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This paper presents a simple implicit time integration scheme for transient response solution of
structures under large deformations and long-time durations. The authors focus on a practical
method using implicit time integration scheme applied to structural dynamic analyses in which
the widely used Newmark time integration procedure is unstable, and not energy-momentum
conserving. In this integration scheme, the time step is divided in two substeps. For too large time
steps, the method is stable but shows excessive numerical dissipation. The influence of different
substep sizes on the numerical dissipation of the method is studied throughout three practical
examples. The method shows good performance and may be considered good for nonlinear
transient response of structures.
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1. Introduction

In the last four decades, the computational mechanics community has accomplished many
researches trying to propose effective methods for nonlinear dynamic analysis in the
framework of the finite element method. For fast transient analyses, for example, impact
problems, explicit methods are largely used. However, for methods conditionally stable, very
small time steps are required to get reasonable solutions. For transient analyses of long-
time duration, as in vibration problems of structural systems, the implicit methods are more
effective. According to Bathe [1], the first implicit integration procedures used are Houbolt,
Newmark, and Wilson-θ. Among these methods, the Newmark method and its particular case,
the trapezoidal rule, became very popular and effective for linear dynamic analysis of practical
problems. The trapezoidal rule scheme is the most effective one because it is a second-order
method and uses single time step. However, in nonlinear dynamic analysis, the trapezoidal
rule becomes considerably unstable. Such instability is due to the pathological growth of the
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total potential energy and angular momentum. The trapezoidal rule integration scheme does
not guarantee the conservation of the energy-momentum along the time duration. To overcome
this adverse characteristic, many implicit algorithms were additionally proposed based on
the following ideas explained by Kuhl and Crisfield in [2]: (a) numeric dissipation [3]; (b)
conservation of energy-momentum throughout the use of Lagrange multipliers [4]; and (c)
imposition, in the algorithm, of energy-momentum conservation [5].

The present work analyzes the application of the trapezoidal rule to nonlinear dynamic
analyses. To keep the conservation of the energy-momentum, the trapezoidal rule is combined
to the three-point backward Euler method. This combination is very much employed in
numerical procedures to solve ordinary and partial differential equations (o.d.e.s and p.d.e.s)
[6]. Bank et al. [7] use this combination to solve first-order o.d.e.s to simulate the behavior
of silicon devices and circuits. Recently, Bathe [8], Bathe and Baig [9] utilized these mixed
algorithms to get solutions of second-order p.d.e.s describing the dynamic equilibrium of
structural systems. They obtained transient responses for beams and plates discretizing them
with solid 2D finite elements. The beams and plates studied by such authors were subjected to
large translations and rotations due to rigid-body motions. In the next sections, the coupling
of the trapezoidal rule and the three-point backward Euler method is explained in details, and
the numerical dissipation is studied in front of different substeps.

2. The implicit-composed algorithm

The equation of motion of a deformable body discretized by the finite element method may be
expressed by the following matricial equation:

Mü + Cu̇ + f(u, t) = p(t), (2.1)

where M is the mass matrix, C is the damping matrix, f is the vector of internal forces, and
p(t) is the vector of external forces. Moreover, ü, u̇, and u are, respectively, the vectors of
acceleration, velocity, and displacement. We assume that M and C are constant matrices and
we observe that (2.1) is a nonlinear equation because the internal force vector f is a function
of the displacement vector u. Vectors and vector components are hereafter written with the
same notation without loss of meaning. In general, time integration algorithms to solve (2.1)
are formulated throughout the finite difference schemes and such schemes show numerical
dissipation. In computational mechanics, numerical dissipation means an unexpected lost of
energy in the numerical solution. This dissipation property may be good in getting better
numerical stabilization for such integration schemes. The implicit-composed scheme divides
the time step in two substeps. In the first substep, the trapezoidal rule is applied while in the
second substep, we make use of the three-point backward Euler method. As the application of
the algorithm aims to nonlinear analyses, it is necessary to establish an incremental-iterative
strategy to get the final solution. In this work, the Newton-Raphson method, in the iterative
phase, is used to dissipate the residual forces. The equation of motion may be written as a
function of the displacements, developed in a Taylor’s series up to the first-order terms, and
an incremental-iterative strategy is established for the time-step dynamic analysis.

