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A global optimization algorithm is proposed for solving sum of general linear ratios problem
(P) using new pruning technique. Firstly, an equivalent problem (P1) of the (P) is derived by
exploiting the characteristics of linear constraints. Then, by utilizing linearization method the
relaxation linear programming (RLP) of the (P1) can be constructed and the proposed algorithm
is convergent to the global minimum of the (P) through the successive refinement of the linear
relaxation of feasible region and solutions of a series of (RLP). Then, a new pruning technique is
proposed, this technique offers a possibility to cut away a large part of the current investigated
feasible region by the optimization algorithm, which can be utilized as an accelerating device for
global optimization of problem (P). Finally, the numerical experiments are given to illustrate the
feasibility of the proposed algorithm.
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1. Introduction

Consider the following sum of general linear ratios problem:

(P) :

⎧
⎪⎪⎨

⎪⎪⎩

min h(x) =
p∑

j=1

cj0 + cTj x

dj0 + dT
j x

,

s.t. Ax ≤ b, x ∈ RN,

(1.1)

where A ∈ RM×N, b ∈ RM, p is a natural number, cj0 + cTj x and dj0 + dT
j x are all finite affine

functions on RN such that dj0 + dT
j x /= 0 for all x ∈ X = {x | Ax ≤ b}, j = 1, . . . , p.
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Problem (P) has attracted the interest of researchers for many years. This is because
problem (P) has a number of important applications, including multistage shipping
problems, cluster analysis, and multiobjective bond portfolio [1, 2]. However, some
computational difficulties can be encountered, since multiple local optima of problem (P)
that are not globally optimal exist.

In the last decades, many solution algorithms have been proposed for globally solving
special cases of the (P), which are intended only for the sum of positive linear ratios
problem with assumption that cj0 + cTj x ≥ 0 and dj0 + dT

j x > 0 for all x ∈ X = {x |
Ax ≤ b} [2, 3]. In [4], Kuno proposed a new method for solving the maximization of
sum of linear ratios, which used a concave function to overestimate the optimal value
of the original problem. A global optimization method was considered by Jiao et al. [5]
by introducing parameters, then the global optimal solution can be derived using linear
relaxation and branch and bound algorithm. Recently, in [6], Ji et al. presented a deterministic
global optimization algorithm for the linear sum-of-ratios problem, and Jiao and Chen [7]
give a short extensive application for the algorithm proposed in [6]. Though optimization
methods for special forms of the (P) are ubiquitous, to our knowledge, little work has
been done in the literature for globally solving the sum of general linear ratios problem
(P) which the numerators and denominators of the ratios may be arbitrary value except
that the denominators of the ratios are nonzero over the feasible region considered in this
paper.

The purpose of this paper is to develop a deterministic algorithm for solving sum
of general linear ratios problem (P) which the numerators and denominators of the ratios
may be arbitrary value except that the denominators of the ratios are nonzero over the
feasible region. The main feature of the algorithm is described as follows. (1) An equivalent
optimization problem (P1) of the (P) is derived by exploiting the characteristics of this
linear constraints. (2) A new linearization method is proposed to linearize the objective
function of the (P1), and the linear relaxation of the (P1) is easier to be obtained and
need not introduce new variables and constraints compared with the method in [5, 8]. (3)
A new pruning technique is given, and this technique offers the possibility to cut away
a large part of the current investigated feasible region. Using the new technique as an
accelerating device and applying it to the proposed algorithm, we can largely reduce current
investigated feasible region to improve the convergence of the algorithm. (4) The proposed
algorithm is convergent to the global minimum through the successive refinement of the
linear relaxation of feasible region of the objective function and solutions of a series of
(RLP). Finally, the numerical results show the feasibility and effectiveness of the proposed
algorithm.

The organization of this article is as follows. In Section 2, we show how to
convert the (P) into equivalent problem (P1), and generate the relaxed linear programing
(RLP) of the (P1). In Section 3, the proposed branch-and-bound algorithm in which
the relaxed subproblems are embedded is described, and its convergence is shown.
Some numerical results are reported in Section 4 and Section 5 provides some concluding
remarks.

