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The stereographic projection determines a bijection between the two-sphere, minus the North Pole,
and the tangent plane at the South Pole. This correspondence induces a unitary map between the
corresponding L2 spaces. This map in turn leads to equivalence between the continuous wavelet
transform formalisms on the plane and on the sphere. More precisely, any plane wavelet may be
lifted, by inverse stereographic projection, to a wavelet on the sphere. In this work we apply this
procedure to orthogonal compactly supported wavelet bases in the plane, and we get continuous,
locally supported orthogonal wavelet bases on the sphere. As applications, we give three examples.
In the first two examples, we perform a singularity detection, including one where other existing
constructions of spherical wavelet bases fail. In the third example, we show the importance of
the local support, by comparing our construction with the one based on kernels of spherical
harmonics.
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1. Introduction

Two-dimensional wavelets are by now a standard tool in image processing, under the two
concurrent approaches, the Discrete Wavelet Transform (DWT), based on the concept of
multiresolution analysis, and the Continuous Wavelet Transform (CWT). While the former
usually leads to wavelet bases or frames, the CWT has to be discretized for numerical
implementation and produces in general only frames [1, 2].

Nowadays, many situations yield data on spherical surfaces or closed sphere-like
surfaces, that is, surfaces obtained from a sphere by a smooth deformation, for instance,
in Earth and Space sciences (geography, geodesy, meteorology, astronomy, cosmology, etc),
in crystallography (texture analysis of crystals), in medicine (some organs are regarded as
sphere-like surfaces), or in computer graphics (modelling of closed surfaces as the graph of a
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function defined on the sphere). So one needs a suitable analysis tool for such data. As in the
flat case, the Fourier transform is a standard tool, but it amounts to an expansion in spherical
harmonics, whose support is the whole sphere. Fourier analysis on the sphere is thus global
and cumbersome. Therefore many different methods have been proposed to replace Fourier
analysis with some sort of wavelet analysis.

In addition, some data may live on more complicated manifolds, such as a two-
sheeted hyperboloid, in cosmology, for instance (an open expanding model of the universe),
or a paraboloid. In optics also, data on such manifolds are essential for the treatment of
omnidirectional images via the catadioptric procedure, for instance, in robotic vision. This
last topic is particularly relevant for engineering purposes, because of the many applications
in navigation, surveillance, and visualization. In the catadioptric image processing, a sensor
overlooks a mirror, whose shape may be spherical, hyperbolic, or parabolic. However, instead
of projecting the data from that mirror onto a plane, an interesting alternative consists in
processing them directly on the mirror, and thus wavelets on such manifolds are needed [3].
Among the three shapes, the parabolic one is the most common (think of the headlights of a
car). Now this case brings us back to the topic of this paper. Indeed it has been shown in [4]
that the reconstruction of the orthographic (i.e., vertical) projection from a parabolic mirror
can be computed as the inverse stereographic projection from the image plane onto the unit
sphere—which is precisely the tool we are going to use in the sequel for designing wavelets
on the sphere.

For an efficient wavelet analysis of signals or images, including on the sphere, the
following properties are desirable (a thorough discussion of this topic may be found in [5]).

(i) Basis. The redundancy of the frames leads to nonunique expansions. Moreover,
the existing constructions of spherical frames (see e.g., [6, 7]) are computationally
heavy and often applicable only to band-limited functions. In particular, for the
compression of large data sets, it is essential to have wavelet bases, not frames.

(ii) Orthogonality. This is the most economical method since it leads to orthogonal
reconstruction matrices. The inversion of such matrices, needed, for example, in
data compression, is trivial (the inverse equals the adjoint). Thus, orthogonal bases
are ideal for compression, but this is not always sufficient: sparsity of reconstruction
matrices is still needed in the case of large data sets. We should also mention
that orthogonality of a wavelet basis can be easily achieved by a Gram-Schmidt
procedure, but the locality of the support is usually lost.