3. First substep

At first, it is assumed that the solution of the equation of motion is known at time tn and
we wish to get a solution at time tn+1, such that tn+1 = tn + Δt. Consider tn+γ = tn + γΔt as



W. T. Matias Silva and L. Mendes Bezerra 3

un
u̇n
ün

un+γ =?
u̇n+γ =?
ün+γ =?

tn tn+γ tn+1

γΔt (1 − γ)Δt

Δt

Figure 1: Generalized substep sizes.

a time instance between tn and tn+1, with γ ∈ (0, 1) according to Figure 1. Applying now the
trapezoidal rule over the time step, γΔt, we can get the velocities and displacements for the
time tn+γ , by means of the following finite difference equations, respectively:

u̇n+γ = u̇n +
ün + ün+γ

2
γΔt, (3.1)

un+γ = un +
u̇n + u̇n+γ

2
γΔt. (3.2)

Substituting (3.1) into (3.2), we obtain

un+γ = u∗n+γ +
γ2Δt2

4
ün+γ (3.3)

with

u∗n+γ = un + γΔtu̇n +
γ2Δt2

4
ün. (3.4)

On the other hand, (3.1) may be rewritten as

u̇n+γ = u̇∗n+γ +
γΔt

2
ün+γ (3.5)

with

u̇∗n+γ = u̇n +
γΔt

2
ün. (3.6)

Therefore, using (3.3) and (3.5), the accelerations and velocities may be obtained as

ün+γ =
4

γ2Δt2
(
un+γ − u∗n+γ

)
, (3.7)

u̇n+γ = u̇∗n+γ +
2
γΔt

(
un+γ − u∗n+γ

)
. (3.8)

The equation of motion (2.1) at time t + γΔt may be rewritten as

Mün+γ + Cu̇n+γ + fn+γ
(
un+γ

)
= pn+γ . (3.9)
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With (3.7), (3.8), and (3.9), the residual force vector rn+γ is defined as

rn+γ =
4

γ2Δt2
M

(
un+γ − u∗n+γ

)
+ C

[
u̇∗n+γ +

2
γΔt

(
un+γ − u∗n+γ

)
]
+ fn+γ − pn+γ . (3.10)

Expanding the resulting equation (3.10) into a Taylor’s series as a function of the displacements
un+λ and considering only the first-order terms, we can get

(
Ki
n+γ +

4
γ2Δt2

M +
2
γΔt

C

)
Δui+1

n+γ

= Pn+γ −
{
fin+γ +M

[
4

γ2Δt2
(
uin+γ − u∗n+γ

)
]
+ C

[
u̇∗n+γ +

2
γΔt

(
uin+γ − u∗n+γ

)
]} (3.11)

with ui+1
n+γ = uin+γ + Δui+1

n+γ and Ki
n+γ = ∂fin+γ/∂u

i
n+γ being the consistent tangent stiffness matrix

at the configuration corresponding to the displacements uin+γ .
Once the displacements are determined, the accelerations and velocities may be obtained

by means of (3.7) and (3.8), respectively. For more details, see the incremental-iterative flow
diagram described in Figure 2.

4. Second substep

Let the derivative [6] of a continuous function g at time t + Δt be written in terms of the
derivatives of the function g at times t, t + γΔt and t + Δt as

ġn+1 = c1gn + c2gn+γ + c3gn+1. (4.1)

In this case, the constants [6] c1, c2, and c3 may be expressed as

c1 =
(1 − γ)
γΔt

; c2 =
−1

(1 − γ)γΔt ; c3 =
(2 − γ)

(1 − γ)Δt . (4.2)

Thus, the velocities as functions of the displacements, and the accelerations as functions of
velocities at time t + Δt may be determined by the following equations in the same order:

u̇n+1 = c1un + c2un+γ + c3un+1,

ün+1 = c1u̇n + c2u̇n+γ + c3u̇n+1.
(4.3)

Figure 3 illustrates the three-point Backward Euler method in which the quantities at tn+1 are
calculated from the values at tn and tn+γ . These equations may be rewritten as

u̇n+1 = u̇∗n+γ + c3un+1, (4.4)

ün+1 = ü∗n+γ + c3u̇n+1 (4.5)

with

u̇∗n+1 = c1un + c2un+γ ,

ü∗n+1 = c1u̇n + c2u̇n+γ .
(4.6)

Substituting (4.4) into (4.5), we obtain

ün+1 = ü∗n+1 + c3u̇
∗
n+1 + c

2
3un+1. (4.7)
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Figure 2: Incremental-iterative scheme of the implicit-composed algorithm.

