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An integral transform technique is used to solve the elastodynamic problem of a crack of fixed
length propagating at a constant speed at the interface of two bonded dissimilar orthotropic
layers of equal thickness. Two cases of practical importance are investigated. Firstly, the lateral
boundaries of the layers are clamped and displaced in equal and opposite directions to produce
antiplane shear resulting in a tearing motion along the leading edge of the crack, and secondly,
the lateral boundaries of the layers are subjected to shear stresses. The analytic solution for a semi-
infinite crack at the interface of two bonded dissimilar orthotropic layers has been derived. Closed-
form expressions are obtained for stressing the intensity factor and other physical quantities in all
cases.
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1. Introduction

First of all, Sih and Chen [1] solved the problem of a Griffith crack in an orthotropic layer
under antiplane shear. They reduced the solution to a Fredholm integral equation of the
second kind, and values for stress intensity factors were obtained by solving the Fredholm
integral equation numerically. Singh et al. [2], and Tait and Moodie [3] obtained closed-form
solutions for a finite length crack moving with constant velocity in a strip. In [2], an integral
transform method was used, while in [3] complex variable techniques were used. Closed-
form solutions for a finite length crack moving at constant velocity in an orthotropic layer of
finite thickness were obtained by Danyluk and Singh [4], and that work was an extension of
the work discussed in [1–3]. Making use of complex variable methods, Georgiadis [5] solved
the problem of a cracked orthotropic strip, and the problem of steadily moving crack in an
orthotropic material under antiplane shear stress has been studied by Piva [6, 7]. Recently,
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Li [8] obtained a closed-form solution for a mode-III interface crack between two bonded
dissimilar elastic layers. This paper is concerned with a mode-III moving crack interface
between two bonded orthotropic dissimilar elastic layers whose closed-form solution has
been obtained. Furthermore, the exact results for a semi-infinite interface crack in two bonded
elastic orthotropic elastic layers have been obtained directly from those of a finite length crack
results through a limiting process.

The results of this paper are more general than those of the paper of Li [8]. If we
assume that the velocity of the moving crack is zero and assuming the constants c44(j) =
c55(j) = μ(j) (j = 1, 2), we get the results of the paper of Li [8], where μ(j) are the shear moduli
of the upper and lower layers and c44(j), c55(j) are defined in the paper.

The standard method for solving mixed boundary value problems is to reduce the
solution into Fredholm integral equation of the second kind, where approximate solutions
can be found. The aim of this paper is to obtain closed forms or exact solutions of the
problems.

2. Basic equations and formulation of the crack problem

Consider two elastic layers of equal thickness h occupying the region −∞ < X < ∞, −h <
Y < h, −∞ < Z < ∞, where 0XYZ is a fixed rectangular coordinate system. We assume that
a crack of length 2a is moving at a constant velocity v in the X-direction at the interface of
the two layers as shown in Figure 1. The purpose of this investigation is to determine the
effect of orthotropy of the materials on the initial direction of propagation of the crack which
is moving with constant speed. Assuming that there is a single nonvanishing displacement
component in the Z-direction, we have

Uj = Vj = 0, Wj =Wj(X,Y, t), (2.1)

where Uj, Vj , Wj are displacement components in the X, Y, and Z directions, respectively,
and j = 1, 2. Then

σX(j) = σY(j) = σZ(j) = σXY(j) = 0, σXZ(j) = c55(j)
∂Wj

∂X
, σYZ(j) = c44(j)

∂Wj

∂Y
, (2.2)

where c44(j) and c55(j) are the shear moduli in YZ and XZ planes, respectively, for both
materials. The equation of motion for both layers is

∂2Wj

∂X2
+
∂2Wj

∂Y 2
j

=
1
C2
j

∂2Wj

∂t2
, (2.3)

where

Yj =
Y√
βj
, βj =

c44(j)

c55(j)
, Cj =

√
c44(j)

