
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2008, Article ID 687318, 7 pages
doi:10.1155/2008/687318

Research Article
On the Discrete Harmonic Wavelet Transform

Carlo Cattani1 and Aleksey Kudreyko2

1 Department of Pharmaceutical Sciences (DiFarma), University of Salerno, Via Ponte Don Melillo,
84084 Fisciano (SA), Italy

2 Department of Mathematics and Computer Science, University of Salerno, Via Ponte Don Melillo,
84084 Fisciano (SA), Italy

Correspondence should be addressed to Aleksey Kudreyko, skateswoosh84@yahoo.com

Received 29 May 2008; Accepted 26 July 2008

Recommended by Cristian Toma

The discrete harmonic wavelet transform has been reviewed and applied towards given functions.
The absolute error of reconstruction of the functions has been computed.

Copyright q 2008 C. Cattani and A. Kudreyko. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The discrete harmonic wavelet transform was developed by Newland in 1993 [1, 2]. Similar
to the ordinary discrete wavelet transform, the classical harmonic wavelet transform can
also perform multiresolution analysis of a function. In addition, it has a fast algorithm
based on fast Fourier transform for numerical implementation. A distinct advantage of
harmonic wavelets is that they are disjoint in frequency domain (see Figure 1) and the Fourier
transform of the successive levels decreases in propagation of their bandwidth (1.1).
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Calculating its inverse Fourier transform, we obtain

ψ
j

k(x) =
e4πi(2jx−k) − e2πi(2jx−k)

2πi(2jx − k)
, (1.2)

where j = 0, . . . ,∞ and k = −∞, . . . ,∞. This function represents a class of pulsed functions
due to its compact support in the space domain.
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Figure 1: Values of the Fourier transform of harmonic wavelets of different levels.

2. Discretisation of a real function

The goal of the wavelet transform is to decompose any arbitrary given function f(x) into an
infinite summation of wavelets at different scales according to the expansion

f(x) =
∞
∑

j=−∞

∞
∑

k=−∞
aj,kψ

j

k(x), (2.1)

or in the alternative form [3]

f(x) =
∞
∑

k=−∞
aφ,kφ(x − k) +

∞
∑

j=0

∞
∑

k=−∞
aj,kψ

j

k
(x). (2.2)

The first sum is a smooth approximation of f(x), where the wavelets for j ≤ 0 have
been rolled together into scaling functions. The second sum is an addition of the details of
f(x) at a specific level of resolution.

For complex wavelet coefficients, we have to define two amplitude coefficients

aj,k= 2j
∫∞

−∞
f(x)ψ∗(2jx − k)dx, ãj,k= 2j

∫∞

−∞
f(x)ψ(2jx − k)dx, (2.3)

and the corresponding pair of complex coefficients for the terms of scaling function,

aϕ,k =
∫∞

−∞
f(x)ϕ∗(x − k)dx, ãϕ,k =

∫∞

−∞
f(x)ϕ(x − k)dx. (2.4)

If f(x) is real, then ãj,k is the complex conjugate of aj,k, that is, ãj,k = a∗
j,k

, but to allow the
general case, when f(x) is complex, we will consider ãj,k and a∗

j,k
as two different amplitudes.

Then the expansion formulas (2.1) and (2.2) become [2]

f(x) =
∞
∑

j=−∞

∞
∑

k=−∞
{aj,kψ(2jx − k) + ãj,kψ∗(2jx − k)},

f(x) =
∞
∑

k=−∞
{aϕ,kϕ(x − k) + ãϕ,kϕ∗(x − k)}

+
∞
∑

j=0

∞
∑

k=−∞
{aj,kψ(2jx − k) + ãj,kψ∗(2jx − k)}.

(2.5)
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Our primary purpose is to compute the coefficients aϕ,k, ãϕ,k, aj,k and ãj,k of this
expansion.

An important condition for the function is that

∫∞

−∞
|f(x)|2dx <∞. (2.6)

Let us consider a real-valued function f(x), represented by its discrete sequence

fr, r = 0, 1, . . . ,N − 1, (2.7)

where N= 2j . Recalling the definition of the discrete Fourier transform, the corresponding
Fourier coefficients are

̂fm =
1
N

N−1
∑

r=0

fre
−2πimr/N, m = 0, 1, . . . ,N − 1. (2.8)

Note that

̂fN−m =
1
N

N−1
∑

r=0

fre
−2πi(N−m)r/N =

1
N

N−1
∑

r=0

fre
−2πire2πimr/N = ̂f∗m, (2.9)

where the asterisk stands for the complex conjugate; ̂f0 and ̂fN/2 are always real numbers.
Furthermore, we will consider the coefficient aj,k, defined by the first formula in (2.3).

Firstly, we will substitute ψ∗j,k(x) in terms of its Fourier transform (1.1)

ψ∗j,k(x) =
1
2j

∫4π2j

2π2j

1
2π

eiωk/2j e−iωxdω (2.10)

into the first formula of (2.3), and we obtain the following integral

aj,k =
1

2π

∫4π2j

2π2j
eiωk/2j dω

∫∞

−∞
f(x)e−iωxdx, (2.11)

where we have reversed the order of integration. The second integral over x represents the
Fourier transform of f(x) multiplied by 2π , and (2.11) becomes

aj,k =
∫4π2j

2π2j
̂f(ω)e−iωk/2j dω. (2.12)

To derive a discrete algorithm of decomposition of the function, we must replace the
operation of integration by summation, and (2.12) becomes

a2j+k =
2j−1
∑

s=0

̂f2j+se
2πisk/2j , k = 0, . . . , 2j − 1. (2.13)

This identity represents the inverse discrete Fourier transform for the sequence of frequency
coefficients ̂f2j+s.
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Analogous transformation towards the computation of ã2j+k will lead us to the
following [2]:

ã2j+k =
2j−1
∑

s=0

̂fN−(2j+s)e
2πisk/2j , k = 0, . . . , 2j − 1. (2.14)

Computation of the amplitudes a0 and aN/2 in the reviewed algorithm involves special
approach, and a0 = ̂f0 and aN/2 = ̂fN/2 [2].

