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1. Introduction

In recent years, a rapid evolution in wireless local area networks (WLANs) has been
witnessed. IEEE 802.11-based medium access control (MAC) protocols have been widely
used for WLANs. The IEEE 802.11 MAC defines the contention-based distributed coor-
dination function (DCF) [1, 2]. In order to prevent the interference and confirm a
successful transmission, the DCF includes two access techniques: basic and request-to-
send/clear-to-send (RTS/CTS) access mechanisms. The basic access mechanism is a two-
way handshaking method where the transmitter transmits a data frame and the receiver
replies with an acknowledgment (ACK) frame to confirm a successful transmission. In
addition to the basic access method, the RTS/CTS mechanism reserves the medium
before transmitting a data frame by transmitting an RTS frame and replying with a CTS
frame.

Many works on the modeling of IEEE 802.11 DCF have been studied [3–11]. Bianchi
[3] was the first to derive a model that incorporates the exponential backoff process inherent
to IEEE 802.11 as a bidimensional Markov chain. The bidimensional Markov chain model has
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become a common method to study the performance of the IEEE 802.11 MAC protocol and its
enhancements. In [5–7], the backoff time was assumed to be geometrically distributed with
a parameter related to the contention status of the medium. Wu et al. [9] followed the same
Markov chain model and considered packet retransmission limits to avoid overestimating
the throughput of 802.11 as in [3]. However, in most of the analytical papers in the
literature, analyses have been conducted under saturation environment, that is, each station
has at least one packet to transmit at each time. There is some previous modeling work
for nonsaturation environment. For nonsaturation analysis, Ziouva and Antonakopoulos
[12] presented an extension of the saturated Bianchi model [4] for nonsaturation analysis.
In the analysis, a station is assumed to be empty immediately after the station starts to
transmit a packet. In [13], the authors extended [4] for the nonsaturation traffic condition
with post-backoff. In the analysis, the MAC buffer is assumed to be always empty when
a buffered packet enters a backoff procedure. This assumption is not realistic even when
the traffic load is very low and not bursty. Furthermore, the fact that the distributed
interframe space (DIFS) is not the integral multiples of an idle slot time was not taken
into account. Tickoo and Sikdar [14] developed a simple model using parameters from the
saturated model, but the results appear to exhibit poor accuracy. The model in [15] attempts
to integrate Bianchi’s model with a queueing model, and requires a solution of a fixed-
point equation spanning parameters of both the Markov chain and the queueing model.
Alizadeh-Shabdiz and Subramaniam [16] extended the Markov chain of [4] to obtain an
M/G/1 queueing model for nonsaturation case. Liaw et al. [17] introduced an idle state,
not present in Bianchi’s model [4], accounting for the case in which the station buffer is
empty after a successful completion of a packet transmission. The probability that there
is at least a packet in the buffer after a successful transmission is assumed to be constant
and independent of the access delay of the transmitted packet. Based on the Markovian
state transition model proposed by Liaw et al. [17], Daneshgaran et al. [18] proposed a
linear model of the throughput of the IEEE 802.11 DCF protocol under nonsaturation traffic
conditions.

In this paper, we propose a new mathematical model to study nonsaturation
performance of the DCF more accurately, and then we show the accuracy of our model
via computer simulations. Even though the post-backoff procedure is not considered in our
proposed analysis model, our approach can be justified by the mathematical tractability of
the problem.

2. Backoff procedure in IEEE 802.11 DCF

The DCF is the fundamental access method of the IEEE 802.11. It is based on the CSMA/CA
and a backoff procedure to reduce the collision probability between multiple stations
accessing the channel. The CSMA/CA mechanism defines two channel states: idle and busy.
If a station senses no transmission on the channel, it considers the channel state as idle;
otherwise it considers the channel state as busy. In this section, we focus on the basic access
mechanism of IEEE 802.11 DCF. Suppose that there are no pending packets in a station. When
the station has first a packet to transmit, it starts its carrier sensing to determine the current
state of the channel. If the channel is sensed as idle for a period of time equal to DIFS, the
station transmits the first arrived packet immediately. If not, the station must wait until
the channel becomes idle and subsequently remains idle for a DIFS period. After that the
station has to wait a random backoff interval before it is permitted to transmit its packet.
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Figure 1: Embedded points.