(iii) Local support. A wavelet has local support if it vanishes identically outside a small
region. It is localized if it is negligible outside a small region, so that it may have
(small, but nonzero) “tails” there. Since these tails may spread in the process of
approximation of data and spoil their good localization properties, local support is
definitely preferred (see the example in Figure 4). More important, local support is
crucial when working with large data sets, since it yields sparse matrices.

(iv) Continuity, smoothness. These properties are always desirable in approximation, but
not easily achieved.

There are many constructions in literature that fulfil at least one of the properties
above, so we have to restrict ourselves by mentioning only some of them. In [8–11],
smooth wavelet bases were obtained by different approaches. Besides smoothness, the
wavelets constructed in [11] have local support. Orthogonal, smooth and localized (but not
locally supported) wavelets were constructed in [12]. In [13–15], by making use of a radial
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projection, one has obtained either continuous, semiorthogonal, locally supported wavelet
bases, or piecewise constant orthogonal locally supported wavelet bases.

However, none of these methods so far has led to wavelet bases on the sphere
which are simultaneously continuous (or smoother), orthogonal and locally supported. The
aim of the present paper is precisely to fill this gap. The method we propose consists in
lifting wavelets from the tangent plane to the sphere by inverse stereographic projection.
It yields simultaneously smoothness, orthogonality, local support, vanishing moments.
The disadvantage is that it could entail distortions around the North Pole N. Of course,
mathematically the construction presented here applies to the pointed sphere Ṡ

2 := S
2 \ {N}

(and therefore we have to avoid the data around the North Pole N), but in practice this
situation is harmless. Indeed, we can choose N in a region where there are no relevant data.
To give an example, European climatologists routinely put the North Pole of their spherical
grid in the middle of the Pacific Ocean. Actually, most of the spherical data are given in polar
coordinates not containing information at the poles.

To summarize our work, we aim at detecting and quantizing local singularities in data,
at small scales. This is, from the practical point of view, the main purpose of wavelet analysis.
We will come back to this point in Section 5.

2. Preliminaries

We consider the unit sphere S
2 = {(η1, η2, η3) ∈ R

3, η2
1 + η2

2 + (η3 − 1)2 = 1} and the pointed
sphere Ṡ

2 = S
2 \ {(0, 0, 2)}, with the parametrization

η1 = cosϕ sin θ,

η2 = sinϕ sin θ, θ ∈ (0, π], ϕ ∈ [0, 2π),

η3 = 1 + cos θ,

(2.1)

Let p : Ṡ
2 → R

2 denote the stereographic projection from the North Pole N(0, 0, 2) and let
ν : Ṡ

2 → R, � : R
2 → R be defined as

ν(η) =
2

2 − η3
, ∀η =

(
η1, η2, η3

)
∈ Ṡ

2,

�(x) =
4

x2 + y2 + 4
, ∀x =

(
x, y

)
∈ R

2,

(2.2)

respectively. The relations between η and x = p(η) are

x = 2 cot
θ

2
cosϕ = η1ν(η),

y = 2 cot
θ

2
sinϕ = η2ν(η),

(2.3)
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and, conversely,

η1 = x�(x),

η2 = y�(x),

η3 =
1
2

(
x2 + y2

)
�(x).

(2.4)

Then it is easy to prove the following relations between dx = dx dy, the area element of R
2,

and dω(η), the area element of S
2:

dx = ν(η)2dω(η),

dω(η) = �(x)2dx.
(2.5)

For simplicity, we write L2(Ṡ2) = L2(Ṡ2, dω(η))(= L2(S2), since the set {N} is of measure
zero) and L2(R2) = L2(R2, dx). Then we consider the map π : L2(Ṡ2) → L2(R2) induced by
the stereographic projection, namely,

[πF](x) = �(x)F
(
p−1(x)

)
, ∀F ∈ L2

(
Ṡ

2
)

(2.6)

and its inverse π−1 : L2(R2) → L2(Ṡ2),

[
π−1F

]
(η) = ν(η)F(p(η)), ∀F ∈ L2

(
R

2
)
. (2.7)