Equation (2.1) at time t + Δt may be rewritten as

Mün+1 + Cu̇n+1 + fn+1
(
un+1

)
= Pn+1. (4.8)
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Figure 3: Three-point backward Euler method.

Putting (4.4) and (4.5) into (4.8), the residual force vector is defined as

rn+1 =M
(
ü∗n+1 + c3u̇

∗
n+1 + c

2
3un+1

)
+ C

(
u̇∗n+1 + c3un+1

)
+ fn+1 − pn+1. (4.9)

Expanding the resulting equation (4.9) in a Taylor’s series up to the first-order terms, as a
function of the displacements un+1, we obtain

(
Ki
n+1 + c

2
3M + c3C

)
Δui+1

n+1 = Pn+1 −
{
fin+1 +M

(
ü∗n+1 + c3u̇

∗
n+1 + c

2
3un+1

)
+ C

(
u̇∗n+1 + c3un+1

)}

(4.10)

with ui+1
n+1 = uin+1+Δu

i+1
n+1. The tangent stiffness matrixKi

n+1 = ∂fin+1/∂u
i
n+1 and the internal forces

fin+1 are obtained in a consistent way at the configuration corresponding to the displacements
uin+1. Once the displacements are determined, the velocities and accelerations may be
calculated according to (4.4) and (4.5), respectively. For more details, examine the incremental-
iterative flow diagram represented in Figure 2. In [8, 9], the prediction displacement adopted
in the first iteration of the second substep is not clear. In the present paper, the trapezoidal rule
is employed to obtain the prediction displacement as

un+1 = un+γ + (1 − γ)Δtu̇n+γ +
(1 − γ)2Δt2

4
ün+γ . (4.11)

In short, the method has the following main characteristics: (a) it has no additional variables,
like Lagrange multipliers, are used; (b) it is suitable to elastic and inelastic analyses; (c) it has
symmetry of the tangent stiffness matrix.

5. Numerical examples

In the following examples, one finite element in 2D space representing a biarticulated bar is
used. The internal forces’ vector and the stiffness matrix of such finite element are obtained
from a total Lagrangian formulation. For more details of such formulation, see [10]. The mass
matrix in the following examples considers the mass of the bar element as massless and lumped
masses concentrated at the two end nodes.

To find the transient response, the incremental iterative scheme illustrated in Figure 2
is used with a convergence tolerance of 10−5 on the norm of the residual forces. The mid-
point time step varies according to different values γ = 0.4, 0.45, 0.5, 0.55, 0.6. The objective
here is to exam the performance of the implicit-composed algorithm described in Section 2
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Figure 4: Rigid pendulum. Data and initial conditions.

for varying γ and when different time step is adopted for long-time duration. With this in
mind, it is important to analyze if the algorithm presents the following undesirable aspects: (1)
excessive errors in the period and in the amplitude of the transient response, (2) strong growth
of the total potential energy and the angular momentum, (3) strong decay of the total potential
energy and the angular momentum, and (4) lack of convergence during the iterative process.

5.1. Rigid pendulum

Among other authors, Crisfield and Shi [11], Kuhl and Crisfield [2] and Bathe [8] analyzed
this example. The geometrical and physical characteristics of the rigid pendulum, the initial
conditions, the boundary conditions and other data of the problem are in Figure 4. The rigid
pendulum was discretized with one biarticulated finite element bar in 2D space with a very
high-axial stiffness. The pendulum has two degrees of freedom restrained and two degrees of
freedom released.

The rigid pendulum has an axial stiffness of EA = 1010 N. The pendulum displacement is
treated as a rigid body rotation around a fixed axis and with a constant angular velocity, where
θ̇ = ωo, u̇o = θ̇l and üo = θ̇ 2l = u̇2

o/l. Consider also the energy conservation, mu̇2
o/2 = mgl.

Therefore, the initial velocity is given by u̇o =
√

2gl = 7.72 m/s, and the initial acceleration
is üo = 2g = 19.6 m/s2. No external force is applied at the free end-node of the pendulum.
Therefore, the total potential energy and the angular momentum are kept constants. The value
of total potential energy is πo = mu̇2

o/2 = 298 Nm, and the angular momentum Ho = lmu̇0. The
period of this pendulum is give by T = π

√
2l/g = 2.47 seconds, which corresponds to an angle

of 360◦, that is, 1 cycle or a complete turnaround in 2.47 seconds.
Three time steps are taken: Δt = 0.01 second, Δt = 0.1 second, and Δt = 0.6 seconds,

corresponding to the following ratios to the period Δt/T = 0.004, 0.04, and 0.24; and also to the
following angles: 1.45◦, 14.5◦ and 87.3◦, respectively. Correspondingly, these angles represent
small, moderate, and large rotations. The transient analysis is carried out for a total time
duration of 50 seconds which means 20 cycles. Figure 5(a) shows the mass trajectories for the
three different time steps adopted; observe the coincidence between the trajectories. Examining
Figure 5(b), for Δt = 0.01 second, the numerical dissipation detected is clearly negligible either
for the total potential energy as well as for the angular momentum.