2. Linear relaxation programing

In this section, first we convert the (P) into an equivalent nonconvex programing problem
(P1). In order to globally solve the (P), the branch and bound algorithm to be presented can
be applied to the (P1).
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Firstly, we solve the following 2N + p linear programing problems:

xi =

⎧
⎨

⎩

min xi,

s.t. Ax ≤ b,

xi =

⎧
⎨

⎩

min xi,

s.t. Ax ≤ b,

rj =

⎧
⎨

⎩

min cj0 + cTj x,

s.t. Ax ≤ b,

(2.1)

where i = 1, 2, . . . ,N, j = 1, . . . , p. Then, we can get initial partition rectangle X0 = {x | xi ≤
xi ≤ xi, i = 1, 2, . . . ,N}. Without loss of generality, assume rj ≥ 0 (j = 1, . . . , q), rj < 0 (j =
q + 1, . . . , p), the problem (P) can be rewritten in the following form:

(P1) :

⎧
⎪⎪⎨

⎪⎪⎩

min h(x) =
q∑

j=1

cj0 + cTj x

dj0 + dT
j x

+
p∑

j=q+1

cj0 + cTj x − rj

dj0 + dT
j x

−
p∑

j=q+1

−rj
dj0 + dT

j x
,

s.t. Ax ≤ b, x ∈ X0.

(2.2)

Obviously, we have cj0 + cTj x ≥ 0 for each j ∈ {1, . . . , q}, and cj0 + cTj x − rj ≥ 0 and −rj > 0 for
each j ∈ {q + 1, . . . , p}.

Theorem 2.1. Problems (P) and the (P1) have the same global optimal solution.

Proof. Obviously, if x is feasible to the (P), then x ∈ X0. Conversely, if x is feasible to the (P1),
then Ax ≤ b. So they have the same feasible region, then conclusion is followed.

The linear relaxation of the (P1) can be realized by underestimating function h(x)with
a linear function hl(x). All the details of this linearization technique for generating relaxations
will be given in the following theorems.

Given any X = [x, x] ⊆ X0 and for all x = (xi)n×1 ∈ X, the following notations are
introduced:

hl(x) =
q∑

j=1

cj0 + cTj x

du
j

+
p∑

j=q+1

cj0 + cTj x − rj

du
j

−
p∑

j=q+1

−rj
dl
j

, (2.3)

hu(x) =
γ∑

j=1

cj0 + cTj x

dl
j

+
p∑

j=q+1

cj0 + cTj x − rj

dl
j

−
p∑

j=q+1

−rj
du
j

, (2.4)

dl
j = min

x∈X
(
dj0 + dT

j x
)
, du

j = max
x∈X

(
dj0 + dT

j x
)
, j = 1, . . . , p. (2.5)

Theorem 2.2. Let dj(x)/= 0 for any x ∈ X and let dl
j and du

j defined in (2.5). Then, 1/du
j ≤

1/dj(x) ≤ 1/dl
j (j = 1, . . . , p), for all x ∈ X.
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Proof. Obviously, by the continuity of the function dj(x), there must exist some x1 ∈ X and
x2 ∈ X, such that dj(x1) = dl

j and dj(x2) = du
j . If d

u
j d

l
j < 0, then dl

j < 0 and du
j > 0, that is,

dj(x1) < 0 and dj(x2) > 0. Then, there must exist one positive number σ ∈ (0, 1) such that
dj(x1 + σ(x2 − x1)) = 0, where x1 + σ(x2 − x1) ∈ X, which contradicts dj(x)/= 0 for any x ∈ X.
Therefore, we have du

j d
l
j > 0, that is, du

j ≥ dl
j > 0 or dl

j ≤ du
j < 0. Obviously, for ∀x ∈ X, the

following two conclusions hold.

(i) If du
j ≥ dl

j > 0, then du
j ≥ dj(x) ≥ dl

j > 0, we have 0 < 1/du
j ≤ 1/dj(x) ≤ 1/dl

j .

