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This paper deals with the study of algorithms for robust active vibration control in flexible
structures considering uncertainties in system parameters. It became an area of enormous interest,
mainly due to the countless demands of optimal performance in mechanical systems as aircraft,
aerospace, and automotive structures. An important and difficult problem for designing active
vibration control is to get a representative dynamic model. Generally, this model can be obtained
using finite element method (FEM) or an identification method using experimental data. Actuators
and sensors may affect the dynamics properties of the structure, for instance, electromechanical
coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly
damping structure. The nonlinearities and uncertainties involved in these structures make it a
difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using
an identification method, it is possible to obtain the dynamic model represented through a state
space realization considering this coupling. This paper proposes an experimental methodology for
vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm
solved by linear matrix inequalities.

Copyright q 2008 Douglas Domingues Bueno et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Lightweight space structures are the future of space vehicles and satellite technology.
Possessing ideal space launching characteristics, such as minimal storage volume and
minimal mass, these lightweight structures will propel the space industry into the next
generation. Space satellites must be expertly controlled from a vibration standpoint because
signal transmission to and from the earth mandates tight tolerances. Vibration control is
critical to mission success as well as satellite longevity [1].
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Large and light space structures are basically flexible due to their low stiffness and
damping. These characteristics may cause problems since flexible structures present many
vibration modes within or beyond the bandwidth of the controller. When only a few
modes are dealt in the controller, spillover may occur because uncontrolled higher modes
or unmodeled modes may become excited. The effects of spillover can occur where structure,
sensors, or actuators are poorly modeled, and the numbers of sensors and actuators are
low.

In order to achieve better dynamic properties, great attention has been paid to the
control of structural vibration using intelligent structures. So, the application of active
vibration control in flexible structures has been increasingly used as a solution for space
structures to achieve the degree of vibration suppression required for precision pointing
accuracy and to guarantee the stability.

In truss structures, active members are integrated because of their multiple functions.
They serve as structural elements, and as load device. As actuators, the active member exerts
internal forces, and as sensor elements, it allows measurement of the elastic strains. The
piezoelectric stack actuators are remarkable because they are light weight, high force, and
low power consumption [2].

Several researchers have proposed the use of piezoelectric material for active vibration
control. In truss structures, the control force can be accomplished by piezoelectric active
members, known as “PZT wafer stacks,” that are mechanically linked in series producing
an axial force in the bar that are positioned.

State space realization is used in modern control formulation to obtain the dynamic
model, but in many cases this model has significant uncertainties in relation to the real
system. These uncertainties can be caused, for instance, by parameter variation during
the operation, or by dynamic uncertainties (nonlinearities, higher modes, noises, etc.). So,
for an efficient experimental control design, it is important to qualify and quantify the
uncertainties.

In this context, this paper proposes a methodology for robust control design
considering uncertainties in the dynamic model, represented by state space realization.
It is designed as an active controller to attenuate vibrations in a truss structures. The
active members are composed by PZT wafer stacks actuators, and the control design is
based on linear quadratic regulator solved through linear matrix inequalities (LMIs). LMI
presents advantages when compared to conventional techniques, and it has contributed to
overcome many difficulties in control design [3]. In the last decade, LMI has been used to
solve many problems that until then were unfeasible through other methodologies, mainly
due to the emergence of powerful algorithms to solve convex optimization problem, for
instance, the interior point method (see Boyd et al. [4] and Gahinet et al. [5]). Sarracini
and Serpa [6] apply Hinfinite control approach solved through LMI for model reduction.
Silva et al. [7] present a consistent formulation for control design based on LMI approach.
Chen and Zhu [8] present a formulation based on H2, H∞, and mixed H2/H∞ control
strategies for a flexible rotor system under seismic excitation by means of linear matrix
inequality (LMI) to attenuate the transient vibration of the flexible rotor system under a
nonstationary seismic excitation and to improve robust performance of the flexible rotor
system.

