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1. Introduction

Since the definition domain of wavelet transformation is an infinite interval, the boundary
effect would occur when applied for resolving the engineering problems with bounded
interval, for example, ordinary differential equations (ODEs). Consequently, it will decrease
the precision and computational efficiency of the solution. Nevertheless, the boundary effect
can be eliminated effectively by constructing an interval wavelet using numerical methods.

There are several ways available to construct an interval wavelet. In general, the
construction method is relative to the wavelet function, that is, different interval wavelet
has different construction method. A simple solution is the even 2-periodical extension ˜f of
function f : [0, 1]→R, which is usually used in image analysis. Unfortunately, this extension
generally produces discontinuities at the integers that are indicated by the large wavelet
coefficients near the endpoints 0 and 1. Thus, the constructed wavelet cannot exactly analyze
the boundary behavior of a given function. To solve this problem, the popular method is based
on special boundary and interior scaling functions as well as wavelets to reduce the numerical
problem at the boundaries [1, 2].

mailto:meishuli@163.com


2 Mathematical Problems in Engineering

The aim of this paper is to introduce a general construction method of interval wavelet
based on the restricted variational principle. As an example, the quasi-Shannon wavelet is
firstly introduced in brief. Then, its corresponding interval wavelet is constructed in detail
based on the restricted variational principle [3]. After that, the wavelet collocation method is
applied to obtain the interval wavelet discrete formulation of ODEs. The performance of the
quasi-Shannon interval wavelet is illustrated by comparing the numerical results of Shannon,
quasi-Shannon, and Shannon interval wavelets on a convection equation.

2. Quasi-shannon wavelet

The Shannon scaling function is smooth, this means that the function and all of its derivatives
exist and are continuous. But the Shannon function does not have compact support. In order
to improve the localized and asymptotic behavior of the Shannon scaling function, Wei [4]
introduced a regularization factor R(x) as follows:

w(x) = φ(x)R(x), φ(x) =
sin(πx)
πx

. (2.1)

The advantage of the regularized Shannon scaling function is that its Fourier transformation
is continuous [4], resulting in an excellent local property. A common and important
regularization factor R(x) proposed by Wei [4] is the Gaussian function

Rσ(x) = exp
(

− x2

2σ2

)

, σ > 0, (2.2)

where σ is the width parameter (or called window size). In practice, the best results are usually
obtained, when σ = rΔ [4] (r is a parameter chosen in computations, Δ is the size of cell in
discrete mesh). Substituting (2.2) into (2.1), the Gaussian regularized orthogonal sampling
scaling function can be obtained as following:

w(x) =
sin(πx)
πx

exp
(

− x2

2σ2

)

, σ > 0 . (2.3)

The corresponding discrete formula is

w
(

x − xi
)

=
sin(π/Δ)

(

x − xi
)

(π/Δ)
(

x − xi
) exp

(

−
(

x − xn
)2

2σ2

)

. (2.4)

3. Construction of interval wavelet based on restricted
variational principle

3.1. Restricted variational principle

Defining a scalar fonctionelle
∏

of u as

∏

=
∫

Ω
F

(

u,
∂u

∂x
, . . .

)

dΩ +
∫

Γ
E

(

u,
∂u

∂x
, . . .

)

dΓ, (3.1)
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where u is an unknown function, both F and E are specific operators, Ω is the definition
domain, and Γ is the boundary of Ω. The solution of a continuous medium problem is a
stagnation point of the functional equation

∏

, that is, its variation is equal to zero

δ
∏

= 0. (3.2)

The method described above for solving a continuous medium problem is called restricted
variational principle [3].

The unknown function u could be approximately expressed as

u ≈ ũ =
n
∑

i=1

Niai = Na, (3.3)

where ai is the parameters to be determined and Ni is the trial function.
If the unknown function u is restricted by additional condition C(u) = 0 in definition

domain Ω, a revised fonctionelle
∏∗ could be constructed as follows:
∏∗

=
∏

+
∫

Ω
λTC(u)dΩ, (3.4)

where λ is called Lagrange multiplier, which is a function vector with independent coordinates
in Ω. The functions u and λ are two unknown variables within the revised fonctionelle.
Similarly as (3.3), λ could be approximately expressed by trial function ˜Ni as

˜λ =
∑

˜Nibi = ˜Nb. (3.5)