However, for Δt = 0.1 second, the numerical dissipations along the time are noticeable.
On the other hand, for Δt = 0.6 seconds, an excessive numerical dissipation of the total
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Figure 5: Rigid pendulum. Solution with the implicit-composed algorithm.

potential energy and the angular momentum is observed. Consequently, errors of great
magnitude in the period and in the amplitude response may be observed in Figures 5(c), 5(d),
and 5(e), respectively, for displacements, velocities, and accelerations. Errors in the periods of
the displacements may be noticed for time steps of Δt = 0.1 second and Δt = 0.6 seconds from
the seventh cycle on. Those errors increase along the next cycles.

With respect to velocity and acceleration, it may be observed that there are errors in the
period and in the amplitude for Δt = 0.1 second, and errors increase from the seventh cycle
on. For Δt = 0.6 seconds, the errors are meaningful and the transient responses are short of
precision to represent the physical model under analysis. In Figure 5(f), the magnitude of axial
strains do not exceed ε ≤ 2 × 10−8 due to the hypothesis of rigid-body motion. Figure 5(g)
shows the evolution of the number of iterations along the time necessary to get convergence. It
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Figure 6: Rigid pendulum. Energy-momentum decaying with different substep sizes.

is important to point out that such figure deals with the sum of the iterations corresponding to
the two substeps, that is, [tn; tn+γ] and [tn+γ ; tn+1] with γ = 0.5. Finally, it is worth mentioning
that the algorithm presented here showed numerical stability even when too large time step is
used, for example, for Δt = 0.6 seconds. In this case, no growth was observed for the energy
momentum of the system, as can be seen in Figure 5(b).

To study the influence of the substeps’ sizes γΔt and (1 − γ)Δt over the numerical
dissipation generated by the method, the analysis of this problem is performed with γ = 0.4,
γ = 0.45, γ = 0.5, γ = 0.55, and γ = 0.6. For time step Δt = 0.1 second, the energy-momentum
decays are shown in Figures 6(a) and 6(b), respectively. In both figures, it is noticed that the
numerical dissipations grow proportional to the γ values. In Table 1, such decays are reported
for t = 50 seconds and a time step Δt = 0.1 second. In that table, one can observe how small such
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Table 1: Energy-momentum decaying at t = 50 seconds with Δt = 0.1 second.

γ Total energy Angular momentum
0.40 1.59% 0.79%
0.45 3.27% 1.64%
0.50 5.16% 2.60%
0.55 7.22% 3.67%
0.60 9.43% 4.82%

Table 2: Energy-momentum decaying at t = 50 seconds with Δt = 0.6 seconds.

γ Total energy Angular momentum
0.40 55.86% 33.56%
0.45 71.95% 47.03%
0.50 78.15% 53.25%
0.55 81.96% 57.52%
0.60 84.66% 60.83%

decays are. For time step Δt = 0.6 seconds, the decays of the total potential energy and of the
angular momentum, illustrated in Figures 6(c) and 6(d), also grow with γ . Table 2 shows that
such decays are excessive which means that the solution for this case is inaccurate. Even for
γ < 0.5, the numerical dissipation continues high. Therefore, one can conclude the following.
(a) For γ < 0.5, the numerical dissipation is reduced. (b) For γ > 0.5, the numerical dissipation
grows. (c) For Δt = 0.1 second, there are minor decreases for the potential energy and angular
momentum. (d) For Δt = 0.6 seconds, there are strong decreases for the potential energy and
angular momentum.

5.2. System with five spheres connected with massless rigid rods

Crisfield and Shi [11] analyzed this example. Figure 7(a) shows a chain of pinned bars (truss
element) that is free to fly in the absence of gravity. Initially, the bars lie horizontally with no
velocity in the x-direction but a linear distribution of vertical velocity. Under such conditions,
the chain should remain straight moving downwards and rotating at the same time. The system
is made of 5 spherical masses connected by massless rigid rods.