The remaining backoff interval is indicated by the backoff counter of the station. Initially,
the backoff counter is uniformly chosen in a range [0,CWmin − 1], where CWmin is known as
the minimum contention window size. Whenever the station senses channel as idle during
a slot time, the backoff counter is decremented by one. If the channel is sensed as busy, the
backoff counter is frozen. After the channel becomes idle again for a period of DIFS, the
station resumes the decrement of the backoff counter. When the backoff counter reaches zero,
the station transmits its packet and waits for reception of an ACK from the destination after a
time interval called short interframe space (SIFS). When the station receives the ACK within
the ACK timeout interval, it will immediately perform a backoff procedure, known as post-
backoff, even though no additional packets are queued. If the transmission fails, the station
doubles the contention window size up to a predefined maximum value CWmax and repeats
the backoff procedure.

3. Markov chain model

We assume the following conditions: (1) a single hop WLAN in which all stations are in the
transmission range of each other such that we do not have any hidden terminal, (2) no post-
backoff procedure, and (3) ideal channel condition, that is, no capture effect. Since channel
conditions are assumed to be ideal, transmission errors are a result of packet collision only.
Also, we assume that all stations are identical with respect to their parameters and arrival
rates, and that there is no retransmission limit.

To analyze the nonsaturation performance of DCF, we observe the state of a given
tagged station at the following 3 types of embedded points (see Figure 1).

Type 1: the end of each time period during which the channel is busy due to packet
transmissions, regardless of success or collision, if the tagged station is empty at
that time.

Type 2: DIFS after each time period during which the channel is busy due to packet
transmission, regardless of success or collision.

Type 3: every slot times after the embedded points of type 2 until the channel is sensed to
be busy.

We assume that the duration of DIFS is equal to 2σ + σ2 [1], where σ denotes one slot time
and σ2 denotes the duration of SIFS. For notational convenience, we denote SIFS and DIFS as
the duration of SIFS and DIFS, respectively.
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At each embedded point t, we define a stochastic process s(t) as follows:

s(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 if t is an embedded type 1;

−1 if t is an embedded point of type 2 or type 3

at which the backoff counter of the tagged station is not activated yet;

i if t is an embedded point at which the backoff stage is i for 0 ≤ i ≤ m,

where m is the maximum backoff stage.
(3.1)

Since we do not consider post-backoff procedure, the backoff counter of a station is
inactivated when the station becomes empty, and reactivated DIFS after the time period
during which the channel is sensed to be busy. Let b(t) indicate the following:

(1) when s(t) = −2, b(t) = 0;

(2) when s(t) = −1,

b(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 2σ ≤ tp < DIFS,

1 if DIFS − σ ≤ tp < 2σ,

2 if σ ≤ tp < DIFS − σ,

3 if DIFS − 2σ ≤ tp < σ,

4 if 0 < tp < DIFS − 2σ,

5 if tp = 0,

(3.2)

where tp denotes the time period elapsed since the first packet arrived at the tagged
station which was empty;

(3) when 0 ≤ s(t) ≤ m, b(t) represents the value of the backoff counter at t.

Note that, when s(t) = −1, the value b(t) indicates the time at which the first packet
enters an empty station. An empty station waits until a packet enters its buffer. Upon the
entrance of the packet, the station starts its carrier sensing to determine the current state
of the channel. If the channel is idle for a period of time DIFS, the station transmits the
packet without experiencing any further backoff procedure. Thus, the transmission epoch
of the first packet is affected by the time the packet enters the station. For example, when
s(t) = −1 and b(t) = 0, the packet may be transmitted during the first σ2 period of
the next slot; when s(t) = −1 and b(t) = 1, the packet may be transmitted during the
last σ1 period of the next slot, where σ1 = σ − SIFS; when s(t) = −1 and b(t) = 2 or
3, the packet may be transmitted during the next slot after one; when s(t) = −1 and
b(t) = 4, the packet may be transmitted during the first σ2 period of the next slot after
two (see Figure 2). The affection is deeper in light traffic conditions than in heavy traffic
conditions.