In the present work, the numerical method of subspace and the Kalman estimator
were used to identify the dynamic model with experimental data and to estimate the state
vector, respectively. Experimental results, obtained through dSPACE control board and the
Simulink/Matlab, are shown in order to validate the proposed approach.
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2. Dynamic modeling of robust control

Modern linear control formulation is based on the state space realization. Using this
formulation, the design of a vibration control for multi-input multioutput (MIMO) system
is similar of simple-input simple-output (SISO) system approach. This realization is
appropriate for experimental applications because there are many numerical methods to
solve it in real time, as for instance, the numerical method of Runge-Kutta. A linear
differential inclusion (LDI) system, in modal state space form, considering the matrices with
appropriate dimensions and assumed to be known, is given by

ẋ(t) = A(t)x(t) + Bw(t)w(t) + Bu(t)u(t) + Einvin(t),

y(t) = C(t)x(t) +Du(t) + Eoutvout(t),[
A(t) Bw(t)

Bu(t) C(t)

]
∈ Ω,

(2.1)

where Ω is a polytope that is described by a list of vertexes in a convex space, A(t) is the
dynamic matrix, Bw(t) is the matrix of disturbance, Bu(t) is the matrix of control input, C(t)
is the output matrix, w(t) is the vector of disturbance input, u(t) is the vector of control
input, y(t) is the output vector, and vin(t) and vout(t) are stationary zero-mean Gaussian
white process and measurement noises vectors with unit intensity, respectively. In this paper,
some variables, as the matrices in (2.1), are represented as time function to emphasize
the uncertainties in the system parameters. The vectors Ein and Eout are the process and
measurement noise vectors, respectively.

The state vector x(t) of the modal coordinates system consists of n independent
components, xi(t), that represent a state of each mode, where n is the number of modes.
The xi(t) (ith state component), related to (2.3), is defined as [9]

xi(t) =

{
qmi(t)

qmoi(t)

}
, where qmoi(t) = ζi(t)qmi(t) +

q̇mi(t)
ωi(t)

, (2.2)

where qmi and qmoi are named modal displacement and velocity for ith vibration mode,
respectively. Using modal coordinates, these parameters have no physical interpretation.
Also, ζi and ωi are damping factor and natural frequency of the ith mode. These parameters
are represented as time function to emphasize the uncertainties.

The modal state space realization is characterized by the block-diagonal dynamic
matrix and the related input and output matrices [9]:

A(t) = diag(Ami(t)), Bw(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Bwm1(t)

Bwm2(t)

...

Bwmn(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
, Bu(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Bum1(t)

Bum2(t)

...

Bumn(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C(t) =
[
Cm1(t) Cm2(t) · · · Cmn(t)

]
,

(2.3)
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where i = 1, 2, . . . , n; Ami, Bwmi, Bumi, and Cmi are 2×2, 2×k, 2×s, and r×2 blocks, respectively;
k is the number of disturbances; s is the number of control inputs; and r is the number of
outputs. These blocks can be obtained in several different forms and also it is possible to
convert it in another realization through a linear transformation. One possible form to block
Ami(t) is

Ami(t) =

[
−ζi(t)ωi(t) ωi(t)

−ωi(t)
(
ζ2
i (t) − 1

)
−ζi(t)ωi(t)

]
. (2.4)

The dynamic model of the truss structure was initially identified using experimental
data through subspace identification method. nI > 1 identification tests were considered to
characterize the uncertainties in the system parameters. The members that include PZT stack
actuator are nominated by active members. It is considered a variation in the properties of
these members caused by the insertion of these actuators. These uncertainties are described
by a polytopic linear differential inclusion (PLDI):

Ω =

[
Ac(t) Bwc(t)

Buc(t) Cc(t)

]
,

Co
{
S1, . . . , Sv

}
,

where Si =

[
Aci Bwci

Buci Cci

]
, i = 1, . . . , v,

(2.5)

where the subscript c is relative to controlled modes; Ω is a polytope described by a list of
vertexes in a convex space Co [4], and v is the number of vertexes of the polytopic system.
Usually, in practical situations, it is very difficult to define the polytopic vertexes, but these
vertexes are not variant in time. So, it is possible to project the vibration control using an
invariant model.

A reduced-order model is obtained by truncating the states. Let x(t) and the state (A(t),
Bw(t), Bu(t), C(t)) be partitioned considering the canonical modal decomposition. From the
Jordan canonical form, the following can be obtained :

{
ẋc(t)

ẋr(t)

}
=

[
Ac(t) 0

0 Ar(t)

]{
xc(t)

xr(t)

}
+

[
Bwc(t)

Bwr(t)

]
w(t) +

[
Buc(t)

Bur(t)

]
u(t),

y(t) =
[
Cc(t) Cr(t)

]{ xc(t)

xr(t)

}
,

(2.6)

where Ac(t) is given by (2.4) and the subscript r is relative to the residual modes. Generally,
in practical applications, Ein and Eout are not identified, but there are, always, some process
and measurement noises.

3. Control methodology

In this section, a robustness analysis is conduced for understanding the LQR-LMI controller
performance. Controller design can be done through rigorous mathematical optimization
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techniques. One of these, which was originated in the sixties [10], is called modern optimal
control theory that is a time-domain technique.

