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Homotopy perturbation method (HPM) and boundary element method (BEM) for calculating the
exact and numerical solutions of Poisson equation with appropriate boundary and initial conditions
are presented. Exact solutions of electrostatic potential problems defined by Poisson equation are
found using HPM given boundary and initial conditions. The same problems are also solved using
the BEM. The cell integration approach is used for solving Poisson equation by BEM. The problem
region containing the charge density is subdivided into triangular elements. In addition, this paper
presents a numerical comparison with the HPM and BEM.
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1. Introduction

It is well known that there are many linear and nonlinear partial equations in various
fields of science and engineering. The solution of these equations can be obtained by many
different methods. In recent years, the studies of the analytical solutions for the linear or
nonlinear evolution equations have captivated the attention of many authors. The numerical
and seminumerical/analytic solution of linear or nonlinear, ordinary differential equation
or partial differential equation has been extensively studied in the resent years. There are
several methods have been developed and used in different problems [1–3]. The homotopy
perturbation method is relatively new and useful for obtaining both analytical and numerical
approximations of linear or nonlinear differential equations [4–7]. This method yields a very
rapid convergence of the solution series. The applications of homotopy perturbation method
among scientists received more attention recently [8–10]. In this study, we will first concentrate
on analytical solution of Poisson equation, using frequently in electrical engineering, in the
form of Taylor series by homotopy perturbation method [11–13].

The boundary element method is a numerical technique to solve boundary value
problems represented by linear partial differential equations [14] and has some important
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advantages. The main advantage of the BEM is that it replaces the original problem with
an integral equation defined on the boundary of the solution domain. For the case of a
homogeneous partial differential equation, the BEM requires only the discretization on the
boundary of the domain [15]. If the simulation domain is free from the electric charge,
the governing equation is known as Laplace equation. The BEM computes an approximate
solution for the boundary integral formulation of Laplace’s equation by discretizing the
problem boundary into separate elements, each containing a number of collocation nodes.

The distribution of the electrostatic potential can be determined by solving Poisson
equation, if there is charge density in problem domain. In this case, the boundary integral
equation obtained from Poisson equation has a domain integral. In the BEM, several methods
had been developed for solving this integral. These methods are commonly known as
cell integration approach, dual reciprocity method (DRM) and multiple reciprocity method
(MRM) [16].

The electric field is related to the charge density by the divergence relationship

E = electric field,

∇E =
ρ

ε0
, ρ = charge density,

ε0 = permittivity,

(1.1)

and the electric field is related to the electric potential by a gradient relationship

E = −∇V. (1.2)

Therefore the potential is related to the charge density by Poisson equation:

∇ · ∇V = ∇2V =
−ρ
ε0
, V = electric potential. (1.3)

2. Theory of the numerical methods

2.1. Homotopy perturbation method

Homotopy perturbation method has been suggested to solve boundary value problems in
[17–19]. According to this method, a homotopy with an imbedding parameter p ∈ [0, 1]
is constructed and the imbedding parameter is considered as a “small parameter”. Here,
homotopy perturbation method is used to solve analytic solution of Poisson equation with
given boundary conditions.

To illustrate this method, we consider the following nonlinear differential equation:

A(u) − f(r) = 0, r ∈ Ω, (2.1)

with boundary condition

B

(
u,
∂u

∂n

)
= 0, r ∈ Γ, (2.2)
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where A(u) is written as follows:

A(u) = L(u) +N(u). (2.3)

A is a general differential operator, B is a boundary operator, f(r) is a known analytical
function and Γ is the boundary of the domain Ω. The operator A can be generally divided into
two parts L and N, where L is linear operator and N is nonlinear operator. Thus, (2.1) can be
rewritten as follows:

L(u) +N(u) − f(r) = 0. (2.4)

By the homotopy technique [20], we obtain a homotopy ν(r, p) : Ω×[0, 1]→ R satisfying

H(ν, p) = (1 − p)
[
L(ν) − L

(
u0
)]

+ p[A(ν) − f(r)] = 0, p ∈ [0, 1], r ∈ Ω, (2.5)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation of (2.1), which
satisfies the boundary conditions. Clearly, from (2.5), we have

H(ν, 0) = L(ν) = L
(
u0
)
= 0,

H(ν, 1) = A(ν) = f(r) = 0,
(2.6)

the changing process of p from zero to unity is just that of ν(r, p) from u0(r) to u(r). In topology
this is called deformation and L(ν) − L(u0), A(ν) − f(r) are called homotopic.