ρj
, (2.4)
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Figure 1: Two bonded layers of piezoelectric ceramic materials with crack at interface.

and Cj is the shear wave speed and ρj is the constant density of the material. For a crack
moving with constant speed in the X-direction, it is convenient to introduce the Galilean
transformation

x = X − vt, yj = Yj, z = Z. (2.5)

Equation (2.3) now becomes

s2
j

∂2Wj

∂x2
+
∂2Wj

∂y2
j

= 0, (2.6)

where

s2
j = 1 − v2

C2
j

. (2.7)

3. Solution of equilibrium equation

The solution of the equilibrium (2.6) may be written as

Wj(x, y) = Fc
[
Aj exp

(
− ξyjsj

)
+ Bj exp

(
ξyjsj

)
; ξ −→ x

]
, (3.1)

where sj is taken as (2.7) and

Fc
[
Aj(ξ); ξ −→ x

]
=

√
2
π

∫∞
0
Aj(ξ) cos(ξx)dξ,

Fs
[
Bj(ξ); ξ −→ x

]
=

√
2
π

∫∞
0
Bj(ξ) sin(ξx)dξ.

(3.2)
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The nonzero stresses are given by

σyz(j) (x, y) =
sjc44(j)√

βj
Fc
[
ξBj exp

(
ξyjsj

)
− ξAj exp

(
− ξyjsj

)
; ξ −→ x

]
, (3.3)

σxz(j) (x, y) = −c55(j)Fs
[
ξBj exp

(
ξyjsj

)
+ ξAj exp

(
− ξyjs(j)

)
; ξ −→ x

]
. (3.4)

Now, we consider the two basic problems involving shear stress loading and
displacement conditions on the surface of the layer.

Problem A. Let the antiplane shear stress be applied to the surfaces Y = ±h, then the
equivalent problem in this instance involves the application of a shear stress −p(x) to the
crack surfaces at Y = 0. The boundary conditions can then be written as

σyz(1)
(
x, 0+) = −p(x), |x| < a, (3.5)

σyz(1)
(
x, 0+) = σyz(2)

(
x, 0−

)
, −∞ < x <∞, (3.6)

W1
(
x, 0+) =W2

(
x, 0−

)
, |x| > a, (3.7)

σyz(1)
(
x,+h

)
= σyz(2) (x,−h) = 0, (3.8)

where p(x) is an even function. Problem A consists of solving (2.6) together with (3.5)–(3.8).

Problem B. Let the lateral boundaries of the layer Y = ±h be rigidly clamped and displaced by
equal amount p(x) in opposite directions which produce an antiplane shear motion in the Z-
direction and while the crack moves in the positive X-direction at a constant speed. In order
to use the integral transform technique, it is necessary to solve an alternative but equivalent
problem.

The equivalent conditions are

σyz(1) (x, 0) = −
c44(1)

h
p(x), |x| < a, (3.9)

σyz(1) (x, 0) = σyz(2) (x, 0), −∞ < x <∞, (3.10)

W1(x, 0) =W2(x, 0), |x| > a, (3.11)

W1(x, h) =W2(x,−h) = 0. (3.12)

4. Solution of Problem A

From (3.3) and (3.6), we find that

B1(ξ) = A1(ξ) exp
(
− 2ξh1s1

)
, B2(ξ) = A2(ξ) exp

(
2ξh2s2

)
, (4.1)

where

h1 =
h√
β1
, h2 =

h√
β2
. (4.2)
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From (3.1), (3.3), and (4.1), we find that

W1(x, y) = 2Fc
[
A1(ξ)e−s1h1ξ coshξs1

(
h1 − y1

)
; ξ −→ x

]
, −∞ < x <∞, 0 < y ≤ h, (4.3)

W2(x, y) = 2Fc
[
A2(ξ)es2h2ξ coshξs2

(
h2 − y2

)
; ξ −→ x

]
, −∞ < x <∞, − h ≤ y < 0, (4.4)

σyz(1) (x, y) = −
2s1c44(1)√

β1
Fc
[
ξA1(ξ)e−s1h1ξ sinh ξs1

(
h1−y1

)
; ξ −→ x], −∞<x<∞, 0<y≤h,

(4.5)

σyz(2) (x, y) =
2s2c44(2)√

β2
Fc
[
ξA2(ξ)es2h2ξ sinh ξs2

(
h2 + y2

)
; ξ −→ x

]
, −∞ < x <∞, − h ≤ y < 0.