It is well known that π is a unitary map, hence

〈πF, πG〉L2(R2) = 〈F,G〉L2(Ṡ2),

〈
π−1F, π−1G

〉

L2(Ṡ2)
= 〈F,G〉L2(R2),

(2.8)

or, equivalently,

〈F,G〉L2(Ṡ2) =
〈
� · (F ◦ p−1), � · (G ◦ p−1)

〉

L2(R2)
, (2.9)

〈F,G〉L2(R2) = 〈ν · (F ◦ p), ν · (G ◦ p)〉L2(Ṡ2) (2.10)

for all F,G ∈ L2(Ṡ2), F, G ∈ L2(R2). The last equality allows us to construct orthogonal bases
on L2(Ṡ2) starting from orthogonal bases in L2(R2). More precisely, we will use the fact that, if
the functions F,G ∈ L2(R2) are orthogonal, then the functions F = ν · (F ◦p) and G = ν · (G◦p)
will be orthogonal in L2(Ṡ2).
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3. Multiresolution Analysis (MRA) and Wavelet Bases of L2(R2)

In order to fix our notations, we will briefly review in this section the standard construction of
2D orthonormal wavelet bases in the flat case, starting from a multiresolution analysis (MRA)
[1].

Let D be a 2 × 2 regular matrix with the properties

(a) DZ
2 ⊂ Z

2, which is equivalent to the fact that D has integer entries,

(b) λ ∈ σ(D)⇒ |λ| > 1, that is, all eigenvalues of D have modulus greater than 1.

A multiresolution analysis of L2(R2) associated to D is an increasing sequence of closed
subspaces Vj ⊂ L2(R2) with

⋂
j∈ZVj = {0} and

⋃
j∈Z Vj = L2(R2), and satisfying the following

conditions:

(1) f ∈ Vj ⇔ f(D·) ∈ Vj+1,

(2) there exists a function Φ ∈ L2(R2) such that the set {Φ(· − k), k ∈ Z
2} is an

orthonormal basis of V0.

As a consequence, {Φj,k := |detD|j/2Φ(Dj · −k), k ∈ Z
2} is an orthonormal basis for Vj .

For each j ∈ Z, let us define the space Wj as the orthogonal complement of Vj into Vj+1,
that is, Vj+1 = Vj⊕Wj . The two-dimensional wavelets are those functions which span W0. One
can prove (see [16]) that there exist q = |detD| − 1 wavelets 1Ψ,2Ψ, . . . ,qΨ ∈ V1 that generate
an orthonormal basis of W0. Therefore, {λΨj,k := |detD|j/2·λΨ(Dj · −k), λ = 1, . . . , q, k ∈ Z

2}
is an orthonormal basis of Wj for each j, and {λΨj,k, λ = 1, . . . , q, k ∈ Z

2, j ∈ Z} is an
orthonormal basis of L2(R2).

A particular case is that of tensor product wavelets, corresponding to the dilation
matrix D = diag [2, 2] and a 1D MRA with scaling function and mother wavelet φ, ψ. In this
case, q = 3 and one gets the 2D scaling function Φ(x, y) = φ(x)φ(y) and the three wavelets

hΨ
(
x, y

)
= φ(x)ψ

(
y
)
, vΨ

(
x, y

)
= ψ(x)φ

(
y
)
, dΨ

(
x, y

)
= ψ(x)ψ

(
y
)
. (3.1)

If the one-dimensional functions φ and ψ have compact support, then obviously so
have Φ and λΨ. This is the case of the well-known Daubechies wavelets dbn that we will use
in the sequel.

4. Multiresolution Analysis and Orthonormal Wavelet Bases of L2(Ṡ2)

The construction of multiresolution analysis and wavelet bases in L2(Ṡ2) is based on the
equality (2.10). To every function F ∈ L2(R2), one can associate the function Fs ∈ L2(Ṡ2) as

Fs = ν · (F ◦ p). (4.1)

In particular, if the functions {Fj,k}j,k are orthogonal, so are

Fsj,k = ν ·
(
Fj,k ◦ p

)
, for j ∈ Z, k ∈ Z

2. (4.2)
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Then, taking F = Φ and F = Ψ, we obtain the spherical functions