(ii) If dl
j ≤ du

j < 0, then dl
j ≤ dj(x) ≤ du

j < 0, we have 1/du
j ≤ 1/dj(x) ≤ 1/dl

j < 0.

By (i) and (ii), for for all x ∈ X, we have 1/du
j ≤ 1/dj(x) ≤ 1/dl

j .

Theorem 2.3. For any x ∈ X, consider the functions h(x), hl(x), and hu(x) defined in (2.3) and
(2.4). Then, the following two statements hold.

(i) The functions h(x), hl(x), and hu(x) satisfy hl(x) ≤ h(x) ≤ hu(x).

(ii) The maximal errors of bounding h(x) using hl(x) and hu(x) satisfy

lim
‖x−x‖→ 0

ErrorLmax = lim
‖x−x‖→ 0

ErrorUmax = 0, (2.6)

where

ErrorLmax = max
x∈X

(
h(x) − hl(x)

)
, ErrorUmax = max

x∈X
(
hu(x) − h(x)

)
. (2.7)

Proof. The proof the theorem can be found in [7].

For convenience in exposition, in the following we assume that Xk = [xk, xk]
represents either the initial bounds on the variables of the problem (P1), or modified bounds
as defined for some partitioned subproblem in a branch-and-bound scheme. By means
of Theorem 2.3, we can give the linear relaxation of the (P1). Let Xk = [xk, xk] ⊆ X0,
consequently we construct the corresponding approximation relaxation linear programing
(RLP) of (P1) in Xk as follows:

RLP(Xk) :

⎧
⎪⎪⎨

⎪⎪⎩

min hl(x) =
q∑

j=1

cj0 + cTj x

du
j

+
p∑

j=q+1

cj0 + cTj x − rj

du
j

−
p∑

j=q+1

−rj
dl
j

,

s.t. Ax ≤ b, x ∈ Xk.

(2.8)

Based on the above linear underestimators, every feasible point of (P1) in subdomain
Xk is feasible in (RLP); and the value of the objective function for (RLP) is less than or equal
to that of (P1) for all points in Xk. Thus, (RLP) provides a valid lower bound for the solution
of (P1) over the partition set Xk. It should be noted that problem (RLP) contains only the
necessary constraints to guarantee convergence of the algorithm.
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3. New pruning technique

In this section, we pay more attention to how to form the new pruning technique to delete
or reduce a large part of regions in which there exists no global optimal solution so that
we can accelerate the convergence of the proposed algorithm. Let X = (Xi)N×1 with Xi =
[xi, xi] be a subrectangle of X0, that is, X ⊆ X0. Moreover, assume that h are currently known
upper bound of optimal objective value h∗ of problem (P1). For convenience of the following
discussions, we introduce some notations as follows:

E =
p∑

j=1

cj0

du
j

+
p∑

j=q+1

(
rj

dl
j

− rj

du
j

)

,

βi =
p∑

j=1

cji

du
j

, i = 1, 2, . . . ,N,

S =
N∑

i=1

min
{
βixi, βixi

}
,

Lt =
N∑

i=1

min
{
atixi, atixi

}
, t = 1, 2, . . . ,M,

sm = min
x∈X

N∑

i=1, i /=m

βi xi,

zm =
h − sm − E

βm
,

z1tm =
bt − Lt + atmxm

atm
,

z2tm =
bt − Lt + atmxm

atm
.

(3.1)

Theorem 3.1. Consider the subrectangle X = (Xi)N×1 ⊆ X0, we have the following conclusions.

(i) If S + E > UB, thenminx∈Xh(x) > h∗.