At embedded point t, the state of the tagged station is defined by (s(t), b(t)). For
example, the state (−2, 0) represents that the tagged station does not have any packet to
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Figure 2: Timing diagram of the embedded points.

transmit immediately after the transmission of a packet at any station in the network. The
state (−1, j), j = 0, 1, . . . , 5, represents that the backoff procedure is not activated yet, where j
indicates when the first packet arrived after the state (−2, 0). For i = 0, 1, . . . , m, the state (i, j)
denotes the backoff state, where the value i is the backoff stage, the value j, 0 ≤ j ≤ CWi,
is the possible backoff counter value at the backoff stage i, and CWi is the size of contention
window at stage i.
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pa0(Tb −DIFS) + (1 − p)p′a0(oσ2 + Ts −DIFS) + (1 − p)(1 − p′)p′′a0(oσ2 + oσ1 + Ts −DIFS)(1 − p)Pemptya0(di)
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Figure 3: State transition diagram of the proposed IEEE 802.11 DCF model.

The stochastic process {(s(t), b(t))} constitutes a 2-dimensional Markov chain, which
models the tagged station. The state transition diagram of the Markov chain of the tagged
station is presented in Figure 3, where we use the following notations.

(1) α1, α2, α3, α4, and α5: probabilities that, after the state of a station becomes
(−2, 0), the first packet arrives at the empty station between 0 and σ2, between
σ2 and σ, between σ and σ + σ2, between σ + σ2 and 2σ, and between 2σ and
DIFS, respectively. Note that, because the time period between an embedded
point with state (−2, 0) and the next embedded point is always DIFS, the elapsed
time tp after the first packet arrivals is 2σ ≤ tp < DIFS with probability α1,
DIFS − σ ≤ tp < 2σ with probability α2, σ ≤ tp < DIFS − σ with probability
α3, DIFS − 2σ ≤ tp < σ with probability α4, and 0 < tp < DIFS − 2σ with
probability α5 at the next embedded point, at which the state of the station becomes
(−1, 0), (−1, 1), (−1, 2), (−1, 3), and (−1, 4), respectively (see Figure 2). For example,
when packets arrive at the station according to a Poisson process with rate λ, we
have

α1 = 1 − e−λσ2 ,

α2 = e−λσ2 − e−λσ,

α3 = e−λσ − e−λ(σ+σ2),

α4 = e−λ(σ+σ2) − e−2λσ,

α5 = e−2λσ − e−λDIFS.

(3.3)
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(2) β1 (resp., β2): probability that, after the state of a station becomes (−1, 5), the first
packet arrives at the empty station between 0 and σ1 (resp., σ1 and σ). When packets
arrive at the station according to a Poisson process with rate λ, we have

β1 = 1 − e−λσ1 ,

β2 = e−λσ1 − e−λσ.
(3.4)

(3) a0(l): probability that there are no packet arrivals into a station for time period l.
When packets arrive at the station according to a Poisson process with rate λ, we
have

a0(l) = e−λl. (3.5)

For analytical simplicity, the probability a0(l) is approximated as a0(E[l]) in this
section.

(4) ol: random variable representing the time period until the first packet arrives, given
that at least one packet arrives at a station for time period l. Let ol,k, k ≥ 1, be
the random variable representing the time period until the first packet arrives,
given that there are k arrivals for time period l. When packets arrive at the station
according to a Poisson process with rate λ, the random variable ol,k is the first-order
statistic corresponding to a random sample of size k from a uniform distribution
over the interval [0, l], and its mean is l/(k + 1) [19]. Hence,

ol ≡ E
[
ol
]
=
∞∑

k=1

l

k + 1
(λl)ke−λl

k!
(
1 − e−λl

) =
1 − (1 + λl)e−λl

λ
(
1 − e−λl

) . (3.6)

(5) p: probability that, from the tagged station’s point of view, at least one of the other
stations transmits a packet at the beginning of a slot time.