Φs
j,k = ν ·

(
Φj,k ◦ p

)
, λΨs

j,k = ν ·
(
λΨj,k ◦ p

)
. (4.3)

For j ∈ Z, we define the spaces Vj as

Vj =
{
ν · (F ◦ p), F ∈ Vj

}
. (4.4)

Using (2.10) and the unitarity of the map π , it is immediate that Vj is a closed subspace of
L2(Ṡ2), thus a Hilbert space. Moreover, these spaces have the following properties:

(1) Vj ⊂ Vj+1 for j ∈ Z,

(2)
⋂
j∈ZVj = {0} and

⋃
j∈ZVj = L2(Ṡ2),

(3) the set {Φs
0,k, k ∈ Z

2} is an orthonormal basis for V0.

We will say that a sequence of subspaces of L2(Ṡ2) with the properties above constitutes a
multiresolution analysis of L2(Ṡ2). Unlike the construction in [13], the functions Φs

0,k considered
here are scaled versions of the same function Φs. Moreover, in condition (3), we have here a
genuine orthogonality of the wavelet basis, instead of the Riesz basis obtained in [13].

Remark 4.1. It should be noticed that, in the spherical MRA defined here, the scale parameter
j runs over the whole of Z, whereas in the usual constructions on S

2, j runs only from 0 to +∞.
This is due to the stereographic projection, which removes one pole, so that effectively Ṡ

2 =
S

2\{N} is noncompact and thus arbitrary dilations are now allowed (see, however, Section 5).

Once the multiresolution analysis is determined, we construct the wavelet spaces Wj

in the usual manner. LetWj denote the orthogonal complement of the coarse space Vj in the
fine space Vj+1, so that

Vj+1 = Vj ⊕Wj . (4.5)

One can easily prove that, for each j ∈ Z, {λΨs
j,k, k ∈ Z

2, λ = 1, . . . , q} is an orthogonal

basis for Wj and therefore {λΨs
j,k, j ∈ Z, k ∈ Z

2, λ = 1, . . . , q} is an orthonormal basis for

⊕j∈ZWj = L2(Ṡ2).
The conclusion of the analysis may be summarized as follows.

(i) If Φ has compact support in R
2, then Φs

j,k has local support on Ṡ
2 (indeed

diam(supp Φs
j,k) → 0 as j → ∞).

(ii) An orthonormal 2D wavelet basis leads to an orthonormal spherical wavelet basis.

(iii) Smooth 2D wavelets lead to smooth spherical wavelets.

(iv) In particular, plane tensor product Daubechies wavelets lead to locally supported
and orthonormal wavelets on Ṡ

2, and so do plane tensor product Haar wavelets.

(v) The decomposition and reconstruction matrices needed in the spherical case are the
same as in the plane 2D case, so that the latter can be used (with existing toolboxes).
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5. Further Comments

The relation dω(η) = �(x)2 dx linking the area elements of R
2 and of S

2 implies that, near
the origin of the plane, corresponding to the South Pole, the areas on the sphere and on the
plane are almost the same, but near the North Pole, the ratio of the areas approach infinity.
In the standard cases, the elements of a planar orthogonal wavelet basis have supports of
the same size all over the plane. But the corresponding spherical wavelets obtained here will
have a support that almost vanishes when they are in the neighborhood of the North Pole,
which corresponds to regions far away from the origin in the plane. This might clearly lead
to analytical as well as numerical problems whenever the information is nearly uniform over
the whole sphere, and here we see the limitation of our method. As we have precised already
at the end of Section 1, we have to avoid data around the North Pole. More precisely, our
method is applicable on the whole sphere, except a spherical cap θ � θ0. The value of θ0 may
actually depend on the type of data.

We emphasize that, in practice, wavelet transforms are useful mainly for a local
analysis. Thus we do not pretend that our method is the best for all kinds of applications.
Actually, no construction of spherical wavelets is perfect, as we have mentioned in Section 1.
However, we claim that our method is more efficient than most other ones when one deals
with large amounts of data, in all applications where one has to make a decomposition and
a reconstruction, which implies to invert a large matrix. In the case of Daubechies wavelets,
this matrix becomes orthogonal and sparse. Here we see the advantage of being able to use
Daubechies wavelets rather than other 2D wavelets.