Control systems robustness is defined as the ability for maintaining satisfactory
stability and performance features in the presence of parameters variations and uncertainties
[11]. Traditional LQR solved by Riccati’s equation can be obtained in text books [12]. In the
following, one presents the procedure for the LQR-LMI approach.

Firstly, mathematical definitions of some terms are given, and LQR control problem is
defined. Then, the LQR problem is represented as an equivalent eigenvalue problem (EVP)
in terms of LMI using the H2 representation of the LQR problem.

3.1. Basic definitions of LMIs and EVPs

A linear matrix inequality has the form

F(z) = F0 +
m∑
i=1

ziFi > 0, (3.1)

where z is a real vector and F0 and Fi are real symmetric matrices. Inequality (3.1) is shorthand
for saying that F(z) is positive definite. A vector z that satisfies inequality (3.1) is known as a
feasible solution of the LMI.

Inequality (3.1) is a convex constraint on z. This property is important because
powerful numerical techniques are available for the solution of problems involving convex
LMIs [4]. On the other hand, no efficient algorithm is available for the solution of nonconvex
problems. Hence, nonconvex inequalities which may arise from a control problem should
be converted to convex LMIs to be solvable numerically. One useful example for such
manipulations is the LMI representation of the following nonconvex inequalities:

Q(z) − S(z)R(z)−1ST (z) > 0, R(z) > 0, (3.2)

where Q, R, and S are affine functions of z, and Q and R are symmetric matrix. Inequality
(3.2) is equivalent to

[
Q(z) S(z)

ST (z) R(z)

]
> 0. (3.3)

This transformation can be achieved easily premultiplying inequality (3.3) by

[
I −SR−1

0 I

]
> 0 (3.4)

and postmultiplying it by its transpose.
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One of the concepts related with LMIs and control problems is the eigenvalue problem.
An eigenvalue problem may have several representations, one of which is given by

min cTz

subject to A(z) > 0,
(3.5)

where A(z) is a symmetric and affine function of z. An LQR problem may be transformed
into this form of the EVP to be represented in terms of LMIs.

3.2. LQR control problem

There are various representations of LQR problem in the literature. Here, definitions are given
in a way that aids the derivation of the specific problem defined above; hence they may not
be the most general forms of LQR problem. The LQR problem is to find the control gain K
that satisfies the optimization

min
K

E
[
yTQ̃y + uT R̃u + yTÑu + uTÑTy

]
,

subject to (2.1) and u(t) = −αKx(t),
(3.6)

where Q̃ ≥ 0 and R̃ > 0 are symmetric weighting matrices, Ñ is the weighting matrix between
input and output vectors, and α is a scalar amplifier. Substituting the output equation in (2.1)
into the optimization problem (3.6), and assuming Ein and Eout as zero vectors; one obtains
another form of the LQR problem

min
K

E
[
xTQx + uTRu + xTNu + uTNTx

]
,

subject to ẋ(t) = A(t)x(t) + Bw(t)w(t) + Bu(t)u(t), u(t) = −αKx(t),
(3.7)

where

Q = CTQ̃C, N = CTQ̃D + CTÑ, R = R̃ +DTQ̃D +DTÑ + ÑD. (3.8)

3.3. EVP representation of the LQR problem

Lyapunov’s stability criteria can be used to state that a system given by (2.1) with control
force u(t) = −αKx(t) = −Gx(t), where G = αK, is stable if there exists a matrix S = ST > 0 that
satisfies

(
A − BuG

)
S + S

(
A − BuG

)T + BwBTw ≤ 0, (3.9)
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Joint 1

Joint 2 Joint 3

Joint 4

Joint 5

PZT 2 (actuator) PZT 1 (disturbance)

Accelerometer

(a)

(b) (c)

Figure 1: 3D truss structures and PZT wafer stack actuators.

where S that satisfies inequality (3.9) is the optimal state covariance matrix P. So, combining
(3.7) and (3.9) and optimizing S, the H2 optimization problem may be stated as [13]

min
(K,S)

Tr
(
R1/2GSGTR1/2) + Tr(QS) − Tr(GSN) − Tr

(
NTSGT),

subject to AS − BuGS + SAT − SGTBTu + BwBTw ≤ 0, S = ST > 0,
(3.10)

where Tr() is the trace of the matrix. This is not an EVP problem since it is not convex because
of the terms involving GS. To obtain a convex version of the problem, two new variables
are introduced X = R1/2GSGTR1/2 and Y = GS. Substituting these variables into (3.10) and
using the transformation given by (3.2) and (3.3), the EVP representation of LQR problem is
obtained as

min
(X,S,Y)

Tr(X) + Tr(QS) − Tr(YN) − Tr(NTYT ),

subject to AS − BuY + SAT − YTBTu + BwBTw ≤ 0,[
X R1/2Y

YTR1/2 S

]
> 0.

