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Comparison is made between collocation spline method based on Lagrange interpolation and the
present method. In this method, the solution is calculated in the form of a convergent series with
an easily computable component. This approach does not need linearization, weak nonlinearity
assumptions, or perturbation theory. Some examples are given to illustrate the effectiveness of the
method; the results show that He’s method provides a straightforward and powerful mathematical
tool for solving various semidifferential equations of the nth order.
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1. Introduction

He’s variational iteration method (HVIM) [1-14] proposed by He has been recently
intensively studied by scientists and engineers and favorably applied to various kinds of
nonlinear problems [15-25]. The method has been shown to solve effectively, easily, and
accurately a large class of nonlinear problems, generally one or two iterations lead to high
accurate solutions. This method is, in fact, a modifying of the general Lagrange multiplier
method into an iteration method, which is called correction functional. Generally speaking,
the solution procedure of He’s method is very effective, straightforward, and convenient. For
a relatively comprehensive survey on the method, new interpretation, and new development,
the reader is referred to the review articles [14, 26].
A fractional differential equation of the form [27]:

[Dn/z + ClD("_l)/z 4o+ CnDO]y(t) = f(t)/ (11)
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is called a semidifferential equation of nth order, where c;,...,c, € R and f(t) is a given
function from I into R, I is the interval [0, T].

The analytic results on existence and uniqueness of solutions to fractional differential
equations have been investigated by many authors (see, e.g., [28-30]).

In (1.1)D7 denotes the fractional differential operator of order q¢N in the sense of
Caputo, and is given by [29-31]

_ Tm— m _ 1 ! m—g-1ym
Dwm-JqDym-ﬁzfawa>ql)www, (1.2)

where m € ND™ is the usual integer differential operator of order m, and ]9 is the Riemann-
Liouville fractional integral operator of order q > 0, defined by

1

Jiy(t) = e)

’[t(t - 5)"y(s)ds, t>0. (1.3)
0

Forg,p>0,m—-1<qg<m,and y > -1, we have the following properties:

(JTPy) () = (JPTy) (5 = (JTPy) (1),

_ TIy+1)
Drr = T(y+1+9) e, (1.4)
m-1 k
D) ®) =y - Y,y (0) -
k=0 :

The Caputo fractional derivative is considered here because it allows traditional,
initial, and boundary conditions to be included in the formulation of the problem. For more
details on the geometric and physical interpretation for fractional derivatives of both the
Riemann-Liouville and Caputo types see [29-31].

The theory for the derivatives of fractional order was developed in the 19th century.
In earlier work, the main application of the fractional calculus has been as a technique for
solving integral equations, for more details (see, [31]). Recently, fractional derivatives have
proved to be tools in the modeling of many physical phenomena (see, [32-36]). We mention
the important example: the Bagley-Torvik equation,

[D*+ i D¥? +e,Dly(t) = f(t), y(O0)=ar, ¥ (0)=a, (1.5)

which arises, for example, in the modeling of the motion of a rigid plate immersed
in a Newtonian fluid. Studying the numerical solution of (1.1) has been increased in
the last two decades. A survey of some numerical methods is given by Podlubny [37].
Blank [38] proposed the collocation spline method and also Rawashdeh [27] applied the
collocation spline method to solve semidifferential equations. It is well-known that the main
disadvantage of the presented methods in [27, 37, 38] is the complex and difficult procedure.
In order to overcome the demerit, in this paper we will apply He’s variational iteration
method for solving semidifferential equations of nth order. This will make the solution
procedure easier, more effective, and more straightforward.
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2. He’s Variational Iteration Method (HVIM)

To illustrate its basic idea of the method, He [14, 26] considered the following general
nonlinear equation:

Lu(t) + Nu(t) = (1), (2.1)

where L is a linear operator, N is a nonlinear operator, and f (¢) is a given continuous function.
The basic character of the method is to construct a correction functional for the system, which
reads

Un1 (B) = U, () + J‘t)t(s){Lun(s) + Nii, — f(s)}ds, (2.2)
0

where 1 is a Lagrange multiplier which can be identified optimally via variational theory [7],
u, is the nth approximate solution, and i, denotes a restricted variation, that is, 61, = 0.
In most cases, the integration in (2.2) is not easily evaluated or needs a huge computational
work. Therefore, in the following, we introduce an application of the HVIM to reduce the size
of calculations and to overcome the difficulty arising in calculating complicated integrals.
An application of He’s variational iteration method can be proposed based on this
assumption that the function f(s) can be divided into two parts, namely, fo(s) and fi(s),

f(s) = fo(s) + fi(s). (2.3)

According to this assumption, f(s) = fo(s) + f1(s), we construct the following iteration
formula:

t
ui(t) = up(t) + J;))L(s){Luo(s) + Nug — fo(s) }ds,
(2.4)

¢
Une1 (8) = U (t) + J;)L(s){Lun(s) + Nuy — (fo(s) + fi1(s)) }ds, n>1.