(6) p′ (resp., p′): conditional probability that one of the stations except the tagged
station transmits a packet during the first σ2 period of a slot time, given that the
tagged station has a packet (resp., no packets) available for transmission during
the time period and no stations transmit a packet at the beginning of the slot time.

(7) p′′ (resp., p′′): conditional probability that one of the stations except the tagged
station transmits a packet during the last σ1 period of a slot time, given that the
tagged station has a packet (resp., no packets) available for transmission during
the time period and no stations transmit a packet at the beginning of the slot time
and during the first σ2 period of the slot time.

(8) τ : probability that a station transmits a packet at the beginning of a slot time.

(9) τ ′: probability that a station has a packet available for transmission during the first
σ2 period of a slot time, given that the station did not transmit a packet at the
beginning of the slot time.

(10) τ ′′: probability that a station has a packet available for transmission during the last
σ1 period of a slot time, given that the station did not transmit a packet at the
beginning of the slot time and during the first σ2 period of the slot time.
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(11) di: random variable representing the time period from the beginning of stage 0 at
a station to the completion of a successful transmission from the station, given that
the transmission occurs at stage i.

(12) Pempty: probability that a station has only one packet when the backoff stage of the
station becomes 0.

Since the probability that there are no packet arrivals during the time interval between when
a packet becomes the first packet in the buffer and when the packet’s transmission is finished
is zero under saturation traffic condition, that is, a0(di) = 0 for i = 0, 1, . . . , m, the states
(−2, 0) and (−1, j) of the Markov chain {(s(t), b(t))} are transient states under saturation
traffic condition. Thus, the steady-state probabilities of the Markov chain {(s(t), b(t))} under
saturation traffic condition are the same as those of Bianch’s model [4]. Hence, this paper
focuses on the stations under saturation traffic conditions.

We consider the number of contending stations as fixed, defined as n. Let li be the time
period between when a station enters stage i and when the backoff counter of the station
becomes 0 at stage i. Note that the backoff counter decreases by one for each idle time slot
and is suspended when the channel is busy. We consider the mean time that elapses for one
decrement for the backoff counter: the probability that at least one of the channels except the
tagged station transmits a packet at the beginning of a slot time is p, and the mean elapsed
time for one decrement in this case is Tb + σ, where Tb denotes the required time for the
freezing time due to the busy channel. The time period Tb is obtained as

Tb =
(n − 1)τ(1 − τ)n−2

p
Ts +

[

1 − (n − 1)τ(1 − τ)n−2

p

]

Tc, (3.7)

where Ts denotes the required time for the successful transmission of a packet and Tc is the
wasting time due to the collision of a transmitted packet. The probability that one of the
channels except the tagged station transmits a packet during the first σ2 period of a slot time
is (1 − p)p′, and the mean elapsed time in this case is approximated as oσ2 + Ts + σ. The
probability that one of the channels except the tagged station transmits a packet during the
last σ1 period of a slot time is (1 − p)(1 − p′)p′′, and the mean elapsed time in this case is
approximated as σ2 + oσ1 + Ts + σ. Thus, the mean li ≡ E[li] of li can be obtained as

li =
CWi

2
×
[
p
(
Tb + σ

)
+ (1 − p)p′

(
oσ2 + Ts + σ

)

+ (1 − p)(1 − p′)p′′
(
σ2 + oσ1 + Ts + σ

)
+ (1 − p)(1 − p′)(1 − p′′)σ

]

=
CWi

2
×
[
σ + pTb + (1 − p)p′

(
oσ2 + Ts

)
+ (1 − p)(1 − p′)p′′

(
σ2 + oσ1 + Ts

)]
.

