 2A

1
ω0

sin
(
ω0τ

2

)(
− cos(2π) + cos

(
ω0τ

2

))
,

(4.5)

(while ω0t2 = 2π). Then we obtain

I1 = Aτ −A
1
ω0

sin
(
ω0τ

)
+A

2
ω0

sin
(
ω0τ

2

)(
cos

(
ω0τ

2

)
− 1

)
(4.6)
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which can be finally written as

I1 = Aτ −A
2
ω0

sin
(
ω0τ

2

)
. (4.7)

The second integral I2 is performed by integrating y(t) on the time interval [t1, t2]. On
this time interval, the output y(t) is represented by a free oscillation

y(t) = 2A sin
(
ω0τ

2

)
sin

(
ω0t − ω0τ

2

)
, (4.8)

so I2 is determined by

I2 =
∫ t2

t1
2A sin

(
ω0τ

2

)
sin

(
ω0t − ω0τ

2

)
dt; (4.9)

and taking into account that

ω0t − ω0τ

2
= π, for t = t1,

ω0t − ω0τ

2
= 2π, for t = t2,

(4.10)

it results I2 as

I2 = −4A
ω0

sin
(
ω0τ

2

)
. (4.11)

The values I1, I2 allow us to determine A, τ by robust integrations (the values of the
function y(t) which is integrated are zero at the beginning and the end of the time interval
used for integration). A quantity I0 can be determined as

I0 = I1 − I2
2

= Aτ ; (4.12)

and a quantity R can be determined as

R = − I2
2I0

=

(
4A/ω0

)
sin

(
ω0τ/2

)

2Aτ
(4.13)

which can be written as

R =
sin

(
ω0τ/2

)

ω0τ/2
= sinc

(
ω0τ

2

)
. (4.14)

This means that after performing the robust integration of y(t) in order to obtain the
sampled values I1, I2 we can compute I0 = I1 − I2/2 and then I0 = −I2/(2I0). While

I0 = sinc
(
ω0τ

2

)
, (4.15)

we can determine the time interval τ of the received short-step pulse using I0 and a
mathematical memory (the quantity ω0 being known).

Next quantity A (the amplitude of this received short-step pulse) can be determined
using τ (determined at previous computation) and I0 = Aτ .
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At t = 0 Start Integration for I1
if output = 0
then
Start Integration for I2
if output = 0
Stop Integration for I1 and Integration for I2
Determine A and τ using sampled values for I1 and I2

Algorithm 1

Taking into account the previous considerations, the algorithm for detecting short-step
pulses consists in the steps shown in Algorithm 1.

5. The problem of initial conditions and resonance aspects

In previous paragraphs has been analyzed the case when a certain short-step pulse is received
at the beginning of a working interval—this pulse presenting nonzero values on a limited
time interval (0, τ). Yet in applications, the signal processing system can receive a sequence
of step pulses with different time lengths. Due to this reason, the whole procedure must be
adapted for the case when a certain step input with amplitudeD is received on a certain time
interval (0, σ) (the first part of the working interval) and a different step input with amplitude
B appears on the time interval [σ, T0] (the second part of the time interval).

Under these circumstances the output y(t) could be represented by

y(t) = D
(
1 − cos

(
ω0t

))
, for t < σ,

y(t) = B
(
1 − cos

(
ω0(t − σ)

))
+ yosc, for t ≥ σ,

(5.1)

where

yosc = 2D sin
(
ω0σ

2

)
sin

(
ω0t − ω0σ

2

)
(5.2)

represents the free oscillations of the system generated by the short-step pulse with amplitude
D (which has ceased its action at time moment σ). It can be noticed that it is very difficult
to analyze these outputs by performing certain integral operations in order to determine the
parameters D,B, σ. However, the whole procedure can be simplified in a significant manner
if we observe that the amplitude D of the first step input can be predicted by the signal
processing system (by considering that the pulse with amplitude D has been received by
the system on a previous working interval and its action continues at the beginning of the
analyzed working interval). This suggests the possibility of adjusting the input command for
the second-order oscillating system by subtracting quantity D from u(t) and thus the output
of the oscillating system will become

y(t) = 0, for t < σ,

y(t) = (B −D)
(
1 − cos

(
ω0(t − σ)

))
, for t ≥ σ.