(ii) If S+E ≤ UB, then if there exists some indexm (m ∈ {1, 2, . . . ,N}) such that βm > 0 and
zm < xm, then minx∈X̂1h(x) > h∗; if there exists some index m (m ∈ {1, 2, . . . ,N}) such
that βm < 0 and zm > xm, thenminx∈X̂2 h(x) > h∗, where

X̂1 =
(
X̂1

i

)

N×1 ⊆ X, X̂2 =
(
X̂2

i

)

N×1 ⊆ X,

X̂1
i =

⎧
⎨

⎩

Xi, if i /=m, i = 1, 2, . . . ,N,

(zm, xm] ∩Xm, if i = m,

X̂2
i =

⎧
⎨

⎩

Xi, if i /=m, i = 1, 2, . . . ,N,

[xm, zm) ∩Xm, if i = m.

(3.2)
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Proof. (i) By assumption and definitions of βi, S, E in (3.1), if S + E > UB, then hl(x) ≥ S + E >
UB ≥ h∗ for any x ∈ X, that is, minx∈Xh(x) > h∗ for any x ∈ X.

(ii) By assumption and definitions of βi, S, E in (3.1), if S + E ≤ UB, then we have the
following two conclusions:

(a) If there exists some index m (m ∈ {1, 2, . . . ,N}) such that βm > 0 and zm < xm,

then for any x = (xi)N×1 ∈ X̂1, let βm > 0 and zm < xm for some m, we first show
that h(x) ≥ h. By assumption and definitions of βm, sm, and zm in (3.1), we have
xm > zm, that is, xm > (h − sm − E)/βm. Furthermore, from the definitions of hl(x),
we get

h < βm xm + sm + E

= βm xm +min
x∈X

N∑

i=1, i /=m

βixi + E

≤
N∑

i=1

βi xi + E

=
N∑

i=1

p∑

j=1

cji

du
j

xi +
p∑

j=1

cj0

du
j

+
p∑

j=q+1

(
rj

dl
j

− rj

du
j

)

=
p∑

j=1

N∑

i=1

cji

du
j

xi +
p∑

j=1

cj0

du
j

+
p∑

j=q+1

(
rj

dl
j

− rj

du
j

)

= hl(x).

(3.3)

By the above discussion and assumption, it follows that h∗ ≤ h < hl(x) ≤ h(x) for
any x ∈ X̂1. Therefore, minx∈X̂1 h(x) > h ≥ h∗, that is, there exists no global optimal
solution in X̂1. This proof of part (a) is completed.

(b) If there exists some indexm (m ∈ {1, 2, . . . ,N}) such that βm < 0 and zm > xm, then
minx∈X̂2 h(x) > h∗, since the proof of the part (b) is similar to the part (a) of the
theorem, it is omitted here.

Theorem 3.2. Consider the subrectangle X = (Xi)N×1 ⊆ X0, we have the following conclusions.

(i) If there exists some t (t ∈ {1, . . . ,M}) such that Lt > bt on the subrectangle X, then there
exists no global optimization solution in X.

(ii) If Lt ≤ bt (t ∈ {1, . . . ,M) on the subrectangle X, then if there exists some index m (m ∈
{1, 2, . . . ,N}) such that atm > 0 and z1tm < xm, then there exists no global optimization
solution in X̂3; if there exists some index m (m ∈ {1, 2, . . . ,N}) such that atm < 0 and
z2tm > xm, then there exists no global optimization solution in X̂4, where
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X̂3 =
(
X̂3

i

)

N×1 ⊆ X, X̂4 =
(
X̂4

i

)

N×1 ⊆ X,

X̂3
i =

⎧
⎨

⎩

Xi, if i /=m, i = 1, 2, . . . ,N,
(
z1tm, xm

] ∩Xm, if i = m,

X̂4
i =

⎧
⎨

⎩

Xi, if i /=m, i = 1, 2, . . . ,N,
[
xm, z

2
tm

) ∩Xm, if i = m.

(3.4)

Proof. Since the proof of Theorem 3.2 is similar to that of Theorem 3.1, it is omitted here.

Based on Theorems 3.1 and 3.2, we can give new pruning technique to cut away or
reduce a large part of region in which there exists no optimal solution.