Let the variation of the revised fonctionelle equal to zero, and a system of equations could be
obtained as follows:

δ
∏∗

δc
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δ
∏∗

δa
δ
∏∗

δb

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= 0, c =
{

a
b

}

. (3.6)

The values of a and b could be obtained by solving the above system of equations.
Let the Euler equation of the fonctionelle

∏

is

A(u) = 0, (3.7)

and the additional condition is

C(u) = L1(u) + C1 = 0. (3.8)

Substituting (3.5), (3.7), and (3.8) into (3.4), the following function could be obtained:

δ
∏∗

= δaT
∫

Ω
NTA(ũ)dΩ + δbT

∫

Ω

˜N
[

L1(ũ) + C1
]

dΩ + δaT
∫

Ω
LT1 (N)˜λdΩ = 0. (3.9)

Since (3.9) is satisfied for all variations of δa and δb, the following two equations can be
derived:

∫

Ω
NTA(ũ)dΩ +

∫

Ω
LT1 (N)˜λdΩ = 0, (3.10)

∫

Ω

˜N
T[
L1(ũ) + C1

]

dΩ = 0. (3.11)
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The first item in (3.10) is the approximate equation of the natural variation of the linear system
of equations:

Ka = P. (3.12)

Thus, (3.10) and (3.11) could be rewritten in the following form:

K0C + R =

[

K G

GT 0

]{

a

b

}

−
{

P

Q

}

= 0, (3.13)

where

K =
∫

Ω
NTA(N)dΩ,

GT =
∫

Ω

˜N
T
L1(N)dΩ,

Q =
∫

Ω

˜N
T
C1dΩ.

(3.14)

3.2. Construction of quasi-Shannon interval wavelet

Considering a one-dimensional problem u(x), whose domain of definition Ω is [m,n].
Assuming that the number of discrete point is 2j + 1, j ∈ Z, the ith discrete point of variable x
could be written as

xi = m +
n −m

2j
·i, i ∈ Z. (3.15)

If the quasi-Shannon wavelet with interpolation property is employed as the trial function Nj ,
that is,

Nj = wj

(

x − xi
)

=
sin

(

2jπ/(n −m)
)(

x − xi
)

(

2jπ/(n −m)
)(

x − xi
) exp

(

−
22j−1(x − xi

)2

r2(n −m)2

)

. (3.16)

Any element in the matrices K and GT could be expressed, respectively, as

Kk,n = A
(

wj(k − n)
)

, (3.17)

GT
k,n =

∫

Ω

˜NT
kL1

(

Nn

)

dΩ, (3.18)

where ˜Nk is the Lagrange basic function.
As the definition domain of wavelet transformation is a double infinite interval, the

wavelet coefficients are large near the endpoints of the bounded signal, which increases the
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computational error. To obtain a high computational precision, the additional condition of
scalar fonctionelle in boundary Γ could be changed to

u = u. (3.19)

Thus,

L1
(

Nn

)

=
∑

i

Niui, (3.20)

where ui is a known value. Recomputing (3.13) with this additional condition, it could be
rewritten as follows:

K0C + R =

[

K G
GT 0

]{

a
b

}

−
{

P
0

}

= 0. (3.21)

Correspondingly, (3.18) changed to the form

GT
k,n = ˜NT

kNn. (3.22)

The interpolation properties of ˜N and N imply that a and b are the vectors consisting of the
approximate values of u in discrete points xi and extended discrete points outside the domain
of [m,n], respectively. Typically, periodic, symmetry, and zero extension methods could be
employed. Assuming that there areR = 2j+1 discrete points in [m,n], that is, x0, x1, . . . , x2j , and
L extended points in both outsides of the domain [m,n], respectively, that is, x−L−1, x−L, . . . , x−1

and xR, xR+1, . . . , xR+L, the function u can be extended outside of the definition domain
using the symmetry method, period method, or the zero extension method. Here, we take
the symmetry method as example to illustrate the interval wavelet construction method as
follows:

u
(

x−1
)

= u
(

x0
)

u
(

x−2
)

= u
(

x1
)

...
u
(

x−1−i
)

= u
(

xi
)

...
u
(

x−L−1
)

= u
(

xL
)

,

u
(

xR
)

= u
(

xR−1
)

u
(

xR+1
)

= u
(

xR−2
)