(3.8)

Using li, the mean di of di can be obtained as

di = Ts −DIFS + iTc +
i∑

k=0

lk (3.9)



Yutae Lee et al. 9

for 0 ≤ i < m; assuming no retransmission limit, we obtain

dm = Ts −DIFS +
(

m +
p

1 − p

)

Tc +
m−1∑

k=0

lk +
lm

1 − p . (3.10)

4. Mathematical analysis

Let bi,j be the stationary probability of the described Markov chain. The stationary
probabilities satisfy the following balance equations:

b−1,0 = α1b−2,0 + (1 − p)(1 − p′)(1 − p′′)b−1,2;

b−1,1 = α2b−2,0 + (1 − p)(1 − p′)(1 − p′′)b−1,3;

b−1,2 = α3b−2,0 + (1 − p)(1 − p′)(1 − p′′)b−1,4;

b−1,3 = α4b−2,0 + (1 − p)(1 − p′)(1 − p′′)β1b−1,5;

b−1,4 = α5b−2,0 + (1 − p)(1 − p′)(1 − p′′)β2b−1,5;

b−1,5 = a0(DIFS)b−2,0 + (1 − p)(1 − p′)(1 − p′′)a0(σ)b−1,5;

bi,0 = pib0,0, 1 ≤ i < m;

bm,0 =
pm

1 − pb0,0;

bi,k =
CWi + 1 − k

CWi + 1
bi,0, 0 ≤ i ≤ m, 0 ≤ k ≤ CWi.

(4.1)

From state transition diagram, the expression for p0,0 is given by

b0,0 =
{
p + (1 − p)p′ + (1 − p)(1 − p′)

(
1 − a0

(
Ts
))}

b−1,0

+
{
p + (1 − p)p′ + (1 − p)(1 − p′)p′′ + (1 − p)(1 − p′)(1 − p′′)

(
1 − a0

(
Ts
))}

b−1,1

+
{
p + (1 − p)p′ + (1 − p)(1 − p′)p′′

}(
b−1,2 + b−1,3 + b−1,4

)

+
{
p
(
1 − a0

(
Tb −DIFS

))
+ (1 − p)p′

(
1 − a0

(
oσ2 + Ts −DIFS

))

+ (1 − p)(1 − p′)p′′
(
1 − a0

(
σ2 + oσ1 + Ts −DIFS

))}
b−1,5

+
m∑

i=0

(1 − p)
(
1 − Pemptya0

(
di

))
pi,0

=
{
p + (1 − p)p′ + (1 − p)(1 − p′)

(
1 − a0

(
Ts
))}

b−1,0

+
{
p + (1 − p)p′ + (1 − p)(1 − p′)p′′ + (1 − p)(1 − p′)(1 − p′′)

(
1 − a0

(
Ts
))}

b−1,1

+
{
p + (1 − p)p′ + (1 − p)(1 − p′)p′′

}(
b−1,2 + b−1,3 + b−1,4

)
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+
{
p
(
1 − a0

(
Tb −DIFS

))
+ (1 − p)p′

(
1 − a0

(
oσ2 + Ts −DIFS

))

+ (1 − p)(1 − p′)p′′
(
1 − a0

(
σ2 + oσ1 + Ts −DIFS

))}
b−1,5

+ b0,0 − (1 − p)Pempty

[
m−1∑

i=0

a0
(
di

)
pi +

pm

1 − pa0
(
dm

)
]

b0,0.

(4.2)

Thus,

b0,0 =
[{
p + (1 − p)p′ + (1 − p)(1 − p′)

(
1 − a0

(
Ts
))}

b−1,0

+
{
p + (1 − p)p′ + (1 − p)(1 − p′)p′′ + (1 − p)(1 − p′)(1 − p′′)

(
1 − a0

(
Ts
))}

b−1,1

+
{
p + (1 − p)p′ + (1 − p)(1 − p′)p′′

}(
b−1,2 + b−1,3 + b−1,4

)

+
{
p
(
1 − a0

(
Tb −DIFS

))
+ (1 − p)p′

(
1 − a0

(
oσ2 + Ts −DIFS

))

+ (1 − p)(1 − p′)p′′
(
1 − a0

(
σ2 + oσ1 + Ts −DIFS

))
}b−1,5

]

× 1

(1 − p)Pempty
[∑m−1

i=0 a0
(
di

)
pi +

(
pm/(1 − p)

)
a0
(
dm

)] .