Next, we will show how this new pruning technique is formed, that is, we provide
a process that show how a subrectangle X ⊆ X0 can be deleted or reduced, where X =
(Xi)N×1 with Xi = [xi, xi]. Let Ym denote the discarded interval in Xm. First, we calculate
E, βm, S, sm, zm, Lt, z1tm, z

2
tm according to (3.1). Then, the eliminated interval Ym can be

determined according to the following rules, which is called new pruning technique.

Rule 1

If S + E > UB, then

Ym =
[
xm, xm

]
, m = 1, . . . ,N. (3.5)

Rule 2

If S + E ≤ UB, then

(a) If βm > 0 and zm < xm, then

Ym =

⎧
⎨

⎩

(
zm, xm

]
, if xm ≤ zm,

[
xm, xm

]
, if zm ≤ xm,

(3.6)

(b) If βm < 0 and zm > xm, then

Ym =

⎧
⎨

⎩

[
xm, zm

)
, if zm ≤ xm,

[
xm, xm

]
, if zm ≥ xm.

(3.7)

Rule 3

If Lt > bt for some t (t ∈ {1, . . . ,M}), then

Ym =
[
xm, xm

]
, m = 1, . . . ,N. (3.8)
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Rule 4

If Lt ≤ bt for some t (t ∈ {1, . . . ,M}), then

(c) If atm > 0 and z1tm < xm, then

Ym =

⎧
⎨

⎩

[
xm, xm

]
, if z1tm < xm,

(
z1tm, xm

]
, if z1tm ≥ xm,

(3.9)

(d) If atm < 0 and z2tm > xm, then

Ym =

⎧
⎨

⎩

[
xm, xm

]
, if z2tm > xm,

[
xm, z

2
tm

)
, if z2tm ≤ xm.

(3.10)

Consequently, under some assumption the discarded part of Xm is Xm ∩ Ym for some
m (m ∈ {1, 2, . . . ,N}), the new rectangle reducing tactics provides the possibility to cut away
or reduce a large part of the rectangle that is currently investigated by the procedure. The rest
part of X denoted by X̃ = (X̃i)N×1 is left for further considering, where X̃i = Xi if i /=m (i =
1, 2, . . . ,N); X̃m = Xm \ Ym if i = m.

4. Algorithm and its convergence

In this section, by connecting the former branch-and-bound algorithm with new pruning
technique a global optimization algorithm is proposed for solving problem (P1). This
algorithm needs to solve a sequence of relaxation linear programing over partitioned subsets
of X0 in order to find a global optimum solution.

The branch and bound approach is based on partitioning the set X0 into sub-
hyperrectangles, each concerned with a node of the branch and bound tree, and each node
is associated with a relaxation linear subproblem in each sub-hyperrectangle. Hence, at any
stage k of the algorithm, suppose that we have a collection of active nodes denoted by Qk,
say, each associated with a hyperrectangle X ⊆ X0, for all X ∈ Qk. For each such node X, we
will have computed a lower bound of the optimal value of (P1) via the solution LB(X) of the
RLP, so that the lower bound of optimal value of (P1) on the whole initial box region X0 at
stage k is given by LBk = min{LB(X), for all X ∈ Qk. Whenever the solution of the relaxation
linear programing (RLP) turns out to be feasible to the problem (P1), we update the upper
bound of incumbent solution UB if necessary. Then, the active nodes collectionQk will satisfy
LB(X) < UB, for all X ∈ Qk, for each stage k. We now select an active node to partition
its associated hyperrectangle into two sub-hyperrectangles as described below, computing
the lower bounds for each new node as before. Upon fathoming any nonimproving nodes,
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we obtain a collection of active nodes for the next stage, and this process is repeated until
convergence is obtained.

The critical element in guaranteeing convergence to a global minimum is the choice of
a suitable partitioning strategy. In our paper, we choose a simple and standard bisection rule.
This method is sufficient to ensure convergence since it drives all the intervals to zero for all
variables. This branching rule is given as follows.