...
u
(

xR+i
)

= u
(

xR−i−1
)

...
u
(

xR+L
)

= u
(

xR−L−1
)

(3.23)
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Substituting (3.23) into (3.21) results in

⎡

⎣

G1
A

G2

⎤

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u−L−1

u−L
...
u−1

u0

u1
...
u2j

uR
uR+1

...
uR+L

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

=

{

P′

0

}

, (3.24)

where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A
(

wj(0 − 0)
)

A
(

wj(0 − 1)
)

· · · A
(

wj

(

0 − 2j
))

A
(

wj(1 − 0)
)

A
(

wj(1 − 1)
)

· · · A
(

wj

(

1 − 2j
))

...
...

...
...

A
(

wj

(

2j − 0
))

A
(

wj

(

2j − 1
))

· · · A
(

wj

(

2j − 2j
))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

G1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a−L−1,−L−1wj(0) a−L−1,−Lwj(−1) · · · a−L−1,−1wj(−L)
a−L,−L−1wj(1) a−L,−Lwj(0) · · · a−L,−1wj(1 − L)

...
...

...
...

a−1,−L−1wj(L) a−1,−Lwj(L − 1) · · · a−1,−1wj(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

G2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

bR,Rwj(0) bR,R+1wj(−1) · · · bR,R+Lwj(−L)
bR+1,Rwj(1) bR+1,R+1wj(0) · · · bR+1,Rwj(1 − L)

...
...

...
...

bR+L,Rwj(L) bR+L,R+1wj(L − 1) · · · bR+L,R+Lwj(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(3.25)

In the matrices G1 and G2, ank and bnk could be calculated, respectively, as

ank = l1jk
(

xjn
)

, bnk = l2jk
(

xjn
)

, (3.26)

l1
j,k

=
−1
∏

i=−L−1
i /= k

x − xj,i
xj,k − xj,i

, l2
j,k

=
2j+1+L
∏

i=2j+1
i /= k

x − xj,i
xj,k − xj,i

. (3.27)
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According to GTb = 0 and the relational expression (3.23), (3.24) could be condensed in the
following way:

⎡

⎣

G1 +A11 A12 A13
A21 A22 A23
A31 A32 G2 +A33

⎤

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u0

u1
...
u2j

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

{

P
0

}

. (3.28)

Subsequently, as interval interpolation basic functions, the quasi-Shannon interval wavelet can
be obtained from (3.28) as follows:

wjk = w
(

2jx − k
)

+
−1
∑

n=−N+1

ankw
(

2jx − n
)

, k = 0, . . . , L,

wjk = w
(

2jx − k
)

, k = L + 1, . . . , 2j − L − 1,

wjk = w
(

2jx − k
)

+
2j+N−1
∑

n=2j+1

bnkw
(

2jx − n
)

, k = 2j − L, . . . , 2j ,

(3.29)

where L is the number of the external points, N is the support domain of the wavelet function,
that is, supφ = [−N,N].

It is easy to know that the quasi-Shannon interval wavelet is a linear combination of
the quasi-Shannon scaling function wj,k(x). Therefore, the quasi-Shannon interval wavelet
function possesses all the properties of the quasi-Shannon scaling function.

It should be noted that the interval wavelet function (3.29) is similar to the result
obtained in [5] using different methods. But we can construct different interval wavelets
possessed similar format based on different extension technologies by this method. Otherwise,
this method reveals the close relationship between the restricted variational principle and the
interval interpolation wavelet.

4. Interval wavelet numerical method for ordinary deferential equations (ODEs)

4.1. Interval wavelet discrete formulation of ODEs [6, 7]

Considering the following ODE:

A(x)u′′(x) + B(x)u′(x) + C(x)u(x) = f(x), x ∈ [a, b]. (4.1)

According to the collocation method, its approximate solution can be expressed as

uj(x) =
2j
∑

n=0

uj
(

xn
)

w
(

2jx − n
)

, n = 0, 1, 2, . . . , 2j . (4.2)

Substituting (4.2) into (4.1), the system of algebraic equations can be obtained as follows:

2j
∑

n=0

uj(xn)
[

A
(

xk
)

22jw′′(k − n) + B
(

xk
)

2jw′(k − n) + C
(

xk
)

w(k − n)
]

= f
(

xk
)

,

k = 0, 1, 2, . . . , 2j .