(4.3)

Hence, each of the stationary probabilities can be expressed in terms of b−2,0, which can be
obtained from the normalization condition

b−2,0 +
5∑

k=0

b−1,k +
m∑

i=0

CWi∑

k=0

bi,k = 1. (4.4)

Each of τ , τ ′, and τ ′′ can be expressed as a function of the stationary probabilities.
Since the probability that an embedded point is the beginning of a slot time is 1−b−2,0 and the
probability that a station transmits a packet at the embedded time is

∑m
i=0bi,0, the probability

τ is given by

τ =
∑m

i=0bi,0
1 − b−2,0

. (4.5)

Since (1−r)r ′ is the probability that a station has a packet available for transmission during the
first σ2 period of a slot time and that is given by b−1,0/(1− b−2,0), the probability τ ′ is given by

τ ′ =
b−1,0

(
1 − b−2,0

)
(1 − τ)

. (4.6)

Since (1 − τ)(1 − τ ′)τ ′′ is the probability that a station has a packet available for transmission
during the last σ1 period of a slot time and that is given by b−1,1/(1 − b−2,0), the probability τ ′′

is given by

τ ′′ =
b−1,1

(
1 − b−2,0

)
(1 − τ)(1 − τ ′)

. (4.7)
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Having obtained τ , τ ′, and τ ′′, the probabilities p, p′, p′, p′′, and p′′ can be determined
as follows:

p = 1 − (1 − τ)n−1,

p′ =
n−1∑

i=1

i

i + 1

(
n − 1
i

)

(τ ′)i(1 − τ ′)n−i−1
,

p′ = 1 − (1 − τ ′)n−1
,

p′′ =
n−1∑

i=1

i

i + 1

(
n − 1
i

)

(τ ′′)i(1 − τ ′′)n−i−1
,

p′′ = 1 − (1 − τ ′′)n−1
.

(4.8)

Let hi,j denote the mean sojourn time at state (i, j). Then,

h−2,0 = DIFS,

h−1,0 = pTb + (1 − p)p′
(
oσ2 + Ts

)
+ (1 − p)(1 − p′)a0

(
Ts
)(
oσ2 + Ts −DIFS

)

+ (1 − p)(1 − p′)
(
1 − a0

(
Ts
))(

oσ2 + Ts
)
,

h−1,1 = pTb + (1 − p)p′
(
oσ2 + Ts

)
+ (1 − p)(1 − p′)p′′

(
σ2 + oσ1 + Ts

)

+ (1 − p)(1 − p′)(1 − p′′)a0
(
Ts
)(
σ2 + oσ1 + Ts −DIFS

)

+ (1 − p)(1 − p′)(1 − p′′)
(
1 − a0

(
Ts
))(

σ2 + oσ1 + Ts
)
,

h−1,2=pTb+(1−p)p′
(
oσ2+Ts

)
+(1−p)(1−p′)p′′

(
σ2+oσ1+Ts

)
+(1−p)(1−p′)(1−p′′)σ,

h−1,k = h−1,2, k = 3, 4,

h−1,5 = pa0
(
Tb −DIFS

)[
Tb −DIFS

]
+ p

[
1 − a0

(
Tb −DIFS

)]
Tb

+ (1 − p)p′a0
(
oσ2 + Ts −DIFS

)[
oσ2 + Ts −DIFS

]

+ (1 − p)p′
[
1 − a0

(
oσ2 + Ts −DIFS

)][
oσ2 + Ts

]

+ (1 − p)(1 − p′)p′′a0
(
σ2 + oσ1 + Ts −DIFS

)[
σ2 + oσ1 + Ts −DIFS

]

+ (1 − p)(1 − p′)p′′
[
1 − a0

(
σ2 + oσ1 + Ts −DIFS

)][
σ2 + oσ1 + Ts

]

+ (1 − p)(1 − p′)(1 − p′′)σ,

hi,0 = pTc + (1 − p)Ts − (1 − p)Pemptya0
(
di

)
DIFS, 0 ≤ i ≤ m,

hi,k = h−1,2, 0 ≤ i ≤ m, 1 ≤ k ≤ CWi.