Assume that the sub-hyperrectangle X′ = [x′, x′] ⊆ X0 is going to be divided. Then,
we select the branching variable x′

γ , satisfying γ = argmax{x′
i − x′

i : i = 1, . . . ,N} and
partition X′ by bisection the interval [x′

γ , x
′
γ] into the subintervals [x′

γ , (x
′
γ + x′

γ)/2] and
[(x′

γ + x′
γ)/2, x

′
γ].

The basic steps of the proposed algorithm are summarized as follows. Let LB(Xk) refer
to the optimal objective function value of P1 for the sub-hyperrectangles Xk and xk = x(Xk)
refer to an element of corresponding argmin.

Algorithm statement

Step 1 (initialization). Initialize the iteration counter k := 0, the set of all active node
Q0 = {X0}, the upper bound UB = ∞, and the set of feasible points F := ∅. Solve the
problem (RLP) for X = X0, obtaining LB0 := LB(X) and x0 := x(X). If x0 is feasible
to (P1) update F and UB, if necessary. If UB ≤ LB0 + ε, where ε > 0 is some accuracy
tolerance, then stop with x0 as the prescribed solution to problem (P1). Otherwise, proceed
to Step 2.

Step 2 (midpoint check). Select the midpoint xm of Xk, if xm is feasible to the (P1), then
F := F ∪ {xm}. Define the upper bound UB := minx∈Fh(x). If F /=∅, the best known feasible
point is denoted b := argminx∈Fh(x).

Step 3 (branching). Choose a branching variable xγ to partition Xk to get two new sub-
hyperrectangles according to the above selected branching rule. Call the set of new partition

rectangles as X
k
.

Step 4 (pruning). (1) If X
k
/=∅, then calculate E, βi, S, Lt, sm, zm, z

1
tm, and z2tm for each X ∈

X
k
. If one of assumption conditions in rules 1–4 is satisfied, then the proposed new pruning

technique can be applied into each X ∈ X
k
, the rest parts of X and X

k
are denoted by X̃ and

X̃k, respectively.
(2) If X̃k /=∅, solve RLP to obtain LB(X̃) and x(X̃), for each X̃ ∈ X̃k. If LB(X̃) > UB,

set X̃k := X̃k \ X̃, otherwise, update the best available solution UB, F and b if possible, as in
Step 2.

Step 5 (updating lower bound). The partition set remaining is now Qk := (Qk \ Xk) ∪ X̃k

giving a new lower bound LBk := infX∈QkLB(X).

Step 6 (convergence check). Fathom any nonimproving nodes by settingQk+1 = Qk\{X : UB−
LB(X) ≤ ε, X ∈ Qk}. IfQk+1 = ∅, then stop with UB is the solution of (P1), and b is an optimal
solution. Otherwise, k := k+1, and select an active nodeXk such thatXk = argminX∈QkLB(X),
xk := x(Xk), and return to Step 2.
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Convergence of the algorithm

Let Xa be the set of accumulation points of {xk}, and let X∗ be arg minx∈Gh(x), where G/=∅

is the feasible space of the (P1).

Theorem 4.1. The above algorithm either terminates finitely with the incumbent solution being
optimal to the (P1) or generates an infinite sequence of iteration such that along any infinite branch of
the branch and bound tree, any accumulation point of the sequence{LBk} will be global minimum of
the (P1).

Proof. If the above proposed algorithm terminates finitely at some iteration k, obviously, UB
is global optimal value and x(Xk) is optimal solution for the (P1). If the algorithm is infinite,
it generates at least one infinitely sequence {Xk} such that Xk+1 ⊂ Xk for any k. In the case,
since partition sets used by the proposed algorithm are all rectangular and compact, by Tuy
[9], it follows that this rectangular subdivision is exhaustive. Hence, for every iteration, k =
0, 1, 2, . . ., by design of the algorithm, we have

LBk ≤ min
x∈G

h(x), Xk ∈ argmin
X∈Qk

LB(X), xk = x
(
Xk) ∈ Xk ⊆ X0. (4.1)