We consider ν as follows:

ν = ν0 + pν1 + p2ν2 + p3ν3 + · · · =
∞∑
n=0

pnνn. (2.7)

According to homotopy perturbation method, an acceptable approximation solution of
(2.4) can be explained as a series of the power of p,

u = lim
p→1

ν = ν0 + ν1 + ν2 + ν3 + · · · =
∞∑
n=0

νn. (2.8)

Convergence of the series (2.8) is given in [20, 21]. Besides, the same results have been
discussed in [22–24].

2.2. Boundary element method

Consider the Poisson equation

∇2u=b0, (2.9)

where b0 is a known function (for the electrostatic problems, according to Gauss law is b0 =
−ρ/ε0).
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We can develop the boundary element method for the solution of ∇2u = b0 in a two-
dimensional domain Ω. We must first form an integral equation from the Poisson equation by
using a weighted integral equation and then use the Green-Gauss theorem:

∫
Ω

(
∇2u − b0

)
w0dΩ =

∫
Γ

∂u

∂n
w0dΓ −

∫
Ω
∇u · ∇w0dΩ. (2.10)

To derive the starting equation for the boundary element method, we use the Green-
Gauss theorem again on the second integral. This gives

∫
Ω
u
(
∇2w0

)
dΩ −

∫
Ω
bw0dΩ =

∫
Γ
u
∂w0

∂n
dΓ −

∫
Γ
w0

∂u

∂n
dΓ, (2.11)

and thus, the boundary integral equations are obtained for a domain Ω with boundary Γ, where
u potential, ∂u/∂n, is derivative with respect to normal of u and w0 is the known fundamental

solution to Laplace’s equation applied at point ξ(w0 = −(1/2π)�nr). r =
√
(ξ − x)2 + (η − y)2

(singular at the point (ξ, η) ∈ Ω).
Then, using the property of the Dirac delta from (2.11),

∫
Ω
u
(
∇2w0

)
dΩ = −

∫
Ω
uδ(ξ − x, η − y)dΩ = −u(ξ, η), (ξ, η) ∈ Ω, (2.12)

that is, the domain integral has been replaced by a point value [25].
Thus, from Poisson equation the boundary integral equation is obtained on the boun-

dary:

c(ξ)u(ξ) +
∫
Γ
u
∂w0

∂n
dΓ +

∫
Ω
b0w0dΩ =

∫
Γ
w0

∂u

∂n
dΓ, (2.13)

where

c(ξ) =

⎧⎨
⎩

1 in Ω,
1
2

on Γ.
(2.14)

The boundary integral equation for the internal points is

u(ξ) =
∫
Γ
w0

∂u

∂n
dΓ −

∫
Γ
u
∂w0

∂n
dΓ −

∫
Ω
b0w0dΩ. (2.15)

2.2.1. Cell integration approach

One of solution of domain integral in the BEM is cell integration approach which is the problem
region subdivided to triangular elements as done in the finite element method (Figure 1).
Domain integral is solved with respect to relationship between all cells and each boundary
node by Gauss quadraturemethod.
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Figure 1: Subdivided regions.

The domain integral in (2.15) for each boundary point i can be written as

di =
∫
Ω
b0w0dΩ =

M∑
e=1

[
R∑
k=1

ωk

(
b0w0

)
k

]
Ωe, (2.16)

where the integral approximated by a summation over different cells. In (2.16), M is the total
number of cells describing the domain Ω, ωk is the Gauss integration weights and Ωe is the
area of cell e. Besides, the function (b0w0) needs to be evaluated at integration point’s k on each
cell by 1 to R, see [26].

In this study, a Matlab program has been developed to solve the Poisson equation with
BEM by using cell integration approach. This program calculates the potentials in the problem
domain.

3. Implementation of homotopy perturbation method to Poisson equation

3.1. Case 1

First, let us investigate exact solution in the y-direction of Poisson equation

∂2u

∂x2
+
∂2u

∂y2
+
ρ

ε0
= 0, (3.1)

with the initial condition

u(0, y) =
ρa2

2ε0

(
1 − 32

π3

Cosh(πy/2a)
Cosh(πb/2a)

)
, (3.2)

and with the Dirichlet boundary conditions (Figure 2); u = 0, on x = ∓ 1 and y = ∓ 1
(coordinates; −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1).
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Figure 2: The problem domain and boundary conditions.