(3.11)
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Table 1: Physics and geometric properties of the truss structures.

Length of structural element (mm) 30
Diameter of structural element (mm) 5
Young’s Modulus (GPa) 210
Density (Kg/m3) 7800

The optimal control gain is then computed from G = YS−1, so K = αYS−1. For well-posed
problem with no additional constraints, the S that optimizes (3.11) is identical to the optimal
state covariance matrix P. In this paper, LQR in LMI version was implemented using the LMI
Toolbox of Matlab.

3.4. Kalman states estimator

The Kalman estimator was named after Rudolf E. Kalman, though Thorvald Nicolai Thiele
and Peter Swerling actually developed a similar algorithm earlier. Stanley F. Schmidt is
generally credited with developing the first implementation of a Kalman estimator. It was
during a visit of Kalman to the NASA Ames Research Center that he saw the applicability
of his ideas to the problem of trajectory estimation for the Apollo program, leading to its
incorporation in the Apollo navigation computer. The estimator was developed in papers
by Swerling [14], Kalman [15], and Kalman and Bucy [16]. In control theory, the Kalman
estimator is most commonly referred to as Kalman filter or, mainly, as linear quadratic
estimation (LQE). In this paper, the Kalman estimator gain was obtained using the software
Matlab through command “lqe.”

3.5. Dynamic and modal uncertainties representation

This paper presents a methodology to design a robust control considering dynamic or
modal uncertainties in the state space model. The uncertainty ranges in the parameters
were quantified through experimental identification considering different excitations.
The mathematical model in state space realization was obtained using the numerical
method of subspace identification (N4SID). An expressive part of identification methods
concerns with computing polynomial models, which, typically, give rise to numerically ill-
conditioned mathematical problems, especially for multi-input multioutput systems [17].
N4SID algorithms are then viewed as optimal alternatives. This approach is advantageous,
especially for high-order multivariable systems, where the parameterization is not trivial. The
parameterization is needed to start up classical identification algorithms, which means that
a priori knowledge of the order and of the observability or controllability indices is required
[18].

Using nt (nt > 1) data acquisition tests, it is possible to realize nt model identification
(through N4SID algorithm) and, consequently, nt dynamic models. Each one can be used as a
polytopic vertex, Si (see (2.5)). In this way, it is possible to define the polype Ω to describe the
convex space Co. Considering this convex space to solve the controller, it is possible to obtain
a robust gain, and so to get a controller with the ability for maintaining satisfactory stability
and performance features in the presence of parameters uncertainties and variations.
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(a) (b)

Figure 2: Accelerometer in joint 4 and details of the PZT wafer stack actuator.

(a) (b)

Figure 3: (a) Adapters to connect PZT stacks; (b) structural nodes.

4. Experimental control design

The proposed methodology was experimentally applied in a 3D truss structure, as shown
in Figure 1. The physics and geometric properties of the truss are given in Table 1. The
properties of the PZT wafer stacks elements are shown in Table 2, and the output signals
were obtained with an accelerometer, model 352C22 PCB Piezotronics. Figures 2(a) and 2(b)
show the accelerometer in joint 4, and the detail of the PZT wafer actuator, respectively. In
this application, the PZT 1 was used to apply the disturbance input, w(t), and PZT 2 was
used as control force input, u(t).

The connections of the piezoelectric actuators in the structural elements were made
through adapters, shown in Figure 3(a). Figure 2(b) shows details of this connection. These
adapters were made using aluminum rod in order to connect the structural part and the
PZT wafer actuator. This kind of actuator amplifies the displacement in the axial direction
of the structural member, and it is named active member. The joint connections were made
of copper, with 24 mm of diameter in the geometric format of eight sides, as shown in
Figure 3(b).