It is shown that this method is very effective and easy for linear problem, its exact
solution can be obtained by only one iteration because A can be exactly identified. But for
nonlinear problems, there are secular terms, which should be considered [1]. Therefore, we
first determine the Lagrange multiplier A that will be identified optimally via integration by
parts. The successive approximation u,(t), n > 0 of the solution u(t) will be readily obtained
upon using the obtained Lagrange multiplier and by using any selective function ug. The
zeroth approximation #y may be selected any function that just satisfies at least the initial and
boundary conditions. With A determined, then several approximations u,(t), n > 0 follow
immediately. Consequently, the exact solution may be obtained by using

u(t) = r{i_r}gun(t). (2.5)
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The HVIM has been shown to solve effectively, easily, and accurately a large class of
nonlinear problems with approximations converges rapidly to accurate solutions.

3. Implementation of the Method

In this section, an application of He’s variational iteration method is discussed, for solving the
Bagley-Torvik equation and the initial value problem, which are semidifferential equations of
order 4, [27].

Example 3.1. As an example that arises in application, we solve the Bagley-Torvik equation
[27]

[D*+D¥?+D°|y(t) =2+4Vt/z +13,  y(0)=y'(0) =0. (3.1)

According to He’s variational iteration method, we consider the correction functional
in the following form (see, [14, 26]):

Yt (8) = ya(t) + fo ti{yle)(S) + G (5) + Guls) —2 - 4V/s/ — §*}ds, (3.2)

where 1 is the general Lagrange multiplier, v is an initial approximation which must be
chosen suitably, and ¥, is the restricted variation, that is, 61, = 0. Under these conditions, its
stationary conditions of the above correction functional can be expressed as follows:

At s) 0
9s2
1 oMLs) | 0, (3.3)
65 t=s
OA(t, 5)|t=s = 0.
The Lagrange multiplier, therefore, can be easily identified as
A=s-t, (3.4)

leading to the following iteration formula:
t
Yurt () = yu(t) + f (s=){y(5) + v 7 (5) + yu(s) =2~ 4Vs/m ~*}ds.  (35)
0

We start with the initial approximation y,(t) = 0. In Table 1, we have listed the approx-
imation solution y3(t) of (3.5), the exact solution, and the absolute error.

Here, an application of the HVIM can be introduced based on the assumption that the
function f(t) can be divided into two parts, namely, fo(t) and f1(t),

f®) = fo(®) + f(#). (3.6)
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Table 1: Numerical solutions and absolute errors of Example 3.1 using the original HVIM.

t yt)=*t ya(t) |2 —ys (D)
0.1 0.01 0.1005487432e-1 0.5487432e—-4
0.2 0.04 0.4063125562e—-1 0.63125562e-3
0.3 0.09 0.9266557142e—-1 0.266557142e-2
0.4 0.16 0.1674801219 0.74801219e-2
0.5 0.25 0.2667959208 0.167959208e-1
0.6 0.36 0.3927730722 0.327730722e-1
0.7 0.49 0.5480653520 0.580653520e-1
0.8 0.64 0.7358850823 0.958850823e-1
0.9 0.81 0.9600768448 0.1500768448
1.0 1.00 1.2251995000 0.2251995000

According to this assumption, f(t) = fo(t) + f1(t), we construct the following iteration
formula:

t
yi(t) = yo(t) + fo (s =D {y$?(5) + y§ (5) + yols) — fo(s) )ds,

t
ya(t) = ya(t) + f (s =) (¥ (5) + ¥ (s) + yi(s) = (fols) + fi(s)) }ds,
0 (3.7)

t
Y1 (F) = Yu(t) + fo (s =) (¥ (s) +yS/?(s) + yu(s) = (fols) + fi(s)) }ds, n>1.

Consequently, begin with the initial approximation yy(t) = 0, in view of the iteration
formulas (3.7) and taking fo(t) = 2 and fi(t) = 4\/t/x + 2, we can obtain the following
approximations:

yO(t) = 01
yi() =2, (38)
Yn(t) = 2, n>1.