Also, it is easy to show from (2.13) that if j = 0, then k = 0 and

a1 = ̂f1. (2.15)

Summarizing the stated above, the sequence of operations for computation of wavelet
amplitude coefficients is as follows:

(i) represent the given function f(x) by a discrete sequence fr , where r = 0, 1, . . . ,N−1;

(ii) compute the set of frequency coefficients by fast Fourier transform ̂fm, where m =
0, 1, . . . ,N − 1;

(iii) the inverse fast Fourier transform of the octave blocks ̂fm generates the amplitudes
of the harmonic wavelet expansion of the function fr .

It is important to mention that this algorithm works for only the functions which
satisfy the following conditions.

(i) The discrete transform covers the unit internal of x.

(ii) The analysed function is periodic in x with period 1.

The algorithm was applied to the given functions which satisfy the mentioned conditions.

3. Implementation of Newland’s algorithm towards a given function

Let us review functions which satisfy the stated conditions. For example, it is f(x) = 2 sin 2πx
and f(x) = 2cos2πx. Following the algorithm, we discretise the interval [0; 1] into N= 2j

equally spaced nods, and obtain discrete set of values of functions

fr = 2 sin
2πr
N

, fr = 2cos
2πr
N

, r = 0, . . . ,N − 1. (3.1)

The fast Fourier transform (2.8) of the obtained discrete sequence gives us the set
Fourier coefficients ̂fm. Recalling that a0 = ̂f0, a1 = ̂f1, and aN/2 = ̂fN/2, we can easily
find these three coefficients. Another part of coefficients from a2j to a2j+1−1 is obtained by
computation of the inverse fast s Fourier transform (2.13) of coefficients from ̂f2j to ̂f2j+1−1.

To reconstruct the function from its wavelet coefficients, we followed the reverse
algorithm of decomposition, that is: the fast Fourier transform of the wavelet coefficients
a2j+k represents the discrete Fourier transform of the reconstructed function fr . Then, taking
into account the shifting property (2.9), we can find f as inverse fast Fourier transform of ̂f .

The results of decomposition and reconstruction of functions f(x) = 2 sin 2πx and
f(x) = 2cos2πx are presented in Figures 2 and 3.
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Figure 2: Arbitrary given function: (a) sin 2πx, (b) cos2πx (dashed line), and its reconstructed clone (solid
line) from wavelet coefficients for N = 8.
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Figure 3: Arbitrary given function: (a) sin 2πx, (b) cos2πx (dashed line), and its reconstructed clone (solid
line) from wavelet coefficients for N = 16.

One can notice that the plots of the reconstructed functions are defined within the
interval from r = 1 to r = N. The difference between the algorithm and its corresponding
computer code consists in that we puta1in the code instead of a0, and so forth . Therefore, the
reconstruction of the function begins from point 1/N to 1, and not from 0 to N − 1.
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Figure 4: Absolute error of the reconstruction of f(x) = 2 sin 2πx forN = 8 (solid line) andN = 16 (dashed
line).
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Figure 5: Absolute error of the reconstruction of 2 sin 2πx after regression analysis.

To show the efficiency of the algorithm, it is worth to estimate the absolute error of the
reconstructed function in the discrete nods. It is well known that the absolute error is given
by

εN = |f(xr) − frec(xr)|, r = 0, . . . ,N − 1, (3.2)

where frec(xr) is the value of the reconstructed point. The dependence of absolute error of the
reconstruction of the function from lnN is represented in Figure 5 and for two partial cases,
when N = 8 and N = 16 can be found in Figure 4. As we can see, small numbers of the level
of decomposition j give a very good approximation, when we reconstruct the function.

4. Discussion of results and conclusion

Wavelets are considered as a new powerful tool for time-frequency analysis of nonlinear
phenomena. In our paper, we discussed the harmonic wavelet transform and applied its
algorithm towards decomposition and reconstruction of functions with a unit period. This
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algorithm might be useful for the wavelet solution of partial differential equations, when
it is reduced to a system of ordinary differential equations [4, 5]. The algorithm of the
decomposition consists of fast Fourier transform of the given discredited vector function,
in which approximation error is proportional to lnN and the corresponding approximation
was obtained in our simulations (see Figure 5). It means that the increase of the length of N
leads us to a slow, but steady increase of the approximation error. The line of the dependence
of the error from N was obtained by implementing the method of least squares [6]. Note that
the line of the plot takes discrete values due to the fact that N takes only integer values of 2j .

The only disadvantage of harmonic wavelets is that its decay rate is relatively
low (proportional to x−1), therefore, its localisation is not precise. However, we have this
disadvantage for the restricted Fourier transform of a harmonic wavelet of a specific level.

The application of harmonic wavelets towards particular problems is still new. The
subject is developing very fast, however, there are still many questions remain unanswered.
For example, what is the best choice of wavelet to use for a particular problem? How far does
the harmonic wavelet transform computational simplicity compensate its slow decay rate in
the x-domain? How it can be used for the solution of integrodifferential equations, and many
others. This work is in progress.
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