(4.9)

The probability Pempty can be determined based on the fact that, by PASTA
theorem and Burke’s theorem [20], the stationary distributions of the tagged station at an
arbitrary time point and immediately after an arbitrary completion time point of successful
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transmission are identical. The probability that the tagged station is empty at an arbitrary
time point is

[
b−2,0

{
1 − a0(DIFS)

}

+ b−1,5
{

1 − pa0
(
Tb −DIFS

)
− (1 − p)p′a0

(
oσ2 + Ts −DIFS

)

− (1 − p)(1 − p′)p′′a0
(
σ2 + oσ1 + Ts −DIFS

)
− (1 − p)(1 − p′)(1 − p′′)a0(σ)

}]

× 1

λ
[
b−2,0h−2,0 +

∑5
k=0b−1,k h−1,k +

∑m
i=0

∑CWi

k=0 bi,khi,k

] ,

(4.10)

and the probability that the tagged station is empty immediately after an arbitrary completion
time point of successful transmission at the tagged station is

(1 − p)Pempty
∑m

i=0a0
(
di

)
bi,0 + (1 − p)(1 − p′)a0

(
Ts
)
b−1,0 + (1 − p)(1 − p′)(1 − p′′)a0

(
Ts
)
b−1,1

b0,0 + (1 − p)(1 − p′)b−1,0 + (1 − p)(1 − p′)(1 − p′′)b−1,1
.

(4.11)

Thus,

Pempty =
Num. of Pempty

(1 − p)
∑m

i=0a0
(
di

)
bi,0

, (4.12)

where

Num. of Pempty =
1

λ
[
b−2,0h−2,0 +

∑5
k=0b−1,k h−1,k +

∑m
i=0

∑CWi

k=0 bi,khi,k

]

×
[
b−2,0

{
1 − a0(DIFS)

}

+ b−1,5
{

1 − pa0
(
Tb −DIFS

)
− (1 − p)p′a0

(
oσ2 + Ts −DIFS

)

− (1 − p)(1 − p′)p′′a0
(
σ2 + oσ1 + Ts −DIFS

)

− (1 − p)(1 − p′)(1 − p′′)a0(σ)
}]

×
[
b0,0 + (1 − p)(1 − p′)b−1,0 + (1 − p)(1 − p′)(1 − p′′)b−1,1

]

− (1 − p)(1 − p′)a0
(
Ts
)
b−1,0 − (1 − p)(1 − p′)(1 − p′′)a0

(
Ts
)
b−1,1.

(4.13)

From (4.1)–(4.12), the stationary probability bi,k can be found by a numerical method.
The system throughput S, the fraction of time used for successful payload transmis-

sion, can be expressed as

S =
Num. of S
Den. of S

, (4.14)
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Table 1: System parameters.

MAC header 272 bits
PHY header 128 bits
ACK length 112 bits + PHY header
Channel bit rate 1 Mbit/s
Propagation delay 1μs
Slot time 50μs
SIFS 28μs
DIFS 128μs
Initial contention window CW 31
Maximum contention window CW 1023
Maximum backoff stage m 5 or 7

with

Num. of S =
[
PtrPs +

(
1 − Ptr

)
P1 +

(
1 − Ptr

)(
1 − P1

)
P2
]
E[Payload],

Den. of S = σ + Ptr
[
PsTs +

(
1 − Ps

)
Tc
]
+
(
1 − Ptr

)[
P1
(
oσ2 + Ts

)
+
(
1 − P1

)
P2
(
σ2 + oσ1 + Ts

)]
,

(4.15)

where the meaning of Ptr, Ps, P1, and P2 is as follows: Ptr is the probability that there is at least
one transmission at the beginning of a slot time, with n stations contending for the channel,
each transmitting with probability τ . Thus,

Ptr = 1 − (1 − τ)n. (4.16)