To investigate the solution of (3.1), we can construct a homotopy as follows:

(1 − p)
[
Y ′′ − y′′0

]
+ p

[
Y ′′+

′′
Y +

ρ

ε0

]
= 0, (3.3)

where
′′
Y= ∂2Y/∂y2, Y ′′ = ∂2Y/∂x2, and p ∈ [0, 1], with initial approximation Y0 = u0 =

(ρa2/2ε0)(1 − (32/π3)(Cosh(πy/2a)/Cosh(πb/2a))). The solution of (3.1) can be expressed
in a series in p:

Y = Y0 + pY1 + p2Y2 + p3Y3 + · · · . (3.4)

Then, substituting (3.4) into (3.3), and arranging the coefficients of “p” powers, we have

Y ′′0 + pY ′′1 + p2Y ′′2 + p3Y ′′3 − y′′0 + py′′0 + p
′′
Y0 +p2

′′
Y1 +p3

′′
Y2 +p4

′′
Y3 +p

ρ

ε0
+ · · · = 0, (3.5)

where the Yi(x, t), i = 1, 2, 3, . . ., are functions to be determined. We have to solve the following
system which includes four equations with four unknowns:

p0 : Y ′′0 − y′′0 = 0,

p1 : Y1 = −
∫∫ (

∂2y0

∂x2

)
dx dx −

∫∫ (
∂2Y0

∂y2

)
dx dx −

∫∫ (
ρ

ε0

)
dx dx,

p2 : Y2 = −
∫∫ (

∂2Y1

∂y2

)
dx dx,

p3 : Y3 = −
∫∫ (

∂2Y2

∂y2

)
dx dx.

(3.6)
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To found unknowns Y1, Y2, Y3, . . . , we must use the initial condition (3.2) for the above
system, then we obtain

Y0 =
ρa2

2ε0

(
1 − 32

π3

Cosh(πy/2a)
Cosh(πb/2a)

)
,

Y1 =
16 ρa2

π3ε0

x2

2!

(
π

2a

)2 Cosh(πy/2a)
Cosh(πb/2a)

− x
2

2
ρ

ε0
,

Y2 =
16 ρa2

π3ε0

x4

4!

(
π

2a

)4 Cosh(πy/2a)
Cosh(πb/2a)

,

Y3 =
16 ρa2

π3ε0

x6

6!

(
π

2a

)6 Cosh(πy/2a)
Cosh(πb/2a)

,

...

(3.7)

Thus, as considering (3.4) with (3.7) and using Taylor series, we obtain the analytical
solutions as

u =
ρa2

2ε0
−

16 ρa2

π3ε0

Cosh(πy/2a)
Cosh(πb/2a)

[
1 − 1

2!

(
πx

2a

)2

+
1
4!

(
πx

2a

)4

− 1
6!

(
πx

2a

)6

+ · · ·
]
− x

2

2
ρ

ε0
. (3.8)

Therefore, the exact solution of u(x, y) in closed form is

u(x, y) =
ρa2

2ε0

(
1 − x

2

a2

)
−

16 ρa2

π3ε0

Cosh(πy/2a)
Cosh(πb/2a)

Cos
πx

2a
. (3.9)

3.2. Case 2

Let us investigate exact solution in the x-direction of Poisson equation

∂2u

∂x2
+
∂2u

∂y2
+
ρ

ε0
= 0, (3.10)

with the initial condition

u(x, 0) =
ρb2

2ε0

(
1 − 32

π3

Cosh(πx/2b)
Cosh(πa/2b)

)
, (3.11)

and with the Dirichlet boundary conditions. To investigate the solution of (3.10), we can
construct a homotopy as follows:

(1 − p)
[ ′′
Y −

′′
y0

]
+ p

[
Y ′′+

′′
Y +

ρ

ε0

]
= 0. (3.12)
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Figure 3: Equipotential lines for ρ/ε0 = 1 (using HPM, x-direction).

After that, substituting (3.4) into (3.12), and arranging the coefficients of “p” powers, we
have to solve the following system including four equations with four unknowns:

p0 : Y ′′0 − y′′0 = 0,

p1 : Y1 = −
∫∫ (

∂2y0

∂x2

)
dy dy −

∫∫ (
∂2Y0

∂y2

)
dy dy −

∫∫ (
ρ

ε0

)
dy dy,

p2 : Y2 = −
∫∫ (

∂2Y1

∂x2

)
dy dy,

p3 : Y3 = −
∫∫ (

∂2Y2

∂x2

)
dy dy.