The dynamic model represented through state space realization was identified using
the N4SID algorithm considering nt = 6. Therefore, the dynamic uncertainties were
considered through identification of six models, then, the convex space was obtained with
six vertexes (S1, S2, . . . , S6). The order of the model (dimension of state vector) was chosen as
2, so the first mode was identified. Using the first identified mode, the Kalman estimator
gain was computed by the “lqe” command of the Matlab software. It was computed as
L = [463, 9982 65, 8124]T . Considering the weighting matrices Q and R as 5∗I and 1∗I,
respectively, where I is the identity matrix, the controller gain was obtained as G =
[−1, 5426 2, 5514]. The scalar amplifier α was chosen as 80 to the first mode. The controller
was designed to the first mode, however, at the practice test, it was verified that the second
mode also had a significant attenuation in the vibration amplitude.
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Table 2: Physics and geometric properties of PZT wafer stack actuators, based on material designation
APA60 M (Amplified Piezo Actuators, CEDRAT).

Property Unit APA60 M
Displacement (μm) 80
Blocked Force (N) 110
Stiffness (N/μm) 1,38
Resonance Frequency (Free-Free) (Hz) 10400
Response Time (Free-Free) (ms) 0,05
Resonance Frequency (Blocked-Free) (Hz) 2800
Response Time (Blocked-Free) (ms) 0,18
Voltage Range (V) −20 · · · 150
Capacitance (μF) 1,55
Resolution (nm) 0,8
Thermo-Mechanical Behaviour (μm/K) 1,02
Height H (in actuation direction) (mm) 13,0
Length (mm) 26,9
Width (ind. Edges, wires) (mm) 11,5
Mass (g) 20,0
Standard Mechanical Interface [TH] 2 flat surface 5∗10 mm2 with M2.5 threaded hole
Standard Electrical Interface 2 PTFE insulated AWG30 wires 100 mm long with ø 1 banana plug

(1)

(2)

(3)

(4)

(5)

(6)

Truss structure

Accelerometer
Control board
dSPACE1103

Amplifier
MIDE

Amplifier
Veb Metra Mess

LV 103 Control gain
Disturbance

generator

PZT1

PZT2

Figure 4: Disposition of the experimental setup.

To verify the results of the active vibration control, two cases were considered. Figure 4
shows the configuration of the experimental setup used. In the first case, the disturbance
input was a sine signal with frequency of 16 Hz (approximately the first natural frequency).
Figure 5 shows the output signal with and without control obtained in joint 4. Figure 6 shows
the experimental output measured using the accelerometer in joint 4 and the estimated output
through Kalman estimator algorithm. These results were obtained using the dSPACE 1103
control board and the Simulink/Matlab.

In the second case, a disturbance input was considered as a sine signal with frequency
of 26 Hz (approximately the second natural frequency). Figure 7 shows the response in
time domain for the uncontrolled and controlled systems . The controller was applied
approximately after 4.5 seconds. Figures 8 and 9 show the control force in the PZT stack
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Figure 5: Output signal measured in the joint 4 using accelerometer-controlled and uncontrolled systems.
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Figure 6: Estimated output signal in joint 4 through Kalman Estimator and experimental output.

actuator 2 and the output estimated through Kalman estimator, respectively. Figure 10
shows the frequency response function (FRF) of the uncontrolled and controlled truss
structures. It was attenuated approximately by 6 dB and 9 dB to the first and second modes,
respectively.
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Figure 7: Experimental output signal of uncontrolled and controlled truss structure in joint 4.
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Figure 8: Control force applied by PZT wafer stack 2 for the second case of disturbance.

5. Final remarks

Over the last two decades, the use of piezoceramics as actuators and sensors has increased
considerably, since they provide an effective means of high-quality actuation and sensing
mechanism. Piezoceramics have been considered as an alternative due features as low-cost,
light weight, and easy-to-implement for active control of structural vibration.

In this paper, the subspace identification method was used to obtain the parameters
of the system and to characterize the uncertainty ranges present in the model. In the
experimental application, the uncertainties were defined in a polytopic with six vertexes.
The system identification technique was used to identify the model in the state space
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Figure 9: Output signal estimated through Kalman Estimator algorithm for the second case of disturbance
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realization that was converted to modal coordinates. The LQR controller solved through
LMI was experimentally implemented and applied in a 3D truss structure that contains
nonlinearities and uncertainties. The disturbance was applied through PZT wafer stack.
LMI techniques that are classified by some authors as postmodern control present many
advantages, mainly due to the facilities of solving numerical problems for complex structure,
where the analytical solution should be difficult to implement. Uncertainties in the dynamic
matrix were considered in order to design a robust active vibration control. However, any
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other uncertain parameter should be added, for instance, damping coefficients. In this case,
it is only needed to consider new vertexes in the box with all uncertain parameters and write
the respective LMIs. The proposed approach showed that an efficient robust controller design
can be obtained for complex structures with nonlinearities and uncertainties.
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