(4.6)

From boundary condition (3.7), we find that

A2 = −
[
s1
√
β2 sinh

(
ξs1h1

)
c44(1)

s2
√
β1 sinh

(
ξs2h2

)
c44(2)

e−ξh1s1−ξh2s2

]
A1(ξ). (4.7)

From (4.3), (4.4), and (4.7), we find that

W1
(
x, 0+) −W2

(
x, 0−

)

= 2Fc
[
e−ξh1s1A1(ξ)
sinh

(
ξs2h2

){ cosh
(
ξs1h1

)
sinh

(
ξs2h2

)
+ P sinh

(
ξs1h1

)
cosh

(
ξs2h2

)}
; ξ −→ x

]
,

(4.8)

where

P =
s1
√
β2

s2
√
β1

c44(1)

c44(2)
. (4.9)

Now, the boundary conditions (3.5) and (3.7) lead to the following dual integral equations:

Fc
[
ξA1(ξ)e−ξh1s1 sinh

(
ξs1h1

)
; ξ −→ x

]
=

√
β1

2s1c44(1)
p(x), 0 < x < a,

Fc

[
A1(ξ)e−ξh1s1

sinh
(
ξs2h2

){ cosh
(
ξs1h1

)
sinh

(
ξs2h2

)
+ P sinh

(
ξs1h1

)
cosh

(
ξs2h2

)}
; ξ −→ x

]
= 0,

a < x <∞.
(4.10)

Closed-form solution of the dual integral equations (4.10) is difficult to obtain and only
approximate solution of these dual integral equations can be obtained by changing them into
a Fredholm integral equation of the second kind. For obtaining closed form, we assume that

s1√
β1

=
s2√
β2
, (4.11)



6 Mathematical Problems in Engineering

so that

P =
c44(1)

c44(2)
. (4.12)

If we take

(1 + P)e−ξh1s1 cosh
(
ξs1h1

)
A1(ξ) = C(ξ), (4.13)

then the dual integral equations (4.10) can be written in the form

Fc
[
ξC(ξ) tanh

(
ξs1h1

)
; ξ −→ x

]
=

√
β1

2s1

(
c−1

44(1)
+ c−1

44(2)

)
p(x) = p1(x), 0 < x < a,

Fs
[
C(ξ); ξ −→ x

]
= 0, a < x <∞.

(4.14)

Following [4], the solution of the the dual integral equations (4.14) can be written in the form

C(ξ) =
1
ξ

√
π

2

∫a

0
Φ(τ) sin(ξτ)dτ, (4.15)

where

Φ(τ) =
−2c sinh(2cτ)

π2
(
sinh2(ca) − sinh2(cτ)

)1/2

∫a

0

p1(x)
(
sinh2(ca) − sinh2(cx)

)1/2

sinh2(cx) − sinh2(cτ)
dx, 0 < τ < a,

c =
π

2h1s
.