(4.3)

The solution of (4.3) is an approximate one of (4.1) at the collocation point xk. Equation (4.3)
could be rewritten in the new form below as follows:

MU = F, (4.4)
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where U is the vector of solution, F is right side vector, and M is the stiffness matrix. Any
element of the matrix M could be expressed as follows:

mk,n = A
(

xk
)

22jw′′(k − n) + B
(

xk
)

2jw′(k − n) + C
(

xk
)

w(k − n), (4.5)

where

w′(k − n) =

⎧

⎪

⎨

⎪

⎩

2jcos
[

π(k − n)
]

exp
[

− (k − n)2/(2r2)
]

(k − n)(b − a) , k /= n

0, k = n,

w′′(k − n) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
22j+1cos

[

π(k − n)
]

exp
[

− (k − n)2/2r2]

(b − a)2

[

1

(k − n)2
+

1
r2

]

, k /= n

−
22j(3 + π2r2)

3r2(b − a)2
, k = n.

(4.6)

In the solution of the above differential equations, there are several types of boundary
conditions commonly encountered, such as Dirichlet and Neumann boundary conditions. For
simple, we only consider the Dirichlet boundary in the following discussions.

Dirichlet boundary conditions of differential equations specify the value of function on
a surface S:

u(x)|S = β(x), x ∈ S. (4.7)

That is, the solution u(x) on the boundary S is known. Assuming that the definition interval
of the solution is [0, 1], the approximate solution will be

uj(x) = uj(0)w
(

2jx
)

+
2j−1
∑

n=1

uj
(

xn
)

w
(

2jx − n
)

+ uj(1)w
(

2jx − 2j
)

. (4.8)

Substituting (4.8) into (4.4), the system of algebraic equations satisfying the boundary
conditions could be obtained.

4.2. Numerical example

Considering the following two-point boundary problem as a convection equation,

−εu′′(x) + u′(x) + u(x) = 1, 0 < x < 1,

u(0) = u(1) = 0.
(4.9)

Its analytical solution as shown in Figure 1 is

u(x) =
1 − eλ2

eλ2 − eλ1
eλ1x − 1 − eλ1

eλ2 − eλ1
eλ2x + 1, (4.10)

where λ1 and λ2 are Eigenvalues:

λ1 =
1 +
√

1 + 4ε
2ε

, λ2 =
1 −
√

1 + 4ε
2ε

. (4.11)
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x

0 0.2 0.4 0.6 0.8 1

u
(x
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: Analytical solution of the convection (4.9).
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(a) Shannon wavelet
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(b) Quasi-Shannon wavelet
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(c) Interval wavelet
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Figure 2: The comparison of the Shannon (a), the quasi-Shannon (b), and the interval wavelet (c), and their
errors of numerical results (e), (f), and (g), respectively.

Obviously, the boundary layer phenomenon is evident near the boundary x = 1, which would
increase with the decrease of the parameter ε. This could be used to test the effectiveness of the
interval wavelet.

Substituting (4.5) into (4.9) results in its wavelet discrete formulation as the following:

2j−1
∑

n=1

u∗j
(

xn
)[

− 22jεw′′(k − n) + 2jw′(k − n) +w(k − n)
]

= 1, k = 1, 2, . . . , 2j − 1. (4.12)
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Table 1: Influence of the total number of external collocation points L(j = 6, ε = 1).

L
Maximum of absolute error (10−3) Maximum of relative error (10−1)

Quasi wavelet Wavelet Quasi wavelet Wavelet
1 0.293909 0.231154 0.396774 0.214034
2 0.501539 2.824444 0.612304 3.448221
3 1.257581 2.641409 1.535317 3.855991
4 2.080191 2.020558 2.539601 1.273226

The weight function w in (4.12) can be set as the Shannon, the quasi-Shannon, or the interval
wavelet functions. Their numerical solutions and corresponding errors are shown in Figure 2,
where the count of collocation points is 65, and the points are distributed evenly in space.
Obviously, the calculation precision of the interval wavelet is higher than others.

Besides, the regularized width parameter σ which has been discussed in [8], the
parameters L, ε, and j affect the calculation precision significantly. Therefore, appropriate
values should be selected when implementing the numerical method developed.