The geometrical and physical characteristics of the five connected spheres, the initial
conditions, the boundary conditions, and other applicable data are summarized in Figure 7(a).
The initial conditions of the system are (a) an angular velocity of ωo = θ̇o = 1.0 rad/s around
the axis at pole B (node 5) parallel to the z-axis which is equivalent to a linear distribution of
vertical velocities, and (b) a zero-angular acceleration αo = θ̈o = 0.

This system was discretized with four finite elements, biarticulated bar elements in the
2D space. The finite element model has five nodes making a total of 10 degrees of freedom.
There are no constraint nodes. Gravitational forces are not considered, and therefore the total
potential energy and the angular momentum are kept constant along the time considered for
the analysis of this problem, that is, t = 50 seconds Due to the mass symmetry, the center of
mass of the system is in middle of the bar length. Therefore, the system of five concentrated
masses is subjected to large translations and rotations in the xy-plane. The total potential
energy is given by the expression π = 22ml2ω2

o = 0.11×10 8 N·cm, and the angular momentum,
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Figure 7: Four-bar-chain. Solution with the implicit-composed algorithm.

with respect to pole B, is Ho = 44ml 2ωo = 0.22 × 10 8 kg · cm2/s. The components of the
displacement, velocity, and acceleration vectors of node 1 (pole A) may be obtained by the
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Figure 8: Four-bar-chain. Energy-momentum decaying with different sub-step sizes.

following expression:

ux1 = 2l
[
1 − cos

(
ωot

)]
; uy1 = −2l

[
wot + sin

(
ωot

)]
;

u̇x1 = 2lωo

[
sin

(
ωot

)]
; u̇y1 = −2lωo

[
1 + cos

(
ωot

)]
;

üx1 = 2lω2
o

[
cos

(
ωot

)]
; üy1 = 2lω2

o

[
sin

(
ωot

)]
.

(5.1)

The period of this system is given by T = 2π/ωo = 6.28 seconds, which corresponds to
a turnaround of 360◦. Three time steps are used for this example: Δt = 0.01 second, Δt =
0.1 second, and Δt = 1 second, which correspond to the following ratios to the period, that
is, Δt/T = 0.0016, 0.016, and 0.16 in the same order, to the following angles 0.57◦, 5.73◦, and
57.3◦. These angles represent small, moderate, and large rotations, respectively.

The transient analysis is carried out for a total time duration of t = 50 seconds
or, approximately, 8 cycles. Figures 7(b), 7(c), and 7(d) plot as functions of time the x-
displacement, the y-velocity, and the y-acceleration of the node-1, respectively. These transient
responses are compared to the exact solution in (5.1). For the time steps Δt = 0.01 second
and Δt = 0.1 second, there is an excellent agreement to the exact solution. Conversely, for
time step Δt = 1 second, significant errors in the period and in the amplitude are observed.
Note these errors increase in the subsequent cycles. Consequently, the displacement, velocity,
and acceleration obtained for the time step Δt = 1 second are not suitable to represent the
physical problem studied in this example. In Figure 7(e), the magnitude of element-1 axial
strains do not exceed ε ≤ 1.1 × 10−6 due to the hypothesis of rigid-body motion. Figure 7(f)
shows, for Δt = 0.01 second and Δt = 0.1 second, the numerical dissipation of the total potential
energy and the angular momentum are insignificant. However, for Δt = 1 second, an excessive
numerical dissipation is observed and grows along the time. Figure 7(g) shows the number of
iterations necessary to get convergence in the solution. As a final point, it is remarkable that the
algorithm shows numerical stability even for too large time step, for example, Δt = 1 second.
This can be seen in Figure 7(f) noticing that no excessive increase of energy-momentum of the
system is observed.
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Table 3: Energy-momentum decaying at t = 50 seconds with Δt = 1 second.

γ Total energy Angular momentum
0.40 8.24% 4.49%
0.45 11.25% 6.37%
0.50 13.45% 7.86%
0.55 15.19% 9.12%
0.60 16.60% 10.21%

y

x

θ

l = 3.0443 m

m = 10 kg u̇ = 7.72 ms−1

ü = 0 ms−2

EA0 = 104 N
ρ0A0 = 6.57 kgm−1

Figure 9: Elastic pendulum. Data and initial conditions.

For Δt = 1 second, the energy-momentum decay, shown in Figures 8(a) and 8(b),
increases proportional to γ . Table 3 shows these decays for t = 50 seconds. In that table, it
can be observed that the values of these decays are less than 17% for the potential energy and
less than 11% for the angular momentum.