We, therefore, obtain
y(t) = t%. (3.9)

This is the exact solution. We note that the success of obtaining the exact solution is a
result of the proper selection of fy(t) and fi(t).
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Example 3.2. Consider the following initial value problem [27]
16
D?-2D + DV2 + D1y(t) = 6t — 68> + —— 17/ + £, 0) =/(0) = 0. 3.10
[ ly(®) W y(0) = /(0) (3.10)

In view of the correction functional (2.2), the Lagrange multiplier can be identified as

A=s-t (3.11)

As a result, we obtain the following iteration formula:

t
@ M, . 1/2) 2 16 55 5 }
w1 () = yn(t -0y s) -y, 4 2(8) — 65 + 652 — ——5%% — s% Lds.
Yn1(t) y()+£ﬁs ){y (8) =Yn' +Yn " (8) +yn(s) —65+6s 5Vﬁs s’ rds

(3.12)

We start with the initial approximation yo(t) = 0. The comparison between the exact
solution and the approximation solutionys(x) of (3.12) can be seen in Table 2.
Now, we choose

fo(s) = 6s,
16 (3.13)
=_6 2 5/2 _ 3‘
fi(s) s°+ —5\/5_5 s
Under the above assumption, we construct the following iteration formulas:
' 2) (1) (1/2)
0 =00+ [ =016 =1 + 177 ) + (o) - 65)ds,
0
' ) M, 172 2 16 55 3
y2(t) = y1(t) +f (s - t){y1 (8) =y +y, "7 (s) +y1(s) + 65" = —=5""" -5 }ds,
0 5vm (3.14)

t
quu)=yn0)+ﬁﬁs—ﬂ{yfRS)—y9)+y§“VS)+yn@)+6¥-gg%SWZ—s3}d&

With starting the initial approximation uy(t) = 0 and in view of the iteration formulas
(3.14), therefore, obtain the following approximations:

yO(t) = 0/
vi(t) =1, (3.15)
Yn(t) = £, n>1.
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Table 2: Numerical solutions and absolute errors of Example 3.2 using the original HVIM.

t yt) =+t ya(t) £ —ys(t)]
0.1 0.001 0.9745626669¢-3 0.254373331e—-4
0.2 0.008 0.7586906052e—-2 0.413093948e-3
0.3 0.027 0.2488146380e—-1 0.211853620e-2
0.4 0.064 0.5722919465e-1 0.677080535e—-2
0.5 0.125 0.1083125979 0.166874021e-1
0.6 0.216 0.1811260017 0.348739983e-1
0.7 0.343 0.2779910635 0.650089365e—1
0.8 0.512 0.4005870763 0.1114129237
0.9 0.729 0.5499953629 0.1790046371
1.0 1.000 0.7267567745 0.2732432255

Table 3: Numerical solution of y(t) in Examples 3.1 and 3.2.

t, (T =5) N (h=T/N) Absolute error of Example 3.1 Absolute error of Example 3.2
50 03x 107" 03x107"

0.1 -10 -10
100 0.2 x 10 0.18 x 10

1 50 0.37 x 1077 0
100 0.44 x 1077 0.534 x 107°

95 50 0.66 x 107° 0.44 x 107°
100 0.25 x 1070 0.25 x 107°

4 50 0.5x 1077 0.54 x 107
100 0.15x 107° 0.88 x 107

5 50 0.18 x 1070 0.15x 107*
100 0.22x107* 0.39 x 107*

Thus we obtain
y(t) =F, (3.16)
which is the exact solution.

4. Comparison with Collocation Spline Method

Rawashdeh in [27] applied the collocation spline method based on Lagrange interpolation
for solving semidifferential equations of order 4. It is clear that the main disadvantage of the
collocation spline method is its complex and difficult procedure. In order to make solution
procedure easier and more effective, in this paper, we applied He’s VIM to overcome the
demerit. Also Rawashdeh in [27] reported the computed absolute error (error between exact
and approximate value) with N = 50,100 (NN is the division number of the given interval)
for Examples 3.1 and 3.2, see Table 3. In the studies by Rawashdeh, much time was spent and
boring operations were done by collocation spline method based on Lagrange interpolation
to get approximate solutions. In our study, however, the exact solutions are computed easily
using this technique. Generally speaking, He’s VIM is reliable and more efficient as compared
with collocation spline method based on Lagrange interpolation.
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5. Conclusion

In this paper, we have applied He’s variational iteration method to various semidifferential
equations of nth order. The obtained solution shows that He’s method is a very convenient
and effective for various semidifferential equations of nth order, only one iteration leads to
exact solutions.
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