4.2.1. Total number of external collocation points L

In fact, the definition of interval wavelet in (3.29) indicates that the values of u in external
collocation points are obtained by Lagrange interpolation method. So, the parameter L is
relative with the smoothness of the solution, which is difficult to be determined. With the
increasing of L, the Runge phenomena could occur in the Lagrange interpolation [9]. As a
result, it could decrease the computational precision, which is proved by the numerical results
shown in Table 1. When L = 1, the maxima of both the relative error and the absolute error are
apparently less than that of the other two methods. However, opposite results were obtained,
when L = 3. Actually, the solution of ODE with the Dirichlet boundary condition is not smooth
on the boundary in most cases, and so the bigger L cannot make any contribution to improve
the computational precision except increasing the time complexity of the numerical method.
Consequently, L = 1∼3 might be the best choice.

4.2.2. Parameter ε

Table 2 shows the influence of parameter ε on the calculation precision. It can be observed that
the solution is smooth as ε = 1. Although the quasi-Shannon wavelet has local property, its
computational precision is lower than that of the Shannon wavelet without local property. With
ε decreasing, the superiority of quasi-Shannon wavelet method to Shannon wavelet method
exhibits gradually. When ε = 0.001, the maximum of the relative error of the quasi-Shannon
wavelet method is only 0.33, while that of Shannon wavelet method is as high as 26.6. The
precision of the interval wavelet method keeps higher than the other two methods in the whole
process. When j = 6 and ε ≥ 0.1, the maxima of both the relative error and the absolute error of
the interval wavelet method are the lowest among the three methods.

However, when the parameter ε further decreases, the relative error of the interval
wavelet method is slightly larger than that of quasi-Shannon wavelet method, and the absolute
error of the interval wavelet method approximately identical to that of quasi-Shannon wavelet
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Table 2: Influence of parameter ε.

j ε
Maximum of absolute error (10−3) Maximum of relative error (10−1)

Wavelet Quasi wavelet Interval wavelet Wavelet Quasi wavelet Interval wavelet

6

10 0.106914 0.111678 0.028917 1.380331 1.441719 0.376946
1 1.123656 1.174248 0.293909 1.378319 1.439217 0.396774

0.1 11.376105 11.941366 2.010026 1.420279 1.483418 0.624155
0.01 222.141128 23.408347 57.468784 5.043318 1.972964 1.887983

0.001 412.488802 207.321583 411.521362 266.324372 3.312058 6.574245

7

10 0.053260 0.056518 0.014050 1.363706 1.424885 0.361576
1 0.563071 0.588491 0.145969 1.362734 1.423654 0.371681

0.1 6.085202 6.374630 1.322155 1.386066 1.446475 0.491532
0.01 31.345841 33.297824 1.565785 1.347694 1.740275 1.362828

0.001 164.839419 151.457045 33.225063 185.349515 2.552534 5.285445

8

10 0.026582 0.027779 0.006915 1.355528 1.4165667 0.353550
1 0.281860 0.294593 0.072672 1.355051 1.4159566 0.358653

0.1 3.146638 3.292653 0.745793 1.367255 1.427546 0.420238
0.01 23.224318 24.535314 7.964710 1.474450 1.588004 0.947608

0.001 56.195135 63.509684 206.247916 57.747668 2.338209 3.339211

10 0.001 31.438062 33.344138 23.764024 0.798518 1.807492 1.523272

Table 3: Influence of j(ε = 0.001).

j
Maximum of absolute error (10−3) Maximum of relative error (10−1)

Wavelet Quasi wavelet Interval wavelet Wavelet Quasi wavelet Interval wavelet
6 412.488802 207.321583 411.521362 266.324372 3.312058 6.574245
7 164.839419 151.457045 33.225063 185.349515 2.552534 5.285445
8 56.195135 63.509684 206.247916 57.747668 2.338209 3.339211
10 31.438062 33.344138 23.764024 0.798518 1.807492 1.523272

method. This is due to the boundary layer phenomena of the two-point boundary problem
appearing at the points adjacent to the boundary x = 1. The boundary layer phenomena
result in the large gradient of solution, and thus the Gibbs phenomena [10] are unavoidable.
Since the construction of the interval wavelet is based on the Lagrange continuation, the Gibbs
phenomena would decrease the precision of continuation. Hence, the computational precision
of quasi-Shannon interval wavelet method is decreased.