(3.13)

As found unknowns Y1, Y2, Y3, . . ., we have exact solution of (3.10):

u(x, y) =
ρb2

2ε0
−

16 ρb2

π3ε0

Cosh(πx/2b)
Cosh(πa/2b)

[
1 − 1

2!

(
πy

2b

)2

+
1
4!

(
πy

2b

)4

− 1
6!

(
πy

2b

)6

+ · · ·
]
−
y2

2
ρ

ε0
.

(3.14)

Therefore, the exact solution of u(x, y) in closed form is

u(x, y) =
ρb2

2ε0

(
1 −

y2

b2

)
−

16ρb2

π3ε0

Cosh(πx/2b)
Cosh(πa/2b)

Cos
πy

2b
. (3.15)

The equipotential lines obtained using exact solution and numerical results have been
shown in Figures 3–5 (for ρ/ε0 = 1). These results then are compared in Tables 1 and 2 (for
ρ/ε0 = 1 and ρ/ε0 = 50).

Tables 1 and 2 compare the exact HPM and approximate BEM of the Poission equation
for ρ/ε0 = 1 and ρ/ε0 = 50, respectively. Tables 1 and 2 show that the differences between
HPM and BEM for both directions x and y. The differences clearly show that the results of the
approximate BEM introduced in this study are acceptable.
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Figure 4: Equipotential lines for ρ/ε0 = 1 (using HPM, y-direction).
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Figure 5: Equipotential lines for ρ/ε0 = 1 (using BEM).

Table 1: The comparison of potentials (Volts) for ρ/ε0 = 1 at y = 0 (a = 1, b = 1).

x
HPM HPM BEM |HPM(y)-BEM| |HPM(x)-BEM|

(y-direction) (x-direction)
1.0 0.0 − 0.01602455 0.0 0.0 0.01602455
0.9 0.062828504 0.052243813 0.063177929 0.000349425 0.010934116
0.8 0.116449177 0.109441502 0.116356508 0.000092669 0.006915006
0.7 0.161634683 0.156982714 0.161274602 0.000360081 0.004291888
0.6 0.199119152 0.196042898 0.198740117 0.000379035 0.002697219
0.5 0.229580109 0.227587807 0.229420039 0.000160070 0.001832232
0.4 0.253621787 0.252397383 0.253604246 0.000013624 0.001206863
0.3 0.271760248 0.271085037 0.271809901 0.000049653 0.000724864
0.2 0.284410680 0.284112817 0.284797109 0.000386429 0.000684292
0.1 0.291877170 0.291802833 0.292117395 0.000240225 0.000314562
0.0 0.294345218 0.294345218 0.294569673 0.000224455 0.000224455
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Table 2: The comparison of potentials (Volts) for ρ/ε0 = 50 at x = 0 (a = 1, b = 1).

y
HPM HPM BEM |HPM(y)-BEM| |HPM(x)-BEM|

(y-direction) (x-direction)
1.0 − 0.80122754 0.0 0.0 0.80122754 0.0
0.9 2.612190681 3.141425217 3.158722460 0.546531779 0.017297243
0.8 5.472075101 5.822458882 5.815100354 0.343025253 0.007358528
0.7 7.849135743 8.081734156 8.083558316 0.234422573 0.001824160
0.6 9.802144924 9.955957630 9.930100041 0.127955117 0.025857589
0.5 11.37939038 11.47900548 11.46598698 0.08659660 0.01301850
0.4 12.61986917 12.68108935 12.67698049 0.05711132 0.00410886
0.3 13.55425187 13.58801241 13.60251771 0.04826584 0.01450530
0.2 14.20564089 14.22053401 14.22555053 0.01990964 0.00501652
0.1 14.59014168 14.59385852 14.62567229 0.03553061 0.03181377
0.0 14.71726094 14.71726094 14.72848367 0.01122273 0.01122273

4. Conclusions

In this paper, we proposed homotopy perturbation method to find exact solution in the x-
and y-directions of Poisson equation with appropriate boundary and initial conditions. The
numerical results of this electrostatic potential problem have been calculated at the same
boundary conditions by BEM. These results are compared with those of HPM in Tables 1 and
2. The obtained numerical results by using BEM are in agreement with the exact solutions
obtained by HPM. This adjustment is clearly seen in Figures 3, 4, and 5. It is shown that these
methods are acceptable and very efficient for solving electrostatic field problems with charge
density.
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