(5.3)

The quantity yosc vanishes while the oscillating second-order system has initial null
conditions and a null command for t < σ.
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At first sight it looks like the system receives a nonzero command at the end of the
working time interval and the results presented in previous paragraph cannot be applied. Yet
we can observe that an integration performed on the first time interval [0, σ] generates a null
result. Due to this reason, we have to adjust the integration procedure by

(i) starting the integration for I1 and I2 at the beginning of a new working cycle,
with the input command considered as w(t) = u(t) − A (the previous value for
the amplitude of the received pulse is subtracted from received pulse u(t));

(ii) if a step variation of amplitude for the input command w(t) is detected then

(a) stop the action of adjusted input commandw(t) = u(t)−A upon the oscillating
system at time moment T0 (the output y(t) of the system will be represented
by free oscillations),

(b) continue the integration for I1 and I2 after the time moment T0 (which would
have been the end of the working cycle in case that the step variation of input
has been not detected);

(iii) stop the integration procedure for I1 when y(t) first time equals zero and the
integration procedure for I2 when y(t) second time equals zero.

Note that the time moments when the integration procedures cease are not affected
by noise, while the output y(t) is represented just by free oscillations of the second-
order system (after the time moment T0 the action of u(t) upon the system ceases);

(iv) Determine σ using

I0 = −I2/(2I0), I0 = sinc
(
ω0τ

2

)
, T0 − σ = τ,

I0 = Aτ, B −D = A, B = D +A.

(5.4)

Note: by translating the time origin from the beginning of a working interval to the
time moment when the step change (B − D) appears, we can consider that a short-step
pulse with amplitude (B − D) acts upon the second-order system at time moment zero,
from null initial conditions, on the time interval (0, T0 − σ)—thus the quantities τ and A
corresponding, respectively, to the time length of the received short-step pulse and to its
amplitude in previous paragraph should be replaced by T0 − σ and (B −D).

All presented aspects are valid if the system receives a step pulse (which can be
represented by an extended step pulse as presented in [1]) or by a short-step pulse (as
presented in this study, in previous paragraphs). Filtering properties of the second-order
oscillating system were studied in [1]. However, we must study also resonance aspects.
The second-order system being an oscillating system, resonance aspects (appearing when
the input u(t) is represented by an alternating function A sin(ωt + ϕ) with ω ≈ ω0) are
very important. Instead of damped proper oscillations of angular frequency ω0 with zero
limit (as for an asymptotic stable second-order system), some proper oscillations of angular
frequency ω0 and with constant amplitude can be noticed as term in y(t). These are added
to the oscillations with angular frequency ω generated by the command function u(t), both
having a higher amplitude inversely proportional to ω2 − ω2

0. If ω = ω0 (the limit case), for a
command function

u(t) = A sin
(
ω0t + ϕ0

)
, (5.5)
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the output y(t) is represented by

y(t) = E1t sin
(
ω0t + ϕ1

)
+ E2 sin

(
ω0t + ϕ2

)
. (5.6)

This function is hard to be processed by a signal processing system, working on a limited
time interval. Moreover, in applications it is possible for the input u(t) to be represented by
a sum of alternating functions with different angular frequencies ωi ≈ ω0. However, a signal
processing procedure can be established for the case when u(t) is represented by a sum of
alternating functions with angular frequencies ωi ≈ ω0 by taking into account the fact that
for an input u(t) represented by an alternating function A sin(ωt + ϕ) the amplitude E of
oscillations with angular frequencyω generated by this command function u(t) is determined
by

E(ω) =
Aω2

0

ω2 −ω2
0

(5.7)

which is a very sharp function. For this reasonwe can consider that in the case when the input
u(t) is represented by a sum of oscillations with different angular frequencies ωi ≈ ω0, the
output y(t) of the second-order system will be represented by an oscillation with the angular
frequency ωj closest to ω0 (generated by the received oscillation with angular frequency ωj)
and a proper oscillation of the second-order system (with angular frequency ω0). Thus y(t)
could be represented by a sum of two oscillations.