4.2.3. Influence of j

The parameter j is used to control the total number of collocation points in the discrete formula
of wavelet collocation method. The number of collocation points is the exponential function of
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Table 4: Comparison of calculation precision obtained by Shannon and quasi-Shannon interval wavelet
methods.

j ε
Maximum of absolute error (10−5) Maximu of relative error

Shannon Inter-
val wavelet

Quasi-Shannon
Interval wavelet

Shannon Inter-
val wavelet

Quasi-Shannon
Interval wavelet

6
10 1.957398258 2.891724995 0.01764588484 0.0376945532
1 23.115408165 29.390905441 0.02140336631 0.0396773857

0.1 465.352264175 201.002620554 0.06886365066 0.0624155254

7

10 0.900334503 1.405000206 0.01873761840 0.0361575879
1 1.017560446 1.459691836 0.02059129393 0.0371681364
0.1 175.721016219 132.215467365 0.04324788942 0.0491531901

0.01 6008.124739931 1565.785030594 0.67380962016 0.1362827615

10 0.01 221.30267 150.79668 0.05825734364 0.0519607606

the parameter j, that is, 2j + 1. According to the explanation in Section 4.2.2, if there is no
Gibbs phenomena or the Gibbs phenomena are weak enough, the precision of the interval
wavelet method should be slightly higher than the quasi-Shannon wavelet method, even the
value of ε is small. The Gibbs phenomena would be continuously weakening up to none
with the increment of the collocation points. Table 3 indicates that calculation errors of all
three methods decrease with number of the collocation points increasing. When j = 10, the
maximum absolute error of the interval wavelet method is less than the other two methods. In
addition, the maximum relative error of the interval wavelet method is less than the error of
the quasi-Shannon wavelet method, but larger than the error of Shannon wavelet method.

4.3. Comparison of calculation precision obtained by Shannon interval wavelet
method and quasi-Shannon interval wavelet method

In this work, the Shannon interval wavelet is also constructed to further evaluate the
performance of the quasi-Shannon interval wavelet for numerical analysis. Instead of (3.16),
the following weight function is used to construct the Shannon interval wavelet:

wj

(

x − xi
)

=
sin

[(

2jπ/(b − a))
(

x − xi
)]

(

2jπ/(b − a))
(

x − xi
) . (4.13)

The first and second derivatives of (4.13) are expressed, respectively, as follows:
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Figure 3: Comparison of the quasi-Shannon interval wavelet and the Shannon interval wavelet (j = 7,
ε = 0.4, and L = 1).

The collocation method of Shannon interval wavelet method could be obtained by substituting
(4.13)–(4.15) into (4.5).

Table 4 indicates that the maxima of both the relative error and the absolute error
obtained by the Shannon interval wavelet method are less than those obtained by the quasi-
Shannon interval wavelet method when the solution curve of the two-point problem is smooth.
As ε decreasing, the precision of quasi-Shannon interval method become higher than that of the
Shannon interval wavelet method. Especially when ε ≤ 0.01, the calculation precision obtained
by quasi-Shannon interval wavelet method is higher than that obtained by Shannon interval
wavelet method in the whole process with the collocation number varying from a smaller
number to 1025 (i.e., j = 10).

Figure 3 also shows that when the equation is solved by the quasi-Shannon interval
wavelet, the numerical error mainly lies in the boundary, while the errors of other parts are very
little. On the contrast, when the Shannon interval wavelet method is utilized, the numerical
error almost evenly distributes in the all domain. Consequently, the sum of the error is much
larger than that of the quasi-Shannon interval wavelet.

5. Conclusions

A novel general method for construction of interval wavelet based on the restricted variational
principle is proposed in this paper. Both Shannon and quasi-Shannon interval wavelets could
be constructed using this new method. With appropriate values of parameters L, ε, and j
selected, the numerical results for a differential equation show that the quasi-Shannon interval
wavelet outperforms than Shannon and quasi-Shannon wavelets. Furthermore, the capability
of quasi-Shannon interval wavelet for numerical analysis is better than that of Shannon interval
wavelet.

It should be noted that combining the corresponding interval wavelet with the classical
Galerkin method can obtain an excellent wavelet-Galerkin method for engineering problems.
Since quasi-Shannon wavelet is orthogonal, this guarantees the stability of the matrix equations
in Galerkin method.
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