We can be more precise about the latitude effect, that is, the choice of the limiting value
θ0. When we project stereographically onto the plane xOy spherical data situated outside
of the spherical cap θ � θ0 � π/2, the projected data will be situated inside the square
[−xmax, xmax]×[−xmax, xmax], where xmax = 2 cot(θ0/2). In the case of tensor product wavelets,
the planar grid at level j has the dimension nj × nj and is taken as

{(
−xmax +

k1

2j
,−xmax +

k2

2j

)
, k1, k2 = 1, 2, . . . , nj

}
. (5.1)

Here nj is taken such that −xmax + (nj/2j) = xmax, that is, nj = 2j+1 · xmax�. Table 1 gives the
size of the planar grid for j = 4 and j = 5 (and therefore of the matrix which is used in the
decomposition algorithm) for different values of θ0. For instance, in our first two examples
below, we will use the values θ0 = 8◦ and j = 4. This gives matrices of reasonable size, yet
yields good results.

6. Examples

In order to illustrate the merits of our construction, we present three examples.
In the first example, we take the function gθ0 : S

2 → R, gθ0(θ, ϕ) = g(θ + θ0, ϕ), where

g
(
θ, ϕ

)
=

⎧
⎪⎨

⎪⎩

1, θ � π

2
,

(
1 + 3 cos2θ

)−1/2
, θ � π

2
.

(6.1)
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Table 1: Dimension of the planar grid at level j (j = 4 and j = 5), for a data set localized at a colatitude
θ � θ0.

θ0 (deg.) θ0 (rad.) xmax dimension of planar grid nj
j = 4 j = 5

1 0.0175 229.1773 7333 14666

2 0.0349 114.6015 3666 7332

3 0.0524 76.3769 2444 4888

4 0.0698 57.2725 1832 3664

5 0.0873 45.8075 1466 2932

6 0.1047 38.1623 1221 2442

7 0.1222 32.6997 1046 2092

8 0.1396 28.6013 915 1830

9 0.1571 25.4124 813 1626

10 0.1745 22.8601 731 1462

15 0.2618 15.1915 486 972

20 0.3491 11.3426 363 726

The function gθ0 and its gradient are continuous, but the second partial derivative with
respect to θ has a discontinuity on the latitudinal circle θ = (π/2) − θ0 (see Figure 1(a)).
Detecting properly such a discontinuity requires a wavelet with two vanishing moments at
least, so that none of the existing constructions of discrete wavelets mentioned in Section 1
could detect this discontinuity.

Thus, following [6, 17], we take the discretized spherical CWT with the spherical
wavelet Ψs

H2
, defined as in (4.1), associated to the plane wavelet

ΨH2

(
x, y

)
= Δ2

[
e−(1/2)(x2+y2)

]
=
(
x4 + y4 + 2x2y2 − 8

(
x2 + y2

)
+ 8

)
e−(1/2)(x2+y2). (6.2)

The plane wavelet (6.2) has vanishing moments of order up to 3 (here too, a simpler wavelet
with less vanishing moments could not detect the discontinuity). In order to compare the
two methods, we present in Figure 1 the analysis of the function gθ0(θ, ϕ) for three different
values of θ0 (a) θ0 = 0◦; (d) θ0 = 50◦; (g) θ0 = 80◦. The second column shows, in panels (b), (e),
(h), the result of the analysis with the spherical wavelet associated to the Daubechies wavelet
db3. Finally, the third column, on panels (c), (f), and (i), does the same for the analysis by the
discretized CWT method with the wavelet ψsH2

.
Comparing the second and the third column, it is clear that the Daubechies wavelet db3

lifted on the sphere by (4.1) outperforms the wavelet Ψs
H2

mentioned above. The precision is
much better, in the sense that the width of the detected singular curve is narrower at all
three latitudes. With both methods, the detection is still efficient very close to the North Pole,
but the computation with the lifted db3 wavelet then requires considering matrices of large
dimension, as shown in Table 1.
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Figure 1: (a) The graph of the function g0◦(θ, ϕ). (b) Its analysis with the spherical wavelet associated to
the Daubechies wavelet db3; (c) Same analysis by the discretized CWT method with the wavelet ψsH2

, at
scale a = 0.0165. (d)–(f) The same for the function g50◦(θ, ϕ). (g)–(i) The same for the function g80◦(θ, ϕ).