5.3. Elastic pendulum

This example was analyzed by Kuhl and Crisfield [2] and Bathe [8], among other researchers.
The geometrical and physical characteristics of the elastic pendulum, the initial conditions,
the boundary conditions, and other data of the problem are in Figure 9. The pendulum was
discretized with one biarticulated 2D finite element bar which has two degrees of freedom
restrained and two degrees of freedom released. An axial stiffness EA = 104 N is assumed. A
nonzero initial velocity is considered. No gravitational force is assumed to act, and therefore
no external force is applied at the free end-node of the pendulum. Therefore, the total potential
energy and the angular momentum are kept constants along the time. The potential energy
is πo = mu̇2

o/2 = 298 N·m. The angular momentum is Ho = lmu̇o = 235 kg · cm2/s. In this
example, the period is given by T = π

√
2l/g = 2.47 seconds, which corresponds to 1 cycle

or a complete turnaround of the pendulum in 2.47 seconds. In addition, Due to the axial
elastic behavior of the pendulum bar, other oscillation frequency exists, a high axial frequency
corresponding to T = 0.28 seconds. To capture this axial frequency, two time steps are adopted:
Δt = 0.01 second and Δt = 0.05 seconds which correspond to the following ratios to the period;
that is, Δt/T = 0.036 and 0.18, respectively.
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Figure 10: Elastic pendulum. Solution with the implicit-composed algorithm.

Although, in this case, there are oscillations in high frequencies, no sudden growth
is observed in the amplitude of the axial oscillations and in the energy-momentum of
the pendulum system. These can be demonstrated in Figures 10(b) and 10(f), respectively.
Figure 10(a) shows the pendulum trajectories. The complete agreement of the trajectories is
clear. Examining Figure 10(b), for Δt = 0.01 second, the numerical dissipation detected is
minimal either for the total potential energy as well as for the angular momentum. However,
for Δt = 0.05 seconds, there are small numerical dissipations increasing along the time. Figures
10(c) and 10(d) show the displacement and velocity of node 2 in the y-direction, respectively.
In these figures, for both time steps used, the transient responses are almost coincident.
However, in Figure 10(e), significant errors in the amplitude and in the acceleration period
are detected.
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Figure 11: Elastic pendulum. Energy-momentum decaying with different substep sizes.

Table 4: Energy-momentum decaying at t = 30 seconds with Δt = 0.05 seconds.

γ Total energy Angular momentum
0.40 2.03% 0.21%
0.45 2.10% 0.22%
0.50 2.19% 0.25%
0.55 2.25% 0.27%
0.60 2.26% 0.27%

Furthermore, for Δt = 0.05 seconds, Figure 10(f) shows the axial oscillations and depicts
the significant errors in the amplitudes due to numerical dissipation. With this large Δt, it
is impossible to have a more precise response of the system under high frequency. Finally,
Figure 10(g) represents the number of iterations to get convergence in the solutions. For
the time step Δt = 0.05 seconds, the decays of the total potential energy and the angular
momentum, shown in Figures 11(a) and 11(b), respectively, are practically the same for
different substeps used. In Table 4, these decays are reported for t = 30 seconds and it is clear
that the decays are very small and almost at the same amount.

6. Concluding remarks

Concerning the performance of the implicit-composed algorithm applied to nonlinear dynamic
analysis, the following conclusions may be taken. (a) The algorithm is easy to implement
in a computer program. (b) The mathematical formulation of the algorithm is very simple.
(c) The algorithm is effective to deal with large translations and rotations due to rigid-
body motions. (d) For time steps Δt with ratios to the period Δt/T ≤ 0.1, the algorithm
presents an insignificant numerical dissipations, however, for Δt/T > 0.1, an increasing
numerical dissipation is observed. (e) The computational cost of the algorithm is twice greater
than the computational cost of the trapezoidal rule due to the two iterative cycles needed
in each time step. (f) The algorithm preserves the energy-momentum without the need of
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Lagrange multipliers or without any imposition in the algorithm for energy-momentum
conservation. (g) The algorithm allows the user to work with symmetric matrices. (h) The
method is applicable to elastic and inelastic analyses. (i) No additional variables like Lagrange
multipliers are used. (j) For too large time step, even with inaccurate solution, the method is
stable.

From the view of the authors, the excessive numerical dissipation when using a too large
time-step is the major drawback of the present scheme, for applications in nonlinear analyses
in practical problems.
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