(4.16)

For the particular case p(x) = p0 when p0 is a constant, we find that

Φ(τ) =

√
β1
((
c−1

44(1)
+ c−1

44(2)

)
p0 sinh(2cτ)

)

s1π2 cosh(ac)
(
sinh2(ca) − sinh2(cτ)

)1/2

[
F

(
π

2
, tanh(ac)

)
− L(τ)

]
,

L(τ) = Π
(
π

2
,

sinh2(ca)

sinh2(ca) − sinh2(cτ)
tanh(ac)

)
,

(4.17)

where F and Π are elliptic integrals of the first and third kinds, respectively, as defined in the
table of Gradshteyn and Ryzhik [9].
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The stress distribution along the crack is given by

σyz(1) (x, y) =
p0 sinh(2cx)

π cosh(ac)
(
sinh2(ca) − sinh2(cx)

)1/2

[
F

(
π

2
, tanh(ac)

)
− L(τ)

]
, a < x <∞,

(4.18)

and the crack sliding displacement is

ΔW(x)=W(1)
(
x, 0+) −W(2)

(
x, 0−

)

=

√
β1
((
c−1

44(1)
+c−1

44(2)

)
p0 sinh(2cτ)

)

πs1 cosh(ac)
(
sinh2(ca)−sinh2(cx)

)1/2

∫a

x

[
F

(
π

2
, tanh(ac)

)
−L(τ)

]
dτ, 0<x<a.

(4.19)

The stress intensity factor can be written in the form

K3 = lim
x→a+

[√
2(x − a)σyz(1) (x, 0)

]
=

2p0

π

[
tanh(ca)

c

]1/2

F

[
π

2
, tanh(ca)

]
. (4.20)

Assuming that under applied loading the crack tip advances along the crack plane
from x = a to a+δa (δa� a), then the energy release rate per unit length during this process
is given by

GIII = lim
δa→ 0

1
2δa

∫δa

0

[
σyz(1) (r, 0)ΔW(δa − r, 0)

]
dr, (4.21)

where r denotes the distance from the crack tip.
From (4.21), we find that

GIII =

√
β1

s

(
c−1

44(1) + c
−1
44(2)

)p2
0 tanh(ca)

πc
F

[
π

2
, tanh(ca)

]2

. (4.22)

We find that the shear stress displacement and intensity factors obtained above are in
agreement with the corresponding results in Danyluk and Singh [4].

The energy release rate (4.22) is new, which has not been obtained in [4].

5. Solution of Problem B

For this problem, we find that the boundary condition (3.12) will be satisfied if

B1(ξ) = −A1(ξ) exp
(
− 2ξh1s1

)
, B2(ξ) = −A2(ξ) exp

(
− 2ξh2s2

)
. (5.1)
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Using (5.1), (3.1), and (3.3), we find that

W1(x, y) = 2Fc
[
e−ξh1s1A1(ξ) sinh

(
ξs1

(
h1 − y1

))
; ξ −→ x

]
0 ≤ y ≤ h, x > 0, (5.2)

W2(x, y) = 2Fc
[
eξh2s2A2(ξ) sinh

(
ξs2

(
h2 + y2

))
; ξ −→ x

]
− h ≤ y ≤ 0, x > 0, (5.3)

σyz(1) (x, y) = −
2s1c44(1)√

β1
Fc
[
ξA1(ξ)e−s1h1ξ cosh

[
ξs1

(
h1 − y1

)]
; ξ −→ x

]
, 0 ≤ y ≤ h, x > 0,

(5.4)

σyz(2) (x, y) =
2s2c44(2)√

β2
Fc
[
ξA2(ξ)es2h2ξ cosh

[
ξs2

(
h2 + y2

)]
; ξ −→ x

]
, − h ≤ y ≤ 0, x > 0.

(5.5)

From (5.4) and (5.5) and the boundary condition (3.10), we find that

A1(ξ)
s1c44(1)e

−ξh1s1 cosh
(
ξs1h1

)
√
β1

= −
s2c44(2)e

ξh2s2 cosh
(
ξs2h2

)
√
β2

A2(ξ). (5.6)

Using (4.11) and (5.6), the boundary conditions (3.9) and (3.11) lead to the dual
integral equations

Fc
[
ξC1(ξ) coth

(
s1h1ξ

)
; ξ −→ x

]
=

√
β1

2hs1

(
c−1

44(1)
+ c−1

44(2)