Looking at the third column suggests to increase the resolution of the CWT method, by
choosing smaller scales. In order to test this effect, we show in Figure 2 a systematic analysis
of the function gθ0◦ (θ, ϕ) by the discretized CWT method with the wavelet ψsH2

. Panels (a), (b),
(c) and (d) present the spherical CWT at smaller and smaller scales, a = 0.04, 0.0165, 0.012 and
0.0085, respectively. The discretization grids are those considered in [6]. From the panels (a)–
(c), it appears that the discontinuity along the equator is detected properly, and the precision
increases as the scale decreases. However, there is a limit: when the scale a is taken below
a = 0.01, the singularity is no more detected. For instance, for a = 0.0085 (see panel (d)), the
wavelet becomes too narrow and “falls in between” the discretization points, and “ripples”
appear. This effect is described in detail in [17]. Here again, the spherical Daubechies wavelet
performs better.

The next question to examine is the possible distortion in latitude around the North
Pole, for a signal which is no longer invariant under rotation around the z-axis. Thus, in the
second example, we take the function f : S

2 → {0, 1},

f
(
θ, ϕ

)
=

⎧
⎪⎨

⎪⎩

0, if θ � π

2
,

1, if θ <
π

2
.

(6.3)
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Figure 2: Analysis of the function g0◦(θ, ϕ) by the discretized CWT method with the wavelet ψsH2
, at scales:

(a) a = 0.04; (b) a = 0.0165; (c) a = 0.012; and (d) a = 0.0085.

and then fα, the function obtained from f by performing a rotation around the axis Ox by
an angle α. We apply a tensor product Haar wavelet transform to fα, for α = 70◦. Let us
proceed in two steps. First, the discontinuity is well detected in the tangent plane (where the
wavelet transform is computed), as shown in Figure 3(a). It is indeed a circle, with uniform
intensity, as it should, in virtue of the conformal character of the stereographic projection.
However, when it is lifted back onto the sphere, some artifacts appear, that can be seen in
Figure 3(b). Namely, the part of the discontinuity that lies closer to the North Pole is less
clearly visible than the ones that are farther away from it and there are some gaps. This is
caused by the unavoidable fact that the grids on the plane and on the sphere never match, the
inverse projection does not conserve areas, so that some points are lost in the lifting process.

On the other hand, the analysis of the same function by the discretized spherical CWT,
at the smallest possible scale a = 0.0012, shows no such effect, as seen in Figure 3(c). But here
too, the singularity is detected by the discrete WT with a better precision. Note that, in the
CWT case, simpler planar wavelets, with less vanishing moments, can be used, but the result
is the same. One can also try to analyze the function obtained from g0◦ by a rotation around
the axis Ox, but we do not expect much difference with the present example.

In the third example, we consider a data set from the texture analysis of crystals; see
Figure 4(b). It consists of 180 × 360 measurements on the sphere and its main characteristic
is that the values over the sphere are constant, except for some peaks. Figure 4(c) shows
the approximation at level 6 using the spherical wavelet frames constructed in [7], which
are localized, but not locally supported. An example of such kernel is given in Figure 4(a).
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Figure 3: Analysis of the function f70◦(θ, ϕ) with the spherical wavelet associated to a Haar wavelet: (a)
the wavelet transform in the tangent plane; (b) the same lifted back on the sphere, (c) analysis of the same
function by the discretized CWT method with the wavelet ψsH2

, at scale a = 0.0012.
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Figure 4: (a) An example of kernel of spherical harmonics: localized, but not locally supported; (b) the ini-
tial data set, in spherical coordinates (θ, ϕ); (c) Its approximation at level 6 using a spherical harmonics ker-
nel; (d) approximation at first level using the spherical wavelet associated to the Daubechies wavelet db2.
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Figure 4(d) shows the approximation at level 1 using the spherical wavelet associated to db2.
One can easily see that our wavelets are more efficient in approximating the given data set
and also the algorithms are much faster than the ones for spherical harmonics.