The result of an integration of this output y(t) on the working interval [0, 2πT0]
would depend just on the oscillation with angular frequency ωj , while the oscillation with
angular frequency ω0 (with time period T0) gives a null result by an integration on this
period. The result of this integration could be used for determining certain parameters for
the received oscillation with angular frequency ωj . However, such an integration is not a
robust integration, while the signal which is integrated is not equal to zero at the end of
this working interval. A possible solution of this problem would consist in disconnecting
the input signal after a certain time interval, so as to analyze (using robust integrations)
the free oscillations of the second-order system after this moment (as presented in previous
paragraph). A faster procedure could consist in a previous adjustment of initial conditions,
so as the free oscillations not to appear.

Theoretically, this can be done by using a set of identical oscillating second-order
systems (receiving the same input command u(t))with initial conditions adjusted to different
values. The system generating a single oscillation with angular frequency ωj would be
selected by checking the following condition:

d2y

dt2
+ω2

j y = 0. (5.8)

However, the adjustment of two initial conditions at different values for a second-order
system requires a large number of identical oscillators. Due to this reason, this method is
inconvenient. A better choice would be represented by a delay systems of first order, with
transfer function

H(s) =
s

s sinϕ +ωjcosϕ
(5.9)
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would transform a received oscillation sin(ωjt + ϕ) according to

V (s) = H(s)U(s) =
s

s sinϕ +ωjcosϕ
s sinϕ +ωjcosϕ

s2 +ω2
j

=
s

s2 +ω2
j

(5.10)

which corresponds to an output v(t) = cos(ω0t). If this function v(t) represents the command
for the second-order oscillating system, the output y(t) (for initial null conditions) will be

y(t) = (1/2)ωjt sin
(
ωjt

)
(5.11)

when ωj is very close to ω0 and can be approximated by this quantity. The function y(t)
presented in previous equation is suitable for a sequence of robust integration procedures on
half-period time intervals:

[
0, π/ωj], [π/ωj, 2π/ωj

]
, etc. (5.12)

(it presents null values at the beginning and at the end of these intervals integration). The
results of these procedures are proportional to the amplitude A of received oscillation with
angular frequency ωj (as can be easily noticed).

Unlike the possible solution based on adjustment of two initial conditions, this
procedure requires a set of signal processing systems composed of different time-delaying
systems adjusted according to a single parameter (the phase φ, while ωj is supposed to
be known) and identical second-order oscillating systems starting to work from initial null
conditions. The number of required systems is less than in previous case, while a single
parameter has to be adjusted at different values (the quantity ϕ in the time-delay systems).
The corresponding output is selected by checking whether the results of these procedures
(considered as positive quantities) vary according to a linear mathematical law (as required
by the integration of y(t) = (1/2)ωjt sin(ωjt) on a sequence of half-period time intervals).

One major disadvantage of this method has to be mentioned: the function y(t) =
(1/2)ωjt sin(ωjt) equals zero at the beginning of signal processing time interval (t = 0) and
presents a small slope. So an extended time interval is necessary for obtaining significant
results using robust integration procedures. If we need a fast signal processing, we can simply
use a set of identical oscillating second-order systems, with different initial conditions. The
greatest amplitude for the output oscillation (considered as a sum of an oscillation with
angular frequency ωj and an oscillation with angular frequency ω0, ωj ≈ ω0) corresponds
to the case when the two oscillations are in-phase. By detecting the output presenting in-
phase oscillations, we can establish the amplitude and phase for the received signal using the
initial conditions for the second-order system generating this output.

6. Conclusions

An important aspect in modeling dynamic phenomena consists in measuring with higher
accuracy some physical quantities corresponding to the dynamic system. Yet for measure-
ments performed on limited time interval at high working frequency, certain intelligent
methods should be added. The high working frequency requires that the measurement
and data processing time interval should be greater than the time interval when the step
input is received, so as to allow an accurate measurement. This paper has shown that an
intelligent processing method based on oscillating second-order systems working on limited
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time interval can differentiate between large-step inputs (which are active on the whole
limited time interval) and short-step inputs (which are active on a time interval shorter than
the limited working period). Some resonance aspects (appearing when the input frequency
is close to the working frequency of the oscillating second-order system)were also presented.
Possible applications could be represented by processing the electric signal generated by
transducers [9] and by advanced modeling of traffic network [10].
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