)
c44(1)p(x), 0 < x < a,

Fc
[
C1(ξ); ξ −→ x

]
= 0, a < x,

(5.7)

where

(1 + P)e−s1h1ξA1(ξ) sinh
(
ξs1h1

)
A1(ξ) = C1(ξ). (5.8)

Following [4], the solution of the dual integral equations (5.7) for p(x) = p0 can be
written in the form

C1(ξ) =
√
π

2
ξ−1

∫a

0
Ψ(u) sin(uξ)du, (5.9)

where

Ψ(u) =

√
β1 sin(cu)c44(1)

(
c−1

44(1)
+ c−1

44(2)

)
p0

π
(
hs1

)[
sinh2(ca) − sinh2(cu)

]1/2
. (5.10)

We can easily find that

σyz(1)
(
x, 0+) =

−c44(1)p0

h

[
1 − sinh(cx)

[
sinh2(cx) − sinh2(ca)

]1/2

]
, x > a. (5.11)
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The stress intensity factor at x = a is given by

KIII = lim
x→a+

[√
2(x − a)σyz(1) (x, 0)

]
=
c44(1)

h
p0

[
tanh(ca)

c

]1/2

, (5.12)

and the crack sliding displacement is

ΔW(x) =W(1)
(
x, 0+

)
−W(2)

(
x, 0−

)
=
p0
√
β1

s1

(
1 +

c44(1)

c44(2)

)[
1 − 2

π
sin−1

(
cosh(cx)
cosh(ca)

)]
.

(5.13)

The energy release rate per unit length during the process is given by

GIII = lim
δ→ 0

1
2δ

∫δ

0
σyz(1) (r)Δw(δ − r)dr = 1

2s1h

(
c−1

44(1) + c
−1
44(2)

)
p2

0c
2
44(1) tanh(ca). (5.14)

6. Solution for a semi-infinite interface crack

For the case of clamped boundaries of the layers, the closed-form solution for a semi-infinite
interface crack is obtained by taking x = a + x1 in (5.11), (5.12), and (5.13) and then letting
a → ∞, so that we have

σyz(1)
(
x, 0+) = σyz(1)

(
x, 0−

)
= −
−c44(1)p0

h

[
1 − 1√

1 − e−(πx1/h)

]
, x1 > 0,

ΔW
(
x1
)
=
p0
√
β1

s1

(
1 +

c44(1)

c44(2)

)[
1 − 2

π
sin−1

(
eπx1/2h

)]
, x1 < 0,

KIII = lim
x1→ 0

[√
2x1σyz(1)

(
x1, 0+)] = c44(1)p0

√
2
hπ

.

(6.1)

The result for stress intensity factor for the special case of a stationary crack in an
infinite strip coincides with the corresponding result obtained by Georgiadis [5] and Rice
[10].

7. Conclusions

The closed-form solution provided in this paper is of less importance due to condition (4.11).
Condition (4.11) can be written in the form

ν2 =
c44(1)c44(2)

[
c55(1)c44(2) − c55(2)c44(1)

]
[
ρ1c55(1)c

2
44(2) − ρ2c55(2)c

2
44(1)

] . (7.1)

If the velocity of the crack is known for particular values of the constants
c44(1), c55(1), ρ1, we can substitute the values of constants c44(2), c55(2), ρ2 so that (7.1) is satisfied.
Due to this, the solutions of (7.1) exist for some layered specified orthotropic materials.
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For the stationary crack, we assume ν = 0. Then, from (7.1), we find that

c44(1)

c55(1)
=
c44(2)

c55(2)
. (7.2)

Equation (7.2) is very simple and hence we can easily find the solutions for stationary
crack problems for upper and lower layers of orthotropic materials from (7.2), which has
practical value. The solutions are already obtained by Li [8] for stationary crack in isotropic
elastic layers, while due to condition (7.2), we can find solutions for stationary crack in
orthotropic layers.
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