Horst [10] gives that {LBk} is a nondecreasing sequence bounded above by minx∈G h(x),
which guarantees the existence of the limit LB := limk→∞LBk ≤ minx∈G h(x).{xk} is a
sequence on a compact set, therefore, it has a convergent subsequence. For any x̂ ∈ Xa,
suppose that there exists a subsequence {xr} of {xk} with limr→∞xr = x̂. By the proposed
algorithm and [9], it follows that the subdivision of partition sets in Step 3 is exhaustive on
X0, and the selection of elements to be partitioned in Step 3 is bound improving. Thus, there
exists a decreasing subsequence {Xq} ⊂ Xr , where Xr ∈ Qr with xq ∈ Xq, LBq = LB(xq) =
hl(xq), limq→∞ xq = x̂. From the construction method of linear lower bound relaxation
functions for objective function of the (P1), we know that the linear subfunctions hl(x) used
in (RLP) are strongly consistent on X0. Thus, it follows that limq→∞ LBq = LB = h(x̂).

5. Numerical experiments

To verify performance of the proposed algorithm, some common used test problems are
implemented on Pentium IV (433MHZ) microcomputer. The algorithm is coded in C++
language and each linear programing is solved by simplex method, and the convergence
tolerance εc set to 10−8 in our experiment. Below, we describe some of these sample problems
and solution results are summarized in Table 1. In Table 1, the notations have been used for
column headers. Iter: number of algorithm iteration; maxnode: the maximal number of active
nodes necessary; time: execution time in seconds; εf : feasibility tolerance.

Example 5.1 (see [3]). We have

min
−x1 + 2x2 + 2
3x1 − 4x2 + 5

+
4x1 − 3x2 + 4
−2x1 + x2 + 3

,

s.t. x1 + x2 ≤ 1.5,
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x1 − x2 ≤ 0,

0 ≤ x1, x2 ≤ 1. (5.1)

Example 5.2 (see [2]). We have

min − 4x1 + 3x2 + 3x3 + 50
3x2 + 3x3 + 50

− 3x1 + 4x3 + 50
4x1 + 4x2 + 5x3 + 50

− x1 + 2x2 + 5x3 + 50
x1 + 5x2 + 5x3 + 50

− x1 + 2x2 + 4x3 + 50
5x2 + 4x3 + 50

,

s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10,

5x1 + 9x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≤ 10,

x1, x2, x3 ≥ 0.

(5.2)

If there exists sum of general linear ratios in constraint functions of problem (P1),
by using the same linear relaxation method proposed in Section 2, we can construct the
corresponding linear relaxation programing of problem (P1). Therefore, the above proposed
algorithm can be extensively applied to solve the following sum of linear ratios problemwith
sum of linear ratios constraints.