The probability Ps is the conditional probability that a packet transmission occurring on the
channel at the beginning of a slot time is successful. This event corresponds to the case in
which exactly one station transmits at that time. Thus,

Ps =
nτ(1 − τ)n−1

Ptr
. (4.17)

The probability P1 is the conditional probability that a packet transmission during the first σ2

period of a slot time is successful, given that there are no transmission at the beginning of the
slot time. This event corresponds to the case in which at least one station is in state (−1, 0) at
the beginning of the slot time, given that all the stations are in state (−1, 0) or state (i, j) for
j /= 0 at the beginning of the slot time. Thus,

P1 = 1 − (1 − τ ′)n. (4.18)

The probability P2 is the conditional probability that a packet transmission during the last σ1

period of a slot time is successful, given that there are no transmission at the beginning of the
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Figure 4: Throughput of DCF for IEEE 802.11 in case of m = 7; (a) length of packet payload = 8184 bits, (b)
4096 bits, (c) 2048 bits, and (d) 1024 bits.

slot time and during the first σ2 period of the slot time. This event corresponds to the case in
which at least one station is in state (−1, 1) at the beginning of the slot time, given that all the
stations are in state (i, j) for j /= 0 at the beginning of the slot time. Thus,

P2 = 1 − (1 − τ ′′)n. (4.19)
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Figure 5: Throughput of DCF for IEEE 802.11 in case of m = 5; (a) length of packet payload = 8184 bits, (b)
4096 bits, (c) 2048 bits, and (d) 1024 bits.

5. Numerical examples

In this section, we evaluate the performance of IEEE 802.11 DCF under different maximum
backoff stages and different length of packet payload conditions through simulation and
analytical results. We have developed a C++ simulator modeling both the DCF protocol
details in IEEE 802.11 and the backoff procedures of a specific number of independent
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transmitting stations. The simulation also takes into account real operations of each
transmitting station. In our experiments, we use the parameter setting in Table 1 [4]. Since we
assume that no hidden terminals exist, this section deals only with the basic access method
without RTS/CTS. We let the packet arrivals to any station be a Poisson process with the
same rate λ (packets/s).

Figure 4 shows the throughput of DCF with m = 7 as the packet arrival rate λ
varies. For given n, the throughout linearly increases as λ increases until the network is
saturated. It drastically decreases just before a saturation point, and then maintains constant
even though λ increases. Since traffic intensity increases as n increases, the saturation point
decreases. In addition, the throughput for large n more sharply increases than that for small
n. For all values of n, the maximum throughput is shown to be higher than the saturation
throughput. The difference between the maximum throughput and the saturation throughput
increases as n increases. For 8184 bits of packet payload and n = 10, 20, 30, 40, and 50, the
normalized maximum throughputs are about 0.78, 0.73, 0.70, 0.68, and 0.67, respectively, and
the normalized saturation throughputs are about 0.76, 0.70, 0.66, 0.63, and 0.61, respectively.
In case of the payload of 1024 bits, the normalized maximum throughputs are about 0.463,
0.447, 0.434, 0.425, and 0.418, respectively, and the normalized saturation throughputs are
about 0.455, 0.429, 0.411, 0.396, and 0.385 for n = 10, 20, 30, 40, and 50, respectively.

For m = 5, the throughputs of DCF for IEEE 802.11 with different lengths of packet
payload are shown in Figure 5. The general trends of throughputs with m = 5 are similar to
the case with m = 7. In addition, the results show that the normalized maximum throughputs
and the normalized saturation throughputs are nearly equal to those with m = 7, because the
maximum contention window size is enough to effectively resolve collisions under given
parameters.

6. Conclusions

We proposed a mathematical model to evaluate the performance of the IEEE 802.11 DCF
protocol under unsaturation conditions. Even though the proposed model does not consider
the post-backoff procedure, its results are shown to be very close to the simulation results.
MAC throughput of DCF linearly increases as packet arrival rate increases until the network
is saturated. When the network is saturated, MAC throughput becomes constant for various
packet arrival rates.
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