7. Conclusion

We have presented a new method for constructing spherical wavelets. Its advantage over
most existing methods is that it yields locally supported orthonormal bases, which is crucial
when one is confronted to very large data sets. The price to pay is that one has to avoid
a small region around the North Pole, whose size may depend on the data. Within that
region, serious distortions may occur. However, the examples given above show that this
“forbidden” region can be very small: although we have used θ0 = 70◦ or 80◦, much higher
values can be chosen without damage. Hence we believe this limitation does not prevent
applying the method to practical situations. In any case, if the data are sufficiently well
localized, one can always make a rotation that brings them around the South Pole, as we
already mentioned in the Introduction. After all, one should remember that wavelet analysis
is primarily a local analysis.

We may also mention that the method described in this paper could detect singularities
of arbitrarily high order, by choosing appropriate planar wavelets. By contrast, the other
existing spherical wavelets do not have enough vanishing moments and thus are not able
to detect such discontinuities.

As a final remark, we may point out that the method should work for any manifold
with a bijective orthogonal projection onto a fixed plane, since the latter induces a unitary
map between the respective L2 spaces. Such are, for instance, the upper sheet of the two-
sheeted hyperboloid z2−x2−y2 = 1 with projection onto the plane z = 0 or the paraboloid z =
x2+y2 with the same projection (in addition, we have seen in Section 1 that the latter case may
be treated also by the stereographic projection from the sphere). It might also be extended to
a local analysis on more general manifolds. A systematic discussion may be found in our
recent work [18].
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[5] J.-P. Antoine and D. Roşca, “The wavelet transform on the two-sphere and related manifolds—a
review,” in Optical and Digital Image Processing, vol. 7000 of Proceedings of SPIE, pp. 70000B-1–15, June
2008.



Mathematical Problems in Engineering 13

[6] I. Bogdanova, P. Vandergheynst, J.-P. Antoine, L. Jacques, and M. Morvidone, “Stereographic wavelet
frames on the sphere,” Applied and Computational Harmonic Analysis, vol. 19, no. 2, pp. 223–252, 2005.

[7] D. Potts, G. Steidl, and M. Tasche, “Kernels of spherical harmonics and spherical frames,” in Advanced
Topics in Multivariate Approximation, F. Fontanella, K. Jetter, and P. J. Laurent, Eds., vol. 8, pp. 287–301,
World Scientific, Singapore, 1996.

[8] J. Maes and A. Bultheel, “Smooth spline wavelets on the sphere,” in Curve and Surface Fitting: Avignon
2006, A. Cohen, J.-L. Merrien, and L. L. Schumaker, Eds., pp. 200–209, Nashboro Press, Brentwood,
Tenn, USA, 2006.

[9] S. Dahlke, W. Dahmen, E. Schmitt, and I. Weinreich, “Multiresolution analysis and wavelets on S2

and S3,” Numerical Functional Analysis and Optimization, vol. 16, no. 1-2, pp. 19–41, 1995.
[10] I. Weinreich, “A construction of C1-wavelets on the two-dimensional sphere,” Applied and

Computational Harmonic Analysis, vol. 10, no. 1, pp. 1–26, 2001.
[11] W. Freeden and M. Schreiner, “Biorthogonal locally supported wavelets on the sphere based on zonal

kernel functions,” Journal of Fourier Analysis and Applications, vol. 13, no. 6, pp. 693–709, 2007.
[12] F. J. Narcowich and J. D. Ward, “Wavelets associated with periodic basis functions,” Applied and

Computational Harmonic Analysis, vol. 3, no. 1, pp. 40–56, 1996.
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