Example 5.3. We have

min
2x1 + x2 + x3 + 1
x1 + 2x2 + x3 + 2

+
x1 + 2x2 + x3 + 2
2x1 + 2x2 + x3 + 3

− x1 + x2 + 3x3 + 5
x1 + 2x2 + 3x3 + 4

− 1.5x1 + x2 + x3 + 6
x1 + x2 + 1.5x3 + 5

,

s.t.
2x1 + x2 + x3 + 2
2x1 + x2 + x3 + 3

− 2x1 + 2x2 + x3 + 5
x1 + 2x2 + x3 + 4

− 2x1 + 3x2 + x3 + 6
x1 + 2x2 + 2x3 + 5

− 1.5x1 + x2 + 2x3 + 7
1.5x1 + 2x2 + x3 + 6

≤ −2.4,

1.5x1 + x2 + x3 + 3
x1 + 1.5x2 + x3 + 4

+
2x1 + x2 + x3 + 4
x1 + x2 + 2x3 + 5

+
x1 + 2x2 + x3 + 5
x1 + 2x2 + x3 + 6

+
x1 + x2 + 3x3 + 6
x1 + 3x2 + x3 + 7

≤ 3.8,

x1 + x2 + x3 + 4
x1 + x2 + x3 + 5

+
x1 + x2 + x3 + 5
x1 + x2 + x3 + 6

+
x1 + x2 + 3x3 + 6
x1 + x2 + x3 + 7

+
x1 + x2 + x3 + 7
x1 + x2 + x3 + 8

≤ 3.9,

x1 + x2 + x3 + 5
x1 + x2 + x3 + 6

+
x1 + x2 + x3 + 6
x1 + x2 + x3 + 7

− x1 + x2 + x3 + 9
x1 + x2 + x3 + 8

− x1 + x2 + x3 + 10
x1 + x2 + x3 + 9

≤ 0.1,

1.0 ≤ x1 ≤ 3.0, 1.0 ≤ x2 ≤ 3.0, 1.0 ≤ x3 ≤ 3.0.
(5.3)
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Table 1: Computational results of test examples.

Example optimal solution optimal value Iter Maxnode Time εc
x1 x2 x3

1. [3] 0.0 0.282165 1.623188 36 16 <1 10−6

This paper 0.0 0.283243180 1.623183349 11 5 0 10−8

2. [2] 1 0 0 −4.081481 38 3 2 10−6

This paper 0.999999991 0.000000056 0.000000237 −4.081481483 22 11 <1 10−8

3. 1.0 1.0 1.0 −0.534313724 35538 2655 6 10−8

4. 1.0 1.0 1.0 −0.63452382 9056 992 <3 10−8

Example 5.4. We have

min
x1 + x2 + x3 + 1
x1 + x2 + x3 + 2

+
x1 + x2 + x3 + 2
x1 + x2 + x3 + 3

− x1 + x2 + x3 + 5
x1 + 2x2 + 2x3 + 4

− x1 + x2 + x3 + 6
x1 + x2 + x3 + 5

,

s.t.
x1 + x2 + x3 + 2
x1 + x2 + x3 + 3

− x1 + x2 + x3 + 5
x1 + x2 + x3 + 4

− x1 + x2 + x3 + 6
x1 + x2 + x3 + 5

− x1 + x2 + x3 + 7
x1 + x2 + x3 + 6

≤ −2.0,

x1 + x2 + x3 + 3
x1 + x2 + x3 + 4

+
x1 + x2 + x3 + 4
x1 + x2 + x3 + 5

+
x1 + x2 + x3 + 5
x1 + x2 + x3 + 6

+
x1 + x2 + x3 + 6
x1 + x2 + x3 + 7

≤ 3.59,

x1 + x2 + x3 + 4
x1 + x2 + x3 + 5

+
x1 + x2 + x3 + 5
x1 + x2 + x3 + 6

+
x1 + x2 + 3x3 + 6
x1 + x2 + x3 + 7

+
x1 + x2 + x3 + 7
x1 + x2 + x3 + 8

≤ 3.6,

x1 + x2 + x3 + 5
x1 + x2 + x3 + 6

+
x1 + x2 + x3 + 6
x1 + x2 + x3 + 7

+
x1 + x2 + x3 + 7
x1 + x2 + x3 + 8

+
x1 + x2 + x3 + 8
x1 + x2 + x3 + 9

≤ 3.7,

1.0 ≤ x1 ≤ 3.0, 1.0 ≤ x2 ≤ 3.0, 1.0 ≤ x3 ≤ 3.0.

(5.4)

From Table 1, numerical results show that our algorithm can globally solve sum of
general linear ratios problem (P) on a microcomputer.

6. Concluding remarks

A global optimization algorithm is proposed for solving sum of general linear ratios problem
(P). To globally solve the (P), we first convert (P) into an equivalent problem (P1), then one
new linearization method is proposed to construct the linear relaxation programing of the
(P1). Then, a new pruning technique is proposed, this technique offers a possibility to cut
away a large part of the current investigated feasible region by the algorithm, which can
be utilized as an accelerating device for global optimization of problem (P). The proposed
algorithm is convergent to the global minimum of (P1) through the successive refinement
of linear relaxation of the feasible region and the subsequent solutions of a series of (RLP).
Finally, the numerical experiments are given to illustrate the feasibility and effectiveness of
the